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Asymmetric Flow in Symmetric Branched Structures
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We investigate the fluid flow through a cascade of bifurcations by direct simulation of the 2D
Navier-Stokes equations. We show that, for a fully symmetric tree with n generations (n $ 3d,
the flow distribution becomes significantly heterogeneous at an increased Reynolds number. We
develop a binary tree model and find that the distribution of flow at the outlet branches can be
described by a self-affine landscape, with a self-affine exponent a  0.9 for the human lung. We
suggest that the asymmetric flow occurring in symmetric branched structures may be important both
for the morphogenesis of the bronchial tree, and for its functioning during inspiration. [S0031-
9007(98)06724-6]

PACS numbers: 87.45.–k, 47.55.Mh

Fluid flow in branching geometries is related to many
phenomena in physics, geology, and biology. Examples
range from fluid flow through porous media [1,2] to res-
piration [3] and blood circulation [4]. In particular, the
mechanism of flow bifurcation plays a crucial role in the
functioning of the respiratory and circulatory systems. The
classical theoretical approach schematizes the flow with
a set of equivalent linear impedances. When applied to
steady or periodic flow through symmetric airway bifurca-
tions, these models predict a perfectly homogeneous and
synchronous flow distribution at the outlet branches [5].
However, the contribution of inertia on momentum trans-
port can have a significant influence on the properties of
flow through branched structures, as has been shown ex-
perimentally [6–10]. Despite recent numerical work [11],
there has been no quantitative study in trees larger than
three generations.

Here we simulate the quasisteady inspiration process in
the bronchial tree. We consider a 2D symmetric cascade of
rectangular channels with branching angles of 30± between
the axis of the parent and daughter generations, as well as
realistic physiological dimensions from lung morphology
to define the channel length and width (Fig. 1a) [5]. Be-
cause of the symmetry with respect to the axis of the first
generation channel (trachea), the flow field in only half of
the domain needs to be calculated. The fluid mechanics
in the branched structure is based on the steady-state form
of the Navier-Stokes and continuity equations for mo-
mentum and mass conservation. In all simulations, we
consider air with density r  1.225 kg m23 and viscos-
ity m  1.7894 3 1025 kg m21 s21 flowing through the
system at a constant flow rate with nonslip boundary con-
ditions at the entire solid-fluid interface. In addition, we
assume a uniform velocity profile at the inlet of the first
generation channel, whereas at the outlets of the last gen-
eration branches, we impose a constant reference pressure
[12]. The Reynolds number is Re ; rVdym, where d is a

characteristic length (the width of the first generation chan-
nel) and V is the inlet velocity.

We solve the Navier-Stokes and continuity equations for
the velocity and pressure fields by discretization, using the
control volume finite-difference technique [13]. The cre-
ation of structured grids comprising quadrilateral elements
is difficult due to the complex geometry of a binary tree
structure. Hence, we use an unstructured mesh, based on
triangular grid elements of a Delaunay network [14]. We
find that a total of 17 864 cells generates satisfactory re-
sults when compared with numerical meshes of smaller
resolution. We then consider the integral form of the gov-
erning equations at each triangular element of the numeri-
cal grid to produce a set of coupled nonlinear algebraic
equations, which we pseudolinearize and solve [13]. We
achieve a converged solution when the sum of normalized
momentum and mass residuals falls below 1023 [15].

We perform fluid flow simulations in a five-generation
tree for Re ranging from 150 to 4800. This range cor-
responds to breathing flow rates that are physiologically
relevant [3]. We find that the flow distribution throughout
the airways is quite uniform at low Reynolds numbers (see
Fig. 1a). In this situation the system displays linear be-
havior, as expected from the analogy between fluid flow in
a cascade of branches and electrical transport in a network
of ideal resistors [2]. At high Re, however, the nonlinear
contribution from the inertial terms becomes relevant. As
shown in Fig. 1b (for Re  4800), inertial forces break
the symmetry of the flow distribution down in the tree
structure. Visual inspection reveals that the flow partition-
ing between any two daughter branches favors the branch
which is aligned with their grandparent branch (branch lo-
cated two generations above in the same cascade).

We investigate the development of this flow nonunifor-
mity by gradually increasing Re and computing the flow
rates at the outlets of the eight branches on the left side
of the fifth generation. Figure 2 shows how these outlet
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FIG. 1. (a) Contour plot of the stream function in a five-
generation tree for low Reynolds number conditions (Re 

150). The tangents to the streamlines are parallel to the
velocity vectors. For a given generation, the larger the number
of streamlines in a branching element, the higher the flux.
(b) Same as in (a), but for high Reynolds number conditions
(Re  4800). The distribution of streamlines at the outlet
branches is uniform at low Re, but highly nonuniform at high
Re. The width of the first channel is d  1.8 cm and the length
is l  12 cm.

fluxes—normalized by the total flux penetrating the sys-
tem—become more heterogeneous as Re increases. The
normalized flow rates at outlets 5 and 10 are substantially
increased by inertial effects.

Both Re and the branching angle u influence the distri-
bution of flow. To demonstrate this, we carried out simu-
lations with a tree of only three generations (see Fig. 3).
Figure 4 shows, for two different values of u, the depen-
dence on Re of the ratio G1yG0 of the fluxes at the internal
and external outlets of the third generation branches. For
fixed branching angle and channel dimensions, both curves
show a gradual increase of G1yG0 with Re. Furthermore,
the value of G1yG0 is larger for u  30± than for u  60±.

It would be interesting to study the effect of flow asym-
metry on a large branching structure, but computational

FIG. 2. Flux distribution at the outlet branches of a five-
generation tree for Re  150 (circle), 300 (square), 600
(triangle), 1200 (full circle), 2400 (full square), and 4800
(full triangle). The inset compares the fluid flow simulations
(Re  1200, circle) and the binary tree model ( p  0.58, full
circle).

limitations do not permit a direct solution of the Navier-
Stokes equations. We therefore introduce a binary tree
model to describe the role of inertia on fluid transport
in a self-similar branching system. We assume that each
airway forms an angle of 6u, in degrees, with its par-
ent. Also we assume that Re is sufficiently large for the
flow partitioning to be approximately constant throughout
the tree (e.g., the curve u  60± for Re . 400 in Fig. 4).
Hence, the flow rates in any two daughter branches di-
vide in a fixed proportion pyq, where p 1 q  1, and
p . q. We model inertia by assigning the larger factor
p to the flow of the daughter branch which is aligned with
its grandparent.

In order to treat the binary tree model analytically, we
number all branches in generation n from 0 to 2n21 2 1.
Thus, branch k in generation n 2 1 bifurcates to branches
2k and 2k 1 1 in generation n. Branch 2k forms an
angle 2u and branch 2k 1 1 forms angle 1u with their
parent, so branch 2k (even) is aligned with its grandparent
if k is odd, and branch 2k 1 1 (odd) is aligned with its
grandparent if k is even. Hence, a branch will be aligned
with its grandparent if the two last digits in its binary
representation are different. For a three-generation tree,
the branches should have flows qy2, py2, py2, and qy2,
corresponding to the binary codes 00, 01, 10, and 11,
respectively. By induction, for a tree with n generations,
the flow in branch k is

Gsn, kd 

1

2
psskdqn222sskd, (1)

where sskd is the number of “switches” from 1 to 0 and
from 0 to 1 in the binary representation of k with n 2 1

digits. In a seven-generation tree, branches 21 and 42
will have the maximum flow of p5y2 because their binary
representations, 010101 and 101010, respectively, both
have five switches.
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FIG. 3. (a) Contour plot of the stream function in a three-
generation tree with branching angle u  30± and Re  1200.
(b) Same as in (a) but for u  60±. Note that the number of
streamlines and thus the fluxes at outlets 1 and 2 are larger in
(a) than in (b). Also shown is the binary representation of each
outlet branch.

For the flow field calculations we need only to analyze
the flow distribution through one-half, due to the symme-
try of the tree. Thus, for generation n, we can normalize
the flow G in branch k by the factor pn22y2 and define

FIG. 4. Dependence of the flux ratio G1yG0 on the Reynolds
number Re in three-generation trees for two different values of
the branching angle u.

the steplike flux function,

gsxd 

µ
q

p

∂
n222sskd

for
k

2n22
# x ,

sk 1 1d

2n22
, (2)

where k  0, 1, . . . , s2n22 2 1d. In this way, gsxd is a
well-defined right-continuous function for n $ 3. For
instance, the maximum flow gmax

 1 will be located at
x  2y3 since its binary representation is 0.1010101 . . .
which has the maximum possible number of switches in
the sequence [16]. In the limit n ! `, we find

gsxd 

µ
q

p

∂
m

gs2mxd for 0 # x ,
1

2m
, (3)

which implies that the landscape (see Fig. 5) generated
from the fluxes at the outlets of the ramified structure is
self-affine, gsxd ~ b2agsbxd, with an exponent [17]

a  logspyqdy log 2 . (4)

Using the values of p and q reported in Ref. [18], we find
a  0.9 for the human lung and a  1.6 for the more
asymmetric dog lung.

The binary tree model provides insight on the effect of
inertia on the flow distribution at the tree periphery. The
self-affine structure of flow partitioning indicates a het-
erogeneous flow distribution; we expect that this feature
does not depend on the approximations in the binary tree
model, namely, constant angles and constant p along the
tree [19]. The exponent a is useful in quantifying the ef-
fect of asymmetry due to flow partitioning in large trees.

Concerning possible physiological implications, we
note that our model predicts that, during inspiration, the
amount of oxygen delivered to the periphery of the lung
is very heterogeneous. The exact distribution depends on
a weighted cumulative sum of the angles along which the
air must travel from the top of the tree toward the alveoli
where gas exchange occurs. On the other hand, the time
constant inequalities along the airways are believed to be
relatively small in the normal lung and hence the flow
distribution should be uniform and primarily determined
by the distribution of local compliances [20].

FIG. 5. Distribution of normalized fluxes gsxd defined in
Eq. (2) as a function of the normalized branch number x at
the outlets of an 11-generation tree with a partitioning factor
p  0.6, calculated using the binary tree model.
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The expectation of a uniform lung ventilation seems
therefore to be in contradiction with our results. We em-
ployed in our simulation a symmetric binary tree, whereas
the geometrical structure of the tracheobronchial tree is
highly asymmetric with respect to both angles and diame-
ters of the daughter branches. It is known that the degree
of asymmetry is larger in the shortest paths towards the pe-
riphery [21]. The shortest pathways occur in the directions
of the lateral surface sides and the apex of the lung, where
the angles are large and the flow is subject to many changes
of direction. Moreover, in the Horsfield tree model, the di-
ameters of the branches in the shortest pathways decrease
rapidly, leading to smaller size subtrees [21]. Thus, we
suggest that flow asymmetry due to inertial effects is com-
pensated by structural asymmetry. Accordingly, the cen-
tral airways (airways with a diameter larger than about
3 mm) that receive the smaller flows serve correspond-
ingly smaller alveolar regions—allowing for a homo-
geneous ventilation, as required for normal lung function.

We note that even though additional work with three
dimensional tree models is needed to provide more quan-
titative predictions about the flow distribution during in-
spiration, our results still allow us to draw some important
physiological conclusions. First, the fact that asymmet-
ric flow distribution occurs even in a symmetric structure
serves to justify previous lung flow models (see [18] and
references therein) which must “build in” asymmetry in
the flow partitioning in order to obtain results comparable
with morphometric data. Second, our result could also
have implications for lung morphogenesis. It was argued
in Ref. [22] that the asymmetric structure of the lung is
solely due to geometrical constraints, but our study sug-
gests a possible different origin for this structure, since
the asymmetry of the bronchial tree can be influenced by
the fluid flow asymmetry combined with the requirement
of homogeneous ventilation.
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