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Stability of directed Min-Max optimal paths
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Abstract – The stability of directed Min-Max optimal paths in cases of change in the random
media is studied. Using analytical arguments it is shown that when small perturbations ε are
applied to the weights of the bonds of the lattice, the probability that the new Min-Max optimal
path is different from the original Min-Max optimal path is proportional to t1/ν‖ε, where t is
the size of the lattice, and ν‖ is the longitudinal correlation exponent of the directed percolation
model. It is also shown that in a lattice whose bonds are assigned with weights which are near the
strong disorder limit, the probability that the directed polymer optimal path is different from the
optimal Min-Max path is proportional to t2/ν‖/k2, where k is the strength of the disorder. These
results are supported by numerical simulations.
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The directed polymer model [1] is a well-studied [2]
model in the field of disordered systems. The model is
concerned with directed optimal paths in random media,
which are characterized by two growth rate exponents, ω
and ν. The exponent ω determines the energy variability
of a path of length t by the relation ∆E ∼ tω, and the
exponent ν determines the mean transversal distance of
the optimal paths from the origin, through the relation
D∼ tν . These two growth rate exponents are connected
by the Huse-Henley scaling relation: ω= 2ν− 1 [3]. There
are two cases in which the space exponent ν has the
value of the directed percolation model [4], rather than
its value in the regular case. In the first case [5,6], the
bonds of the lattice are assigned with values taken from a
bimodal (0,1) distribution, and the probability to have a
zero-valued bond is pc, the critical probability of directed
percolation. In the second case, the bonds are assigned
with values taken from a strong disordered distribution,
and thus the energy of each path, which is defined as
the sum of its bonds’ values, is mainly determined by
the value of the maximal bond along that path. In the
strong disorder limit, the optimal paths are identical to
the optimal Min-Max paths, which are characterized by
the directed percolation exponent ν [7,8].
Directed Min-Max optimal paths are the subject of the

present article, which studies two cases in which there is
a small probability for a change in the position of the
optimal path. In the first case, small perturbations are
applied to the weights of the bonds of the lattice, and
the new Min-Max optimal path might be different from

the original one. This case was numerically studied in [9]
for directed polymer (regular) optimal paths (which are
determined by the minimal sum of bond values), and
a general theoretical discussion was presented in [10].
Explanations to the numerical results presented in [9] were
given in [10–13]. The second case is the one of strong
disorder: While in the strong disorder limit the regular
optimal path is identical to the Min-Max optimal path, as
the strength of the disorder decreases, a strong disorder
- weak disorder transition occurs. This transition was
studied for the ordinary (non-directed) lattice in [14,15],
and for the directed case in [16]. The present study shows
that in the case of small perturbations, the probability to
depart from the original Min-Max optimal path is

Pj(ε, t)∼ t1/ν‖ε, (1)

where t is the size of the lattice, ν‖ is the longitudinal
correlation exponent of the directed percolation model,
and ε is the strength of the perturbation. For the case
of strong disorder - weak disorder transition, it is shown
that the probability to depart from the optimal Min-Max
path is

Pj(k, t)∼ t2/ν‖/k2, (2)

where k is the strength of the disorder.
The first part of the article presents an explicit descrip-

tion of the lattice and of the variables studied in the
two cases. The second part presents the theoretical analy-
sis, and the third part presents numerical results which
support the validity of the analysis.
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The directed polymer model is usually implemented on
a square lattice rotated 45◦ so that its apex is the origin
of the paths going down to its main diagonal, which is
the base of a 90◦ triangle. The bonds of the lattice are
assigned with random numbers, and the energy of a path
is defined as the sum of the bonds’ values along that path.
The paths are constrained to move only downwards from
the origin to the base, and thus in a lattice of size t, all the
permitted paths are of length t. In the Min-Max version
of the model, the optimal path is the one whose maximal
bond, denoted by bmax, is minimal. If there are several
paths with the same bmax, the second highest bond of each
path is considered, etc. Thus, though there are usually
many paths with the same (lowest) bmax, the optimal path
is uniquely defined.
In order to find the response of Min-Max optimal

paths to small perturbations, the bonds of the lattice
were assigned with random numbers taken from uniform
distribution in the range (0,1). After the endpoint of the
Min-Max optimal path was identified, small perturbations
in the form of random numbers taken from uniform
distribution in the range (0,ε) were added to the original
random numbers, and the endpoint of the new Min-
Max optimal path was identified. Denote by Pj(ε, t) the
probability that the new endpoint is different from the
original endpoint, its dependence on ε and t is studied.
In the strong disorder case, the values of the random

bonds were defined by Bi = e
kbi , where bi is taken from

uniform distribution in the range (0,1), and k is a constant.
On this lattice, the endpoint of the optimal Min-Max path
and the endpoint of the optimal path which minimizes
the sum of bonds’ values are identified. Denote by Pj(k, t)
the probability that these two endpoints are different, its
dependence on k and t is studied.
Starting with the response to small perturbations,

denote by O(h) the value of the optimal Min-Max path at
height h above the base, where this value is defined as the
value of the maximal bond between the base and the site at
height h. Denote by A(h) the value of the best alternative
path which splits from the optimal path at height h, and
leads towards a different endpoint on the base. A(h) is also
measured between the branching point and the base. The
difference between these two values is denoted by ∆b(h)≡
A(h)−O(h), and it is clear that after the perturbations
in the range (0, ε) are applied, the probability to jump at
height h, denoted by Pj(ε, h), has the same dependence on
h as the probability that ∆b(h)< ε. The total probability

to jump from the original optimal path is
∫ t
1
Pj(ε, h)dh,

and since this study is concerned with cases in which the
total probability to jump is very small, there is no need
to worry about cases of more than one jump along the
optimal path.
As mentioned above, the probability to jump in the

regular case was studied in [13], and the present analysis
follows (in part) the analysis presented there: The optimal
paths which lead from the origin to the sites of the
base form an ultrametric tree structure. There are ∼ ln t

branches which split from the optimal path on its way
down from the origin to the base, and the probability that
the site at height h is a branching point is ∼ 1/h [13,17].
The jumps from the original optimal path occur mainly to
the best paths of the branches, and thus the probability to
jump at height h is the product of the probability to have a
branch at this height, which is ∼ 1/h, and the probability
to jump in case that there is such a branch, which is
proportional to the probability that at the branching point
∆b(h)< ε.
For optimal Min-Max paths of length h, in a lattice

whose bonds are assigned with random numbers taken
from uniform distribution in the range (0, 1), the prob-
ability that bmax(h) is lower than pc decreases at a rate
∼ h−δ [8], where δ is the decay exponent of the directed
percolation model. However, since the branching point at
height h is in the bulk of the lattice, both the optimal path
and the best path of the branch are freely chosen as the
best paths from many ordinary optimal paths of length h.
As a result of this freedom of choice, the characteristics
of these paths are different from those of ordinary opti-
mal paths. The following scaling rule was verified in the
present numerical study for optimal paths of length t > h:

The probability that O(h) is lower than pc is a function
of the ratio h/t.

In order to understand the significance of this scaling
rule, consider a site at height h above the base. If this site is
chosen at random, the probability that it can be connected
to the base with a path whose highest bond is lower than
pc is determined by h alone (it is proportional to h

−δ).
But if the site belongs to an optimal Min-Max path which
starts at height t > h above the base, this probability is not
only a function of h, but also a (increasing) function of t.
If h is doubled and t is also doubled, this probability does
not change. At any height h> 100, for t= 2h this proba-
bility is � 0.59, and for t= 4h this probability is � 0.78.
The validity of this scaling rule is the cornerstone of the
present analysis.
Since the characteristics of the best paths of the

branches are similar to those of the optimal paths, the
probability that A(h) at the branching point is lower than
pc should also be a function of h/t. On the other hand,
from the discussion presented in [8] it follows that O(h)
is bounded below by pc− f(h), f(h)∼ h−1/ν‖ , where ν‖ is
the longitudinal correlation exponent of directed percola-
tion. Denote by Abr(h) the value of A(h) at a branching
point, remember that Abr(h)>O(h), and conclude that in
the majority of the branching points, there is a significant
probability that O(h) and Abr(h) are in the ∼ h−1/ν‖
vicinity of pc, and the probability that their difference is
lower than ε is ∼ ε h1/ν‖ . The total probability to jump is
thus ∼ ε ∫ t

1
1/h ∗h1/ν‖dh∼ ε t1/ν‖ , eq. (1). Since the value

of ν‖ is � 1.734 [18], and 1/ν‖ � 0.577, the above analysis
implies that Pj(ε, t)∼ ε tα, where α� 0.577.
The above discussion indicates that the total probability

to jump from the optimal path is similar to the probability
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to jump at the highest branching points whose h� t.
Of course, it is the ∼ 1/h probability to have a branch
at height h which guarantees this similarity, which also
characterizes the regular case [13].
Moving to the strong disorder - weak disorder tran-

sition, remember that the bonds’ values are Bi = e
kbi ,

and that for high values of k, ΣiBi � ekbmax . Since only
the highest valued bonds along the paths are relevant,
the jumping condition is ekO(h)+ ekb2(h) > ekAbr(h), where
b2(h) is the second highest bond of the optimal Min-
Max path between the branching point and the base.
Divide the jumping condition by ekO(h), define ∆b′(h)≡
O(h)− b2(h), and remember that ∆b(h)≡Abr(h)−O(h),
the jumping condition becomes: 1+ e−k∆b

′(h) > ek∆b(h). In
the majority of cases, this condition is fulfilled when both
∆b(h) and ∆b′(h) are very small, of the order of 1/k. Thus,
the probability to fulfill the jumping condition is propor-
tional to the probability that both ∆b(h) and ∆b′(h) are
small, which is the product of the probabilities that each
one of them is small. Using similar arguments to those
presented above for the perturbation problem, it is easy to
verify that each probability is ∼ h1/ν‖/k, and their prod-
uct is ∼ h2/ν‖/k2. The total probability to jump is thus
∼ 1/k2 ∫ t

1
1/h ∗h2/ν‖dh∼ t2/ν‖/k2, eq. (2). This analysis

implies that the exponent which characterizes the strong
disorder - weak disorder transition is twice its value in the
small perturbations case.
In both cases studied above it is possible to define

correlation lengths: ξ(ε)≡ ε−ν‖ and ξ(k)≡ kν‖ , and in
both cases the jumping condition is a scaling function of
t/ξ: In the first case Pj(ε, t)∼ (t/ξ(ε))1/ν‖ , while in the
second case Pj(k, t)∼ (t/ξ(k))2/ν‖ . The difference between
these two scaling functions is an outcome of the fact that
in the first case the value of only one other bond should
be in the close vicinity of O(h), while in the second case
the values of two other bonds should be in that vicinity.
The results of the numerical simulations performed for

the small perturbations case indicate that for fixed values
of ε, Pj(ε, t)∼ tα. In order to estimate α, its local values
computed by log2(Pj(ε, t)/Pj(ε, t/2)) are shown in fig. 1
for the cases ε= 0.00002 and ε= 0.00001. As can be seen,
the two sets of local values are quite close, and both
of them approach the value of 0.577 derived from the
theoretical analysis, eq. (1). Since the theoretical analysis
presented above leads to exact results, there is no need
to estimate the error range, and the data presented in the
figures is used only to support the validity of the analytical
derivation.
The results of the numerical simulations performed for

the strong disorder - weak disorder transition indicate that
for fixed values of k, Pj(k, t)∼ tβ . In order to estimare
β, its local values computed for the cases k= 32768 and
k= 16384 are presented in fig. 2. The data presented in
this figure indicates that the asymptotic value of β should
be in the vicinity of 1.16. A comparison with the results
presented in fig. 1 indicates that β = 2α, and support the
theoretical analysis presented above.
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Fig. 1: The local values of the exponent α computed for
ε= 0.00002 (circles), and for ε= 0.00001 (squares).
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Fig. 2: The local values of the exponent β computed for
k= 32768 (squares), and for k= 16384 (circles).

In the small perturbation case, the theoretical analysis
implies that for fixed values of t, Pj(ε, t)∼ ε. This linear
dependence on ε was verified by the numerical study. In the
strong disorder - weak disorder transition, the theoretical
analysis implies that for fixed values of t, Pj(k, t)∼ 1/k2,
and this fact was also verified in the present numerical
study.
The crucial role played in the above analysis by the

directed percolation characteristics is another evidence
to the relevance of the idea of “self-organized critical
phenomena” introduced in [8]. This idea defends the study
of systems near the critical probability against claims that
no real system can be found exactly at this probability.
In [8] and also in the present study it is shown that though
in the structure of the system no p (or pc) is involved,
its behaviour is determined by rules which are similar to
the rules which determine the behaviour of other systems
near pc.
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In conclusion, the present study shows that there is a
close connection between the response of optimal Min-Max
paths to small perturbations, and the response of strong
disordered optimal paths to a decrease in the strength of
the disorder. In both cases, the behavior near the critical
probability of directed percolation dictates this response,
in accordance with the idea of “self-organized critical
phenomena” introduced in [8].
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