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Abstract. We investigate the timing of messages sent in two online communities with respect to growth
fluctuations and long-term correlations. We find that the timing of sending and receiving messages com-
prises pronounced long-term persistence. Considering the activity of the community members as growing
entities, i.e. the cumulative number of messages sent (or received) by the individuals, we identify non-trivial
scaling in the growth fluctuations which we relate to the long-term correlations. We find a connection be-
tween the scaling exponents of the growth and the long-term correlations which is supported by numerical
simulations based on peaks over threshold. In addition, we find that the activity on directed links between
pairs of members exhibits long-term correlations, indicating that communication activity with the most
liked partners may be responsible for the long-term persistence in the timing of messages. Finally, we
show that the number of messages, M, and the number of communication partners, K, of the individual
members are correlated following a power-law, K ~ M?™, with exponent A ~ 3/4.

1 Introduction

Seeking for simple laws and regularities in human activity,
researchers belonging to various disciplines aim to study
social phenomena by describing them with methods from
natural sciences. Since communication plays a predomi-
nant role in social systems, it is desired to obtain better
insight into the nature of communication patterns — and
therefore to understand both, communication itself and
the social systems. Although it is clear that communica-
tion is related to the embedment in social networks, the
actual dynamical processes are still poorly understood.

Studying economic data, surprising growth patterns
have been identified [1], which seem to be abundant in
systems with growth-like features [2-8]. Considering the
units of a system of interest and calculating their loga-
rithmic growth rates between two time steps, it was found
that the standard deviation of the growth rates decays as
a power-law with the initial size [1]. This finding repre-
sents a violation of Gibrat’s law [9-11] stating that the
average and the standard deviation of the growth rate of
a given economic indicator are constant and independent
of the specific indicator value, see also [7].

# e-mail: ca-dr@rybski.de

In a recent study [12] we have found several scaling
laws characterizing the communication activity in online
social networks. We found the existence of long-term cor-
relations in human activity of sending messages to other
members in the social network. The long-term persistence
is related to the fluctuations in the growth properties of
the social network as measured by the cumulative num-
ber of message sent by the members. The present paper
expands this previous work by studying the messages sent
in two online social networks with respect to the following
properties. First, we extend the results obtained in [12],
revealing the analogue correlations in the timing of re-
ceiving messages. Furthermore, we analyze the temporal
correlations of the activity on directed links, i.e. between
pairs of members, and find almost identical results as on
the level of the single members.

Second, in line with [12] we study the growth of the cu-
mulative communication activity of the members in terms
of the cumulative numbers of messages sent and received.
In [12] we have shown that the standard deviation of the
growth rates of the cumulative number of messages sent by
individuals depend on the ‘size’ of the member (defined as
the cumulative numbers of messages) following a power-
law with exponent 8 ~ 0.2, significantly different from
the random exponent (B;,q = 1/2, indicating nontrivial
fluctuations and persistence in the human communication
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activity in the social networks. Here we further study the
distribution of the logarithmic growth rates and find ex-
ponential decays similarly to those encountered in econo-
physics [1].

Third, in order to understand the relation between the
long-term correlations and growth fluctuations, we pro-
pose a simulation approach based on peaks over thresh-
old modeling. Using artificially generated long-term corre-
lated sequences, a message is sent when the record exceeds
a predefined threshold. Numerically, we measure the long-
term correlations characterized by the exponent H as well
as growth fluctuations characterized by (8 and find that
the relation connecting both exponents proposed in [12]
holds.

Fourth, we introduce a new growth rate between any
pair of members quantifying the mutual growth in the
number of messages. We find that the corresponding
growth fluctuations follow a power-law with similar expo-
nent as for the ‘normal’ growth rates. We motivate that
the exponent might be related to cross-correlations in the
activity of the members.

Fifth, in addition to the temporal correlations, we in-
vestigate the total number of messages sent or received
and the total in- and out-degree (i.e. the number of differ-
ent members from which a member receives or to whom
he/she sends). We find that the total degree and the final
number of messages are correlated following a power-law
with exponent close to 0.75. In the case of final in- vs. out-
degree, deviations from the linear correlations are found.

Finally, we point out that there is also a relation be-
tween our results on growth fluctuations and long-range
correlations (8 and H, respectively) and the existence of
power-law distributed inter-event times characterized by
the exponent ¢ [13] leading to the clustering and bursts in
the activity of members. This connection is explored in a
follow-up paper [14].

Our results have important implications for the de-
sign of communication systems. The correlations can be
elaborated to better predict information propagation, see
e.g. [15]. In addition, the characterization of fluctuations is
essential for the knowledge of uncertainty. Our approach
could be also applied in natural systems such as in the
context of protein unfolding [16].

This paper is organized as follows. In Section 2, we
briefly describe the data of messages sent in two online
communities. Our results are presented in Section 3 which
is organized in four sub-sections — discussing long-term
correlations, growth fluctuations, modeling, and other cor-
relations. Finally, we draw our conclusions in Section 4.

2 Data

We analyze the timing of messages sent in two Internet
communities [12,17]. The data of the first online com-
munity (www.qx.se, QX)! consists of over 80000 mem-

! The study of the de-identified dating site network data was
approved by the Regional Ethical Review board in Stockholm,
record 2005/5:3.
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bers and more than 12.5 million messages sent during
63 days (mid November 2005 until mid January 2006). The
data of the second online community (www.pussokram.
com, POK) covers 492 days (February 2001 until June
2002) of activity with more than 500000 messages sent
among almost 30000 members [18-20]. This corresponds
to the entire lifespan of the social network. Both web-sites
are used for dating and general social interactions. The
QX community is used mainly by Swedish gay and les-
bian while POK was targeted to Swedish teenagers and
young adults. All data are completely anonymous, lack
any message content and consist only of the time when
the messages are sent and identification numbers of the
senders and receivers. The advantage of these data sets is
that they provide the exact time when the messages were
sent — in contrast to similar network data sets consisting
only of snapshots, i.e. temporally aggregated social net-
works expressing who sent messages to whom (see [17] for
a discussion).

Similarly to other online communities, the members
can log in and meet virtually. There are different ways of
interacting in these communities. Common among most
of such online communities is the possibility to choose
favorites, i.e. a list of other members, that a person some-
how feels committed to. In addition, the platforms offer
the possibility to join groups and discuss with other mem-
bers about specific topics. We focus on the messages sent
among the members. These messages are similar to e-mails
but have the advantage that they are sent within a closed
community where there are no messages coming from or
going outside.

From the message data one can also build networks,
which consist of links connecting nodes. We consider the
members as nodes and set a directed link from node a
to b when member a sends at least one message to b.
The degree, k, of a node is the number of other nodes it is
connected to, i.e. the number of links it has. In the directed
case one distinguishes between out-degree (number of out-
going links) and in-degree (number of in-going links).

3 Analysis
3.1 Long-term correlations

First, we define the activity record, p;(t), counting the
number of messages member j sends at day/week ¢. Thus,
we study the activity that is aggregated at the daily or
weekly level. This is done to avoid possible oscillations
that are observed in the data at both frequencies.

In a previous study [12] we have applied detrended
fluctuation analysis (DFA) [21-23] and found that the
activity records, pu(t), exhibit long-term correlations,
which are characterized by a power-law decaying auto-
correlation function,

1

o2

CAt) =, ([nt) = ()] [pt + At) — (u(E))])

~ (A7,



D. Rybski et al.: Communication activity in social networks: growth and correlations

10° , 10°
= (a) daily resolution (b) weekly resolutiorl,.f""' =
5 POK ‘ POK 2
B 10 | 4L 110 §
o 1 . o
= ha e / %
5] L g
200 L 1 B e 10" E
u_lﬁ - (At)”z - (At)”z g
10 o - - o - - 107"
10 10 10 10 10 10
At [days] At [days]

Fig. 1. (Color online) Comparison of fluctuation functions in
(a) daily and (b) weekly resolution of members sending mes-
sages in POK. The different curves correspond to different ac-
tivity levels: M = 1-2, 3-7, 8-20, 21-54, 55-148, 149-403,
404-1096, 1097-2980 total messages (from bottom to top). The
curves in (b) have been shifted along the At axis to match daily
resolution. In both cases the asymptotic scaling is the same.
The dotted lines correspond to the exponents H = 1 (top) and
H =1/2 (bottom).

where (u(t)) is the average of the record u(t), o, is its
standard deviation, and v is the correlation exponent
(I > v > 0). The fluctuation function provided by DFA
scales as

F(At) ~ (At (1)

where the exponent H is similar to the Hurst exponent
(1/2 < H < 1, larger exponents correspond to more pro-
nounced long-term correlations). It is related to the cor-
relation exponent via

v=2-2H. (2)

For uncorrelated or short-term correlated records the
asymptotic fluctuation exponent is H = 1/2 (for a review
we refer to [24]).

In order to study the activity with respect to long-term
correlations, we apply second order DFA (DFA2) [22,23]
(linear detrending of w;(t)) and obtain the fluctuation

functions, F}jp.,(At) (details can be found in [12]). Since
the activity records of the individual members are too
short, we average the squared fluctuation functions among
members with similar overall activity (i.e. total num-
ber of messages, M): F(At) = [} Zle(Fj(At))z]l/Q,
where njs is the number of members with M messages.
Therefore, we employ logarithmic bins in M. The activity
distributions are discussed in Section 3.4.1.

In Figure 1, we compare for sending in POK the fluc-
tuation functions in daily resolution (Fig. 1a) and weekly
resolution (Fig. 1b). In order to match the scales, we have
shifted the curves in Figure 1b along the At-axis. Natu-
rally, in daily resolution, the fluctuation functions cover
more scales. The asymptotic scaling is in both cases the
same, namely no correlations in the case of least active
members and strong long-term correlations with fluctua-
tion exponents close to 1 for the most active members.
Moreover, for POK in daily resolution, the fluctuation
functions exhibit an increase from small slopes on short
time scales to larger slopes on large scales. This indicates
that the long-term correlations do not vanish after certain
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Fig. 2. (Color online) Fluctuation exponents of the commu-
nication activity (a) sending and (b) receiving messages by
members of QX. The exponents are plotted as a function of the
activity level M, i.e. total number of messages, for the original
data (green circles), and individually shuffled sequences (or-
ange diamonds). See also [12].

scale, but the opposite, the long-term correlations become
stronger. Note, that we use weekly resolution in order to
cope with possible weekly oscillations [25-27].

We measure the fluctuation exponents by applying
least squares fits to log F/(At) vs. log At on the scales
10 < At < 63 days (QX) and 10 < At < 70 weeks (POK).
For the former case the obtained fluctuation exponents are
plotted in Figure 2 as a function of the members activity
level, i.e. their total number of messages M. For sending
(panel (a)), the less active members exhibit uncorrelated
behavior. The more messages the members send overall,
the stronger correlated is their activity. The fluctuation
exponent Hgx increases with M and reaches values up to
0.75 + 0.05 (sending). In contrast, for the shuffled data,
the fluctuation exponents are always very close to 1/2.
This confirms that the long-term correlations are due to
the temporal structure of the times each member sends
his/her messages, see also [14]. For receiving messages,
Figure 2b, we find almost identical results. The error bars
in Figure 2 were calculated by subdividing the groups of
different activity level. The size of the error bars is simply
the standard deviation of the corresponding exponents.

The estimated fluctuation exponents obtained for
POK are displayed in Figure 3. Qualitatively, we obtain
a similar picture as for QX. However, in contrast to QX,
here the original records achieve larger fluctuation expo-
nents up to 0.91 £ 0.04 (sending), disregarding the last
points which carry large error-bars. A possible reason for
these different maximum exponents could be that in the
case of POK the data covers a much longer period of data
acquisition, and possible non-stationarities [28]. In QX,
the members might not have had enough time to exhibit
the full extend of their persistence, while in POK we follow
the entire evolution of the online community.

Indeed, similar behavior of long-term correlations have
been found in traded values of stocks and e-mail commu-
nication [29,30], where the fluctuation exponent increases
in an analogous way with the mean trading activity of the
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Fig. 3. (Color online) Fluctuation exponents of the commu-
nication activity (a) sending and (b) receiving messages by
members of POK (weekly resolution). The exponents are plot-
ted as a function of the activity level M for the original data
(green circles), and individually shuffled sequences (orange di-
amonds). See also [12].

corresponding stock or with the average number of e-mails
(see also [31]).

Apart from these, for human related data, long-
term persistence has been reported for physiological
records [22,32,33], written language [34], or for records
generated by collective behavior such as finance and econ-
omy [35-37], Ethernet traffic [38], Wikipedia access [39],
as well as highway traffic [40,41]. There are also indications
of long-term correlations in human brain activity [42,43]
and human motor activity [44].

A question that arises is, why the fluctuation expo-
nent (in Figs. 2 and 3) depends on the activity level
of the members, that is, why the least active members
exhibit no persistence while the most active members ex-
hibit strong persistence. We argue that if only few mes-
sages appear in the whole period of data acquisition, long-
term persistence cannot be reflected. In these cases it is
quite possible that much longer records and higher ag-
gregation level such as months or years would be needed
to reveal the persistence. But doing so, there would be
other members with even less messages which then again
would probably appear with seemingly uncorrelated mes-
sage signals. Thus, we propose that the exponents of the
largest activity reflect more accurately the scaling behav-
ior of human communication activity. In Section 3.3.1
we propose statistical simulations to generate data using
peaks over threshold (POT) and find that it supports this
perception.

At this point we need to mention that long-term cor-
relations can be related to broad inter-event time dis-
tributions, i.e. the times between successive messages of
individual members. Such distributions have been inves-
tigated, see e.g. [13,45], but there is no consensus on the
functional form. We study the inter-event time distribu-
tions in a different publication [14] where we demonstrate
the connection with the long-term correlations found here.
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Fig. 4. (Color online) Temporal correlations in the daily
amount of messages on directed links in QX. (a) DFA2 fluctu-
ation functions versus the time scale At, averaged conditional
to the final number of messages of each link. The different
curves correspond to different activity levels: M1, = 1—-2, 3—
7, 820, 21-54, 55-148, 149-403, 404-1096, 1097-2980 (from
bottom to top). The dotted lines correspond to the exponents
H = 0.75 (top) and H = 1/2 (bottom). (b) The DFA2 fluctua-
tion exponent Hi, gx obtained from (a) is plotted as a function
of the activity level Mi,. The exponents were obtained in the
range of scales 10 < At < 63 days. The activity along directed
links comprise similar long-term correlations as the total ac-
tivity of individual members to all of their acquaintances.

Along directed links

In Figure 4 we study for QX the long-term correlations
in activity not on the sender or receiver (node) level but
on the level of messages along directed links. This means
that we track when a message is sent directed between two
members but separately for any pair of members, such as
a—b, b—a, a—d, ... Accordingly, we determine the activ-
ity records fan(t), toa(t), taa(t), etc., expressing how many
messages have been sent each day/week, t, between any
pair of members. Analogous, there is also an activity level
for the links, M®, ... (we disregard those pairings with-
out activity). Then we perform the analogous analysis for
long-term correlations by applying DFA2 and averaging
among pairings with similar overall activity (the distribu-
tions of activity are discussed in Sect. 3.4.1). The fluctua-
tion functions in Figure 4a have asymptotic slopes close to
1/2 for those links with few total number of messages. In
contrary, those links with many total number of messages
exhibit long-term correlations with exponents up to 0.74.
The fluctuation exponents as a function of the activity
level My, are plotted in Figure 4b. Apart from the fact,
that by definition the number of messages on the most ac-
tive links is lower (or equal) than the number of messages
of the most active members, the curve looks very similar
to the one in Figure 2a, in particular the maximum expo-
nents are quite similar (Hgx =~ 0.75 and Hy, gx =~ 0.74).
This indicates, that the persistence in the communication
may be dominated by the communication activity with
the most liked partners.

In [46] a different concept of persistence links has been
investigated. The period of data acquisition is partitioned
into time slices in each of which a network is built. Then
the persistence is defined as the normalized number of
time slices in which a certain link appears. However, the
approach of our work is not compatible with the one in [46]
and we cannot directly compare the results.
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3.2 Growth process
3.2.1 Growth in the number of messages

As suggested in [12] we also analyze the growth prop-
erties of the message activity. This concept is borrowed
from econophysics, where the growth of companies has
been found to exhibit non-trivial scaling laws [1], that in
particular violate the original Gibrat’s law [9-11,47] and
at the same time represents a generalized Gibrat’s law
(GGL) [12]. In the present study, each member is con-
sidered as a unit and the number of messages sent or re-
ceived since the beginning of data acquisition represents
its size. We analyze the growth in the number of mes-
sages in analogy to other systems such as the growth of
companies [1,48] or the growth of cities [7,49]. The anal-
ogy is supported by some aspects: (i) the members of a
community represent a population similar to the popula-
tion of a country; (ii) the number of members fluctuates
and typically grows analogous to the number of cities of a
country; (iii) the activity or number of links of individuals
fluctuates and grows similar to the size of cities.

The cumulative number, m7(t), expresses how many
messages have been sent by a certain member j up to a
given time t (for a better readability we will not write
the index j explicitly, m(t)). We consider the evolution of
m(t) between times tg and ¢; within the period of data
acquisition T (tg < t; < T) as a growth process, where
each member exhibits a specific growth rate r; (r for short
notation):

; (3)

where mop = m(tg) and m; = m(t;) are the number of
messages sent until ¢y and ¢1, respectively, by every mem-
ber. To characterize the dynamics of the activity, we con-
sider two measures. (i) The conditional average growth
rate, (r(mg)), quantifies the average growth of the num-
ber of messages sent by the members between ¢y and t;
depending on the initial number of messages, mg. In other
words, we consider the average growth rate of only those
members that have sent mg messages until ¢g. (ii) The
conditional standard deviation of the growth rate for those
members that have sent my messages until ¢,

a(mo) = v/{(r(mo) — (r(mo)))?), (4)

expresses the statistical spread or fluctuation of growth
among the members depending on mg. Both quanti-
ties are relevant in the context of Gibrat’s law in eco-
nomics [9-11,47] which proposes a proportionate growth
process entailing the assumption that the average and the
standard deviation of the growth rate of a given economic
indicator are constant and independent of the specific in-
dicator value. That is, both {r(mg)) and o(mg) are inde-
pendent of myg.

As shown in [12], for the message data the conditional
average growth rate is almost constant and only decreases
slightly,

(r(mo)) ~mgy*, ()
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with an exponent o =~ 0.05. This means that members
with many messages in average increase their number of
messages almost with the same rate as members with few
messages. In contrast, the conditional standard deviation
clearly decreases with increasing my,

(mo) ~my ", (6)

where ¢ty = T'/2 is optimal in terms statistics. In this case
the exponents Bqx = 0.22 £ 0.01 and Bpox = 0.17 +
0.03 for sending messages were found [12]. This means,
although the average growth rate almost does not depend
on myg, the conditional standard deviation of the growth
of members with many messages is smaller than the one of
members with few messages. Due to weaker fluctuations,
active members are relatively better predictable in their
activity of sending messages.
It has been shown that the fluctuation exponent H and
the growth fluctuation exponent g are related via [12]
f=1-H. (7)
Equation (7) is a scaling law formalizing the relation be-
tween growth and long-term correlations in the activ-
ity. According to equation (7), the original Gibrat’s law
(Bc = 0) corresponds to very strong long-term correla-
tions with Hg = 1. In contrast, S;na = 1/2 represents
completely random activity (Hyng = 1/2). The observed
message data comprises 1/2 > 8> 0and 1/2 < H < 1.
Surprisingly, the values of 8 found here are very close to
the /8 values found for companies in the US economy [1].
In the case of companies, also the distribution of
growth rates has been studied. It was found that the dis-
tribution density follows [1]:

1 slr — (r(mo))|
plrlmo) wmw“% L ), ®)
whereas s = v/2. Next we analyze, how the growth rates r
are distributed in the case of the message data.

First we need to point out that in contrast to the
growth of companies, our entities can never shrink. The
members cannot loose messages, the number m(t) either
increases or remains the same. Accordingly, in our case
r > 0 and therefore s = 1, as can be derived for the
single-sided exponentially decaying distribution.

Figure 5 shows p(r|mg) for QX where the values are
scaled to collapse according to equation (8) with s = 1.
In order to have reasonable statistics, we define the con-
dition my in rather wide ranges, namely according to the
decimal logarithm. For sending (Fig. 5a) and receiving
(Fig. 5b) messages the scaled probability densities col-
lapse and are quite similar. Nevertheless, the growth rates
do not exactly follow equation (8) with s = 1. While for
the less active members with small growth rates we find
a good agreement, for more active members and large
growth rates the obtained curves deviate from the the-
oretical one towards a steeper decay.

The corresponding results for POK are shown in Fig-
ure 6. Again, sending and receiving are very similar. The
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Fig. 5. (Color online) Scaled probability density of growth
rates 7, equation (3), in the number of messages by members
of QX. (a) Sending and (b) receiving. The times for mo and
my have been chosen as to = 7'/2 and ¢t1 = T. The symbols
correspond to different initial number of messages mo. The axis
are scaled assuming a distribution according to equation (8)
with s = 1 which then corresponds to the dotted lines.
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Fig. 6. (Color online) Scaled probability density of growth
rates 7, equation (3), in the number of messages by members
of POK. (a) Sending and (b) receiving. Analogous to Figure 5.

curves collapse reasonably, but in contrast to QX here the
measured p(r|mg) overall deviate from the theoretical one
comprising less steep slopes.

We argue that as for single time series, distribution
and correlation properties are in most cases independent,
the same holds for the message data and the growth. The
distribution of growth rates p(r|mg) seems to be indepen-
dent from the long-term correlations which are reflected
in o(mg) with the exponent f3.

3.2.2 Mutual growth in the number of messages

Next we study a variation of growth. Instead of consider-
ing the absolute number of messages a member sends, we
study the difference in the number of messages compared
to any other member, the mutual difference m!(t) —m?(t).
Thus, the growth rate is defined analogous to equation (3)

mi —m]
ry« = In ;L j 9)
my — My
where now there is a growth rate for every pair of mem-
bers ¢ and j. The conditional average growth rate and the
corresponding standard deviation is then taken over all

possible pairs and the condition is the difference at t,
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Fig. 7. (Color online) Average mutual growth rate and stan-
dard deviation versus foregoing difference in the number of
messages for sending in QX. The average (open squares) and
standard deviation (filled circles) of the mutual growth rate
Tx, equation (9), are plotted conditional to the initial differ-
ence m{) —mj,, whereas to = T/2 and t; = T. (a) Original data
and (b) shuffled data. The dotted line in (a) corresponds to
the exponent 5y = 0.3 and in (b) to fx = 1/2.

mé — mj = m(ty) — mj(to),_ providing the quantities
(rx(mf —my)) and o(mf — my). We disregard combina-

7 J
ml—ml
(.

i

tions of i and j where m{ —mi =0 or

0
The results for sending in QX are shown in Figure 7.
Apart from a small decrease up to my — m} ~ 50, the
average growth rate is constant (Fig. 7a). The conditional

standard deviation asymptotically follows a slope By =~

0.3 with deviations to small exponents for small m —mj.

In the case of the shuffled data (Fig. 7b), as expected, the
average growth rate is constant while the standard devia-
tion decreases steeper than for the original data, namely
with Oy« 1na > 1/2, although not with a nice straight line.
Nevertheless, we conclude that the scaling of the standard
deviation in Figure 7a must be due to temporal correla-
tions between the members. The growth of the difference
between their number of messages comprises similar scal-
ing as the individual growth.

We conjecture that o(mj — mj) reflects long-
term cross-correlations in analogy to o(mg) for auto-
correlations. However, so far, we are not able to provide
further evidence for this analogy and the corresponding
relation to 8 = 1 — H, equation (7), since an appropriate
technique for the direct quantification of long-term cross-
correlations is lacking.

3.3 Modeling

In what follows, we propose numerical simulations with
the purpose of testing the methods and empirical pat-
terns we found. We study three approaches adopted to
the modeling of human activity: (a) peaks over thresh-
olds, (b) preferential attachment [50], and (c¢) cascading
Poisson process [27].

3.3.1 Peaks over threshold (POT) simulations

Our finding that the activity of sending messages ex-
hibits long-term persistence asserts the existence of an
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Fig. 8. (Color online) Illustration of the peaks over thresh-
old simulations. (a) An underlying and unknown long-term
correlated process determines the instantaneous probability
of sending messages. Once this state passes certain thresh-
old ¢ (dashed orange line) a messages is sent (green diamonds).
(b) Generated instants of messages, (c) with windows for ag-
gregation, such as messages per day. (d) Aggregated record of
messages in windows of size w, here w = 10.

underlying long-term correlated process. It can be under-
stood as an unknown individual state driven by various
internal and external stimuli [27,43,51-54] increasing the
probability to send messages. Generating such a hypothet-
ical long-term correlated internal process (x;), simulated
message data can be defined by the instants at which this
internal process exceeds a threshold ¢ (peaks over thresh-
old, POT), see [55-57] and references therein.

More precisely, we consider a long-term correlated se-
quence (z;) consisting of N* random numbers that is nor-
malized to zero average ((x) = 0) and unit standard devi-
ation (o, = 1). Choosing a threshold ¢, at each instant 4
the probability to send a messages is:

1
Psnd = 0

Thus, the message events are given by the indices i of
those random numbers x; exceeding q.

Figure 8a illustrates the procedure. The random num-
bers are plotted as brown circles and the events exceeding
the threshold (orange dashed line) by the green diamonds.
The resulting instants are depicted in Figure 8b represent-
ing the simulated messages. The threshold approximately
predefines the total number of events and accordingly the
average inter-event time. Using normal-distributed num-
bers (x;), the number of events/messages is approximately
given by the length N* and the inverse cumulative dis-
tribution function associated with the standard normal
distribution (probit-function). Additionally, the random
numbers we use are long-term correlated with variable

for z; > q
. (10)
for x; <gq
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Fig. 9. (Color online) Results of numerical simulations.
(a) Mean growth rate conditional to the number of events un-
til to = N*/2 as obtained from 100000 long-term correlated
records of length N* = 131072 with variable imposed fluctua-
tion exponent Himp between 1/2 and 0.9 and random thresh-
old ¢ between 1.0 and 6.0. (b) As before but standard devia-
tion conditional to the number of events. The solid lines repre-
sent power-laws with exponents (8 expected from the imposed
long-term correlations according to equation (7). (¢) Long-term
correlations in the sequences of aggregated peaks over thresh-
old. For every threshold ¢ between 1.0 (violet) and 4.5 (black)
100 normalized records of length N* = 4194304 have been
created with Himp = 0.9. The events are aggregated in win-
dows of size w = 100. The panel shows the averaged DFA2
fluctuation functions. (d) Fluctuation exponents on the scales
1000 < s < 10000, as a function of the total number of events.

fluctuation exponent. We impose these auto-correlations
using Fourier filtering method [23,58]. Next we show that
this process reproduces the scaling in the growth, i.e.
GGL, as well as the variable long-term correlations in the
activity of the members (e.g. Figs. 2 and 3).

For testing this process we create 100000 independent
long-term correlated records (x;) of length N* = 131072,
impose the fluctuation exponent Hip,p, and choose for each
one a random threshold g between 1 and 6, each represent-
ing a sender. Extracting the peaks over threshold, we ob-
tain the events and determine for each record /member the
growth in the number of events/messages between N*/2
and N*. This is, for each record/member we count the
numbers of events/messages mo until to = ¢,y /2 as well
as my until ¢; = t,— N+ and calculate the growth rate ac-
cording to equation (3). We then calculate the conditional
average (r(mg)) and the conditional standard deviation
o(mg) where the values of mg are binned logarithmically.
The quantities are plotted in Figures 9a and 9b, while in
panel (b) we include slopes expected from § = 1 — H,
equation (7). We find that the numerical results reason-
ably agree with the prediction (solid lines). Except for
small my, these results are consistent with those found in
the original message data.
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The fluctuation functions can be studied in the same
way. As described in Section 3.1, we find long-term corre-
lations in the sequences of messages per day or per week.
On the basis of the above explained simulated messages,
we analyze them in an analogous way. For each thresh-
old ¢ = 1.0,1.5,...,4.0,4.5 we create 100 long-term cor-
related records of length N* = 4,194,304 with imposed
fluctuation exponent Himp = 0.9, extract the simulated
message events, and aggregate them in non-overlapping
windows of size w = 100. This is, tiling N* in segments
of size w and counting the number of events occurring in
each segment (Figs. 8c and 8d). The obtained aggregated
records represent the analogous of messages per day or per
week and are analyzed with DFA averaging the fluctua-
tion functions among those configurations with the same
threshold and thus similar number of total events. The
corresponding results are shown in Figure 9c and 9d. We
obtain very similar results as in the original data. We find
vanishing correlations for the sequences with few events
(large ¢) and pronounced long-term correlations for the
cases of many events (small ¢), while the maximum fluc-
tuation exponent corresponds to the chosen Hijy,p. This
can be understood by the fact that for ¢ close to zero
the sequence of number of events per window converges
to the aggregated sequence of 0 or 1 (for x < 0 or x > 0)
reflecting the same long-term correlation properties as the
original record [59]. For a large threshold ¢ too few events
occur to measure the correct long-term correlations, e.g.
the true scaling only turns out on larger unaccessible time
scales requiring larger w and longer records.

Although the simulations do not reveal the origin
of the long-term correlated patchy behavior, they sup-
port equation (7) and the concept of an underlying long-
term correlated process. Consistently, an uncorrelated,
completely random, underlying process recovers Poisson
statistics and therefore By,q = 1/2 for the growth fluctu-
ations as well as uncorrelated message activity (Hyna =
1/2). For 1/2 < H < 1 it has been shown [55,57] that the
inter-event times follow a stretched exponential distribu-
tion, see also [13,14,60].

3.3.2 Preferential attachment

Next we compare our findings with the growth proper-
ties of a network model. We investigate the Barabasi-
Albert (BA) model which is based on preferential at-
tachment and has been introduced to generate a kind of
scale-free networks [50,61] with power-law degree distri-
bution p(k) [62,63]. Essentially, it consists of subsequently
adding nodes to the network by linking them to existing
nodes which are chosen randomly with a probability pro-
portional to their degree.

We obtain the undirected network and study the de-
gree growth properties by calculating the conditional av-
erage growth rate (rpa (ko)) and the conditional standard
deviation opa (ko) obtained from the scale-free BA model.
The times ty and t; are defined by the number of nodes
attached to the network.

Figure 10 shows the results where an average degree
(k) = 20; 50 000 nodes in tp, and 100 000 nodes in t; were
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Fig. 10. (Color online) Average degree growth rate and stan-
dard deviation versus foregoing degree for the preferential at-
tachment network model [50]. The average (green open di-
amonds) and standard deviation (blue filled circles) of the
growth rate rga are plotted conditional to ko, the degree of
the corresponding nodes at the first stage. We choose average
degree (k) = 20, 50000 nodes in to, and 100000 nodes in ¢;.
The error-bars are taken from 10 configurations. The dashed
line in the bottom corresponds to fga = 1/2.

chosen. We find constant average growth rate that does
not depend on the initial degree k. The conditional stan-
dard deviation is a function of ky and exhibits a power-law
decay with fpa = 1/2 as expected for such an uncorre-
lated growth process [12]. Therefore, a purely preferential
attachment type of growth is not sufficient to describe the
type of social network dynamics found in Section 3.2.1,
since additional temporal correlations are involved in the
dynamics of establishing acquaintances in the community.

The value fpa = 1/2 in equation (7) corresponds to
H = 1/2 indicating complete randomness. There is no
memory in the system. Since each addition of a new node
is completely independent from precedent ones, there can-
not be temporal correlations in the activity of adding
links. In contrast, for the out-degree in QX and POK we
obtained G gx = 0.22£0.02 and B, pox = 0.17£0.08 [12],
which is supported by the (non-linear) correlations be-
tween the number of messages and the out-degree as pre-
sented in Section 3.4.

Interestingly, an extension of the standard BA model
has been proposed [64], see also [65,66], that takes into
account different fitnesses of the nodes to acquiring links.
We think that such fitness could be related to growth fluc-
tuations, thus providing a route to modify the BA model
to include the long-term correlated dynamics found here.

3.3.3 Cascading Poisson process

In this section, we elaborate the model proposed in [27]
and examine it with respect to long-term correlations. The
model is based on a cascading Poisson process (CPP),
according to which the probability that a member enters
an active interval is p(t) = Nypa(t)pw(t), where Ny, is the
average number of active intervals per week, pq(t) is the



D. Rybski et al.: Communication activity in social networks: growth and correlations 155
102 | (a) User 2881 1 10°

— E Malmgren et al. PNAS 2008 : — Me1097— 298(//
2 F I — M=404-1096
S . b m 149-403 //

- =55-148
o 10 E - M=21-54 10° g
a F — M=8-20 =<
—_— — M=3-7 E
g 10° L - M(A‘&% //\/\/@/—/ K
(TN 10_1 L R (At)1/2 : ................ E

E—(‘ PEPETY BRI R ETTTY BRI R I n A e “4

10° 10' 10° 10° 10" 10° 10° 10' 10°
At [days] At [days]

Fig. 11. (Color online) DFA fluctuation functions of message data created with the model proposed in [27]. (a) User 2881. We
visually extract the model parameters from Figure 3 in [27] and generate message data for approx. 800k days. The panel shows
the fluctuation functions from DFA1 and DFA2; which asymptotically go as ~ (At)l/ 2 i.e. no long-term correlations. The hump
on small scales is due to the model inherent oscillations [23]. The dashed vertical line is placed at At = 83 days. (b) Random
parameterization. We randomly choose the model parameters, create 20k records of 83 days and average the obtained DFA2
fluctuation functions according to the final number of messages, M. While for those simulated members with few messages we

find F(At) ~

probability of starting an active interval at a particular
time of the day, and py(t) is the probability of starting
an active interval at a particular day of the week. Once a
member enters such an active interval he/she sends a set of
N, + 1 messages, where N, is drawn from the distribution
p(Na). The messages sent in such an active interval are
sent randomly, i.e. a homogeneous Poisson process with
rate p, events per hour.

First, we study the example of User 2881 as analyzed
in [27] (please note that in [27] a different data set is stud-
ied and the user is neither in OC1 nor in OC2). We ex-
tract from [27] the parameters N,, = 7.3 active intervals
per week, p, = 1.7 events per hour, as well as (visually)
the distributions pq(t), pw(t), and p(N,). The original pe-
riod of 83 days is not sufficient to apply DFA and we
run the model for this set of parameters over 800k days.
Then we extract the record of number of messages per day,
u(t), and apply DFA. The obtained fluctuation functions
are shown in Figure 11a. On small scales below 100 days
a hump in the F(At) can be identified, which is due to
oscillations in pu(t) [23]. While asymptotically the influ-
ence of oscillations vanishes, on scales below the wave-
length, the oscillations appear as correlations (increased
slope in F(At)) and on scales above the wavelength, the
oscillations appear as anti-correlations (decreased slope in
F(At)). Asymptotically, we find F(At) ~ (At)'/2] ie.
Hepp ~ 1/2, corresponding to a lack of long-term cor-
relations. Even on scales up to 83 days, we rather find
Hepp < 1/2 (which we expect from the imposed weekly
oscillations).

Next, we study 20000 simulated e-mail senders with
randomly chosen parameters. (i) We fill py(¢) with ran-
dom numbers and set pyw(t) = 0 for ¢t = 0,6, i.e. Sunday
and Saturday. (ii) We fill p4(¢) with random numbers and
set pa(t) = 0 for t = 0...5 and t = 23, i.e. at night.
(iil) We set p(INV,) starting with a random p(N, = 0). Then
p(Na) decays exponentially up to a random N, below 36.
Pw(t), pw(t) =0, and p(N,) are normalized. (iv) We ran-

(At)Y/2, the F(At) of the most active members exhibit a hump due to oscillations similar to the one in panel (a).

domly choose 0 < Ny, < 40. (v) We randomly choose
0 < pa < 30. From [27] Supporting Information 2 (SI2)
we estimated the typical maximum values of N,, Ny, and

a (36, 40, and 30, respectively). We run the model for
83 days and extract the p(t) for each simulated e-mail
sender. Then we apply DFA2 and average the fluctuation
functions according to the final number of messages, M.
The fluctuation functions for the various activity levels are
depicted in Figure 11b. We find that members with small
final number of messages exhibit uncorrelated behavior.
The more active the members the more pronounced be-
come the oscillations which we already discussed in the
context of Figure 11a. Thus, asymptotic Hepp < 1/2 for
large M is due to the weekly cycles [23]. In our data, os-
cillations do not dominate the DFA fluctuation functions.
Moreover, for OC2 we also find long-term correlations in
weekly resolution (Fig. 1).

Based on periodic probabilities and Poisson statistics,
the CPP model represents a powerful concept to charac-
terize inter-event times. For this purpose, the average Ny
seems to be sufficient. However, in order to recover long-
term correlations, time dependent Ny, = Ny () seem to
be necessary. In fact, the number of active intervals per
week, Ny, fluctuates, as can be seen in [27] SI2 (upper
most row of the panels). Thus, we suggest to extend the
model by introducing a memory kernel, see e.g. [54], or by
using long-term correlated Ny (¢).

3.4 Other correlations

In this section, we want to discuss other types of correla-
tions. Figure 12 shows for QX the final degree K = k(T
versus the final number of messages M = m(T"). We find
that for both, sending and receiving, the two quantities
are correlated according to:

K~ M*

with X~ 3/4 (11)
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Fig. 12. (Color online) Correlations between the final

degree K and the final number of messages M for QX. (a) Out-
degree and sending messages; (b) in-degree and receiving mes-
sages. The dashed lines correspond to a power-law with expo-
nent 0.75. Members sending many messages also tend to have
high out-degree, but not linearly, rather following a power-law.

Fig. 14. (Color online) Correlations between the final de-
gree K and the final number of messages M for POK. (a) Out-
degree and sending messages; (b) in-degree and receiving mes-
sages. Analogous to Figure 12.
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Fig. 13. (Color online) Correlations between activity and pas-
sivity for QX. (a) Final number of messages M received and
sent; (b) final in- and out-degree. The dashed lines correspond
to a linear relation. Those members who send many messages
also receive many. But, those members who know many people
to whom they send messages do not necessarily know as many
people from whom they receive messages.

Similar relations have also been found for other data [67].
Since the correlations are positive, those members that
send many messages, in average, also have more acquain-
tances to whom they send, but they know less acquain-
tances than they would in the case of linear correlations.
For receiving, Figure 12b, this correlation is very similar.

The number of messages sent versus the number of
messages received (for QX) is displayed in Figure 13a.
Asymptotically the activity and passivity are linearly re-
lated and on average for every message sent there is a
received one or vice versa. This, of course, does not mean
that every message is replied. However, the less active
members in average tend to receive more messages than
they send. For example, those members who send in av-
erage one message receive about three. Nevertheless, the
more active the members are the more the sending and
receiving behavior approaches the linear relation. In con-
trast, for the degree, Figure 13b, the asymptotic linear
relation does not hold. Those members with large out-
degree and small in-degree are referred to as spammers,
since they send to many different people but only receive
from few.

sent; (b) final in- and out-degree. Analogous to Figure 13.

For POK we find similar results in Figures 14 and 15.
The final degree and the final number of messages also
scale with an exponent close to 0.75, although for send-
ing messages there exist some deviations of the most ac-
tive members (Fig. 14a). Also, the correlations of sending
and receiving are linear, the same holds for in- and out-
degree. However, the most active members again deviate
with low receiving part, i.e. both low number of received
messages as well as low in-degree, Figure 15. Neverthe-
less, the results for both data sets are mainly consistent
and the power-law relation equation (11) is a remarkable
regularity.

3.4.1 Activity and degree distributions

Finally, we want to briefly discuss the distributions of ac-
tivities and degrees. If we assume p(M) ~ M~ and
p(K) ~ K775 then with equation (11) the exponents
should be related according to

Tk =1+ (ym — 1)/ (12)
Figures 16a and 16b displays the probability densities,
p(M) and p(K), for both online communities. Although
the distributions are rather broad they do not exhibit
straight lines in double logarithmic representation. In
panel (b) we include some guides to the eye with slopes
according to equation (12) and which roughly follow the
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Table 1. Overview of the obtained exponents. QX and POK are the two data-sets. For the BA model and the CP process
see [50] and [27], respectively. Hi, is the fluctuation exponent along directed links, 3% is the growth fluctuation exponent when
the degree is considered, and [x is the mutual growth fluctuation exponent based on the growth between pairs.

Sending H Hiy,
Sect. or Ref. [12], 3.1, 3.3.3 3.1
QX 0.75 £ 0.05 ~0.74
QX shuffled 1/2

POK 0.91 +0.04

POK shuffled 1/2

BA model

CP process —1/2

10 = T T T T T T T T
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Fig. 16. (Color online) Probability densities of activities and
degrees. The probabilities are plotted versus the total number
of messages, M, and the final degree, K, for (a) sending in
QX and (b) sending in POK. The panel (c) and (d) exhibit
the probability densities of the total number of messages along
directed links, M., for QX and POK, respectively. The dotted
lines serve as guides to the eye and have the indicated slopes.

obtained curves. However, A ~ 0.75 is relatively close to 1
so that the differences are minor.

The probability densities of activity along direct links
are displayed in Figures 16¢ and 16d for QX and POK,
respectively. In both cases the frequency of large activity
decays approximately following a power-law with expo-
nent around 3.5.

4 Conclusions

Our work reviews and further supports previous empir-
ical findings [12] extending them by some features. The
obtained exponents are summarized in Table 1.

In addition to [12], we find very similar characteristics
for the passivity of receiving as for the activity of send-
ing messages. This is in line with the strong correlations

ﬂ ﬂk Bx
[12] [12] 3.2.2
0.22 +0.01 0.22 £0.02 ~0.3
1/2 1/2
0.17+0.03 0.17+£0.08
1/2
1/2

between individual sending and receiving, i.e. most of the
messages are somehow replied sooner or later. Further-
more already the communication between two individuals
comprises long-term persistence.

Investigating the probability densities of logarithmic
growth rates (i.e. growth of the cumulative number of mes-
sages between two time steps of any member), we are able
to collapse the curves by scaling them with conditional av-
erage growth rates and conditional standard deviations.
While less active members follow well the exponentially
decaying probability density, for the more active members
deviations are found in the case of large growth rates.

Moreover, we introduce a new growth rate, namely the
mutual growth in the number of messages. This is the dif-
ference in the number of messages sent between pairs of
members at two time steps. The conditional standard de-
viation of this mutual growth rate also decays as a power-
law with increasing initial difference, whereas the expo-
nent is close to 0.3 and changes to 1/2 when the data
is shuffled. We conjecture that this growth reflects cross-
correlations in the activity.

Finally, we propose simulations to reproduce the long-
term correlations and growth properties. Basically it con-
sists of generating long-term correlated sequences and
defining a threshold. All values of such sequences above
the threshold (POT) represent a message event. We show
that then the correlation and growth features, being deter-
mined by the imposed fluctuation exponent, confirm the
relation 3 = 1 — H [12]. Including further features, this
approach could be a starting point for more elaborated
modeling of human dynamics.

We would like to note that — except Section 3.2.2 about
mutual growth in the number of messages (and Sect. 3.4) —
all analysis and results refer to auto-correlations. As phe-
nomena, auto- and cross-correlations can occur indepen-
dently. However, since most of the messages are replied, it
is very likely that there are also cross-correlations between
the members activity, which to our knowledge has not yet
been studied systematically.

Thus, our work opens perspectives for further research
activities. In particular, the origin of the long-term persis-
tence in the communication remains an important ques-
tion. In [14] we demonstrate the relation of 5, H with
inter-event time scaling. From a psychological /sociological
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point of view one may argue where the persistence is
originated. Is it purely due to a state of mind, solipsis-

tic,

emerging from moods, or is it due to social effects, i.e.

that the dynamics in the social network induces persis-
tent fluctuations? One hypothesis could be that already

the

We

social network is correlated [68].
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