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Perimeter growth of a branched structure: Application to crackle sounds in the lung
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We study an invasion percolation process on Cayley trees and find that the dynamics of perimeter growth is
strongly dependent on the nature of the invasion process, as well as on the underlying tree structure. We apply
this process to model the inflation of the lung in the airway tree, where crackling sounds are generated when
airways open. We define the perimeter as the interface between the closed and opened regions of the lung. In
this context we find that the distribution of time intervals between consecutive openings is a power law with an
exponentb'2. We generalize the binary structure of the lung to a Cayley tree with a coordination numberZ
between 2 and 4. ForZ54, b remains close to 2, while for a chain,Z52 andb51, exactly. We also find a
mean field solution of the model.
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I. INTRODUCTION

There is much current interest in crackles; abrupt and
crete events triggered by small changes in the state of a g
system@1#. Crackling behavior is found in a wide variety o
systems including earthquakes@2#, magnetic materials@3#,
crumpled elastic sheets@4#, paper tearing@5#, and mamma-
lian lungs @6–10#. Usually, crackles span many orders
magnitude in loudness, amplitude, and the distribution
sizes follows a power law.

Pulmonary crackles are short, explosive, transient wa
which are among the many lung sounds generated in
airways of a diseased lung during breathing. They are c
acterized by a rapid initial pressure deflection, called a sp
followed by a short duration ringing. Crackles have lo
been used as a qualitative diagnostic tool, since their acou
properties correlate with certain pulmonary dysfunctio
@7,11–18#. The time series of crackle events are complex a
two power laws have been discovered: one in the distribu
of crackle sound amplitudes@10# and one in the time inter
vals between consecutive crackles@9#. However, much
analysis of lung sound is based on empirical observati
without solid theoretical basis.

The airway tree structure of the mammalian lung is bin
and asymmetric@19–22#. The main function of the airway
tree structure is to conduct air from the atmosphere to the
exchange region, which is composed of more than 3
3106 alveoli or tiny, thin-membraned sacs. The internal s
face of the lung is lined with a thin liquid film which ca
undergo a surface-tension-driven fluid-elastic instabil
leading to airway closure by the formation of occluding li
uid bridges@23,24#. Airway closure and reopening occur o
ten in diseased lungs and are associated with the gener
of respiratory crackles@7,25#. Studies of airway closure an
opening indicate that during inflation, airways open in av
lanches triggered by overcoming a hierarchy of critical op
ing threshold pressures along the airway tree@26–29#. Ava-
lanche behavior is also present in chemical activities@30#,
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ferromagnetic materials@31,32#, popping bubbles@33#, and
in others finite systems@34,35#.

It is well established that the growth of colloid aggregat
flame fronts, and tumors occur mainly at the ‘‘active surfac
@36,37#, a concept also used to describe catalysis@38#, poly-
merization, and percolation processes@39#. In particular, the
problem of lung inflation can be modeled as an invas
percolation process on a branched structure@27,40#. In gen-
eral, the active surface is defined as the perimeter wh
growth occurs. We define the active surface in the lung,
active perimeter, as the set of all closed branches conne
to the root of the tree through an open pathway. During
growth of the active surface, acoustic energy is release
audible crackles@9#.

Recently, we obtained a mean field solution for a mode
the evolution of the active surface and the distribution
time intervalsDt between consecutive crackles in asymmet-
ric Cayley tree. We assumed that the airway opening p
sures are uniformly distributed@9,27#. Here, we explore the
effects ofasymmetryin the Cayley tree, coordination numbe
Z, and generation-dependent thresholds on both the ac
surface and the distribution ofDt. We find that the active
surface is sensitive to the asymmetry of the tree structureZ,
and generation dependence of the airway opening thres
pressure. However, the distribution ofDt is insensitive to
changes inZ for Z.2.

This paper is organized in the following way. We briefl
describe the experimental procedure in Sec. II. In Sec. III,
describe the dynamic model with the parameters used in
paper. In Sec. IV, we show the numerical simulations. In S
V, we analytically solve the model and in Sec. VI, we prese
a short discussion.

II. EXPERIMENTAL DATA

A time series of sound amplitudes was recorded in
main bronchus of dog lung lobes during inflation from t
collapsed state to the total lobe capacity in a timetmax
5120 s@10#. At the beginning of inflation, the sound pre
sure time series displays a set of discrete crackles@see Fig.
1~a!#. With advancing inflation, massive airway opening ge
©2003 The American Physical Society09-1
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ALENCAR et al. PHYSICAL REVIEW E 68, 011909 ~2003!
erates dense and overlapping wave packets@see Fig. 1~a!#.
The envelope of the time series gradually decreases
inflation, indicating first the generation of coarse crackl
then later of fine crackles@11#. To characterize the statistica
features of the crackles, we develop a moving window al
rithm that measures the spike size in the time series and
time delayDt between two consecutive spikes@see Figs. 1~b!
and 1~c!#. An example of theDt series is shown in Fig. 1~d!.
The distributionP(Dt) of Dt @Fig. 1~e!# shows one pro-
nounced regime of power law behavior,P(Dt)5Dt2b, with
b52.0. The largeDt regime is related to the dynamics o

FIG. 1. Experimental data.~a! The continuous line is the time
series of sound pressureS(t) during the first inflation of a dog lung
lobe from the collapsed state, recorded at a rate of 22 050 Hz~b!
Magnified segment ofS(t) with consecutive spikes. The interspik
interval Dt'0.2 s of this segment corresponds to the time diff
ence between two spikes;~c! another segment from~a! with Dt
'0.02 s;~d! the sequence of time intervalsDt from ~a!; and~e! the
histogram of interspike intervals for 12 different inflations@9#.
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distinct avalanches and the smallDt regime is related to the
dynamics of crackles within a single avalanche@9#. The dy-
namics of distinct avalanches play an important role in
recruitment of closed regions of the lung and will be t
main focus of this paper.

III. A DYNAMIC MODEL OF CRACKLE GENERATION

To understand the scaling behavior ofDt, we develop a
dynamic invasion percolation model which considers
time required for an airway to open and the avalanche
propagate through anM-generation airway tree. For simplic
ity, we first treat a symmetric tree structure, then genera
to an asymmetric tree.

In Sec. III A, we mathematically model the lung as a Ca
ley tree with a coordination numberZ. When the lung is
degassed, airways collapse, closing most pathways do
stream. To mimic the process of reopening, we assign
opening threshold pressurePth as a parameter to each airwa
~Sec. III B!. If the airway is connected through an open pa
way to the root of the tree and the external pressurePE
reachesPth , the airway opens and a crackle is locally ge
erated. In Sec. III C, we describe the timing related to
inflation process.

A. Airway tree structure

Like botanical trees and rivers, the airway tree structure
binary and asymmetric. A structure is called a binary tree
each node has three connections (Z53): a parent branch and
two daughters.Z52 defines a chain andZ54 is a tree that
trifurcates at each node@60#.

In this model, each branch is labeled (i , j ), wherei is the
generation number from the root of the treei
51,2, . . . ,M ) and, for a generic tree,j P@0,(Z21)i21# is
used to distinguish between branches of the same gener
@61#. The root of the tree is labeled (0,0).

B. Airway closure and opening

When the lung deflates to very low volumes, many p
ripheral airways close by forming a liquid bridge betwe
the collapsed airway walls@23,24,41–43#. Each branch (i , j )
is closed at the beginning of the inflation (t50). Experi-
ments and models indicate that a critical opening thresh
pressurePi , j can characterize the opening of a single airw
@44,45#. Thus, all branches (i , j ) are assigned a randomPi , j
uniformly distributed between 0 andPmax. The simplest
model, whenPi , j is uniformly distributed independent of th
generation number, or airway diameter, has been explore
previous studies@9,10,26,29,46,47#. Imposing a generation
dependence onPi , j is not straightforward, since few exper
mental data exist on how airway generation in the lung
fects the opening threshold pressures. However, theore
studies suggest that the pressure threshold depends on
eral physiological parameters such as surfactant, surface
sion, liquid layer thickness, and airway elastic propert
@48–50#.

The two major factors contributing toPi , j are the diam-
eter of the airways and the surface tension of the obstruc

-
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PERIMETER GROWTH OF A BRANCHED STRUCTURE: . . . PHYSICAL REVIEW E 68, 011909 ~2003!
liquid. The diameter of the airway decreases from the roo
the tree to the air sacs and numerical values are kn
@21,51#. On the other hand, surfactant is secreted by lu
cells lining the bottom portion of the tree and the air sa
Surfactant diffuses toward the root of the tree and, thus,
concentration of surfactant is higher at the bottom than at
top @52#. Since the surfactant reduces the surface tensio
the obstructing liquid, the surface tension at the bottom
the tree is smaller than at the top. Direct experimental e
dence of the opening threshold in a lung tree has been
served, showing that the opening threshold is inversely
pendent on the diameterd and proportional to the surfac
tensiong,

P~d!5
Cg

d
, ~1!

whereC is a constant@45#. The two competing factorsg and
d have been used as an argument for the use of genera
independent randomPi , j , where the randomness com
from the opposite nature of both contributions. We introdu
generation dependence ofPi , j by adding a deterministic
term, which shifts the mean of the distribution ofPi , j . Thus,
assuming thatPi , j is not deterministic, we can add a rando
term and write

Pi ,M5
Cg i ,M

di
1h, ~2!

where the surface tensiong i ,M is a function of the surfactan
concentration, that is, a function of the generation numbi
and the maximum number of generations in the treeM, and
h is the random term.

C. The process of inflation

Inflation is simulated by applying an external pressu
PE(t) at the root of the tree and uniformly increasin
PE(t)5Kt in small increments, whereK5Pmax/tmax is a
constant inflation rate. In this model, we rescale both ti
and pressure so thatPmax51 andtmax51, makingK51.

Since an airway opens when the pressure in its pa
exceeds its critical opening threshold pressure, the air
(0,0) opens whenPE5P0,0 at t0,05P0,0, wheret0,0 is now
the time associated with the opening of the root. Next,
daughter airways are checked; one, or two, or all will ope
PE>P1,j , where j distinguishes different airways at th
same generation. This opening process is then continue
quentially down the tree until no airway connected to t
root is found with Pi , j<PE . Note that the opening of a
single branch can lead to openings of other branches w
have Pi , j,PE , defining an avalanche in which many a
ways open in a cascade~Fig. 2!. The opening of an airway
also generates a crackle sound locally, which we model a
acoustic spike.

The opening of the first segment or root of an avalanc
airway (i , j ), occurs at time

t i , j5Pi , j , ~3!
01190
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sincePE increases linearly with time. Thus, the time diffe
ence between two consecutive avalanches is

Dt5DP, ~4!

or the pressure difference betweenPE values that trigger two
consecutive avalanches. However, the time associated
events inside the same avalanche is independent of the i
tion time; it will be related to the time required for a pressu
wave to travel from an opening to reach the next daugh
airway.

IV. NUMERICAL SIMULATIONS

To understand the contribution of the interavalanche ti
intervals to the power law distribution ofDt, we assume tha
the time required to open all segments within an avalanch
negligible compared to interavalanche timings. Thus,
crackles from the same avalanche arrive simultaneousl
the root, and only interavalanche time intervals are presen
this study. We divide the numerical simulations in thr
parts. First, we study crackles in a binary tree (Z53) and
simulate the effect of different pressure threshold distrib
tions ~Sec. IV A!. Next, we study the effect of asymmetry o
the tree structure for a binary tree~Sec. IV B!. Then, to study
the effect of branching, we simulate crackles in a chainZ
52) and a tree withZ54 ~Sec. IV C!.

A. Binary tree „ZÄ3… with different Pi ,j distributions

We numerically simulate the generation of crackle soun
in a symmetric binary tree using two rules: rule~i! the Pi , j
are generation independent and are completely random,
ing no deterministic part, Sec. IV A 1; rule~ii ! the Pi , j are
generation dependent and the dependence can be either
or strong, Sec. IV A 2. In all numerical simulations for b
nary trees, the diameter of the airways are assigned acc
ing to Ref.@51#, with values ofd between 1, for the root of
the tree, and 0.034, for the smallest airways in a tree with

FIG. 2. Diagrams describing avalanche timing for a tree w
Z53. Initially, just the root is open and the time for that event
t0,0. The number of segments on the active surface that are clos
N52. The pressure increases and the left daughter opens att1,0 and
now N53. Following a new increase of pressure, the right daugh
of the root opens att1,1 andN54. Next, the left daughter opens a
t2,2 which triggers an avalanche, where each segment of this
lanche has a time delay (t1 and t2) with respect tot2,2. When the
avalanche stops,N53.
9-3
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ALENCAR et al. PHYSICAL REVIEW E 68, 011909 ~2003!
generations. For the purpose of these simulations, we s
C51, and the random termh in Eq. ~2! is distributed uni-
formly between 0 and 1. For all models, the opening thre
old pressuresPi , j are normalized so that the maximum val
max(Pi,j)51. Figure 3 shows the normalized maximum val
of Pi , j as a function of the diameter for modelsB andC.

1. Generation independent, uniform distributions of Pi ,j

We obtain generation-independent opening thresh
pressuresPi , j when we neglect the first term of Eq.~2! by
consideringC50. Thus, after normalization, only the ran
dom termh will contribute to Pi , j . We calculate the dy-
namic active surface of the interface between the closed
open regions of the lung for 15 generations@Fig. 4~a!#. From
numerical simulations in a symmetric tree, usingM up to 20
generations, we obtain a single power law with exponenb
52.1 for the distribution of the time intervals between co
secutive avalanches@see Fig. 4~d!#. The active surface from
individual simulations shows a large deviation around
average behavior and its maximum value around 1000
ways is small compared to the total number of airways,
this case,M515 having 32 769 airways@see Fig. 4~a!#.

2. Generation dependent Pi ,j

We obtain a weak dependence of the opening thresh
pressurePi , j on the generation number by assuming that
concentration of lung surfactant inside the lung is consta
i.e., the surface tensiong i ,M is independent of the generatio
Note that in this case, the first term of Eq.~2! makes a small
contribution to the opening threshold pressure~Fig. 3!. The
active surface significantly changes compared to
generation-independent case@Fig. 4~b!#. The maximum value
of the active surface size is larger. This behavior is beca
all avalanches tend to stop early, reducing the probability
reaching the alveoli and hence reducing the active sur

FIG. 3. Opening threshold pressurePi , j used for the weak and
strong generation dependence.~a! Circles are the mean ofPth for
C50.01 and~b! triangles are forC50.1 in Eq. ~2!. The error bar
denotes the maximum and minimum value.
01190
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size. The deviation between individual simulations and
average behavior is smaller than in the generati
independent case becausePi , j is more deterministic. How-
ever, the distribution of time intervals between consecut
crackles does not change@Fig. 4~d!#.

We increase the generation dependence of thePi , j by set-
ting g i ,M50.02 in Eq. ~2!. Now, the effect of the surface
tension and the dependence of the diameter on the ope
pressure threshold is twice as strong as in the weak gen

FIG. 4. Plot of the number of active segmentsN along the active
surface as a function of the external pressurePE for the numerical
simulations of the generation independent, weak and strong gen
tion dependence. For these simulations, we used a symmetric
generation tree. The thin lines are independent simulations and
thick lines are averages over 1000 simulations:~a! generation inde-
pendent,~b! weak generation dependence, and~c! strong generation
dependence.~d! Distribution of time intervals between consecutiv
crackles in a tree with 15 generations for three different types
generation dependence. Circles represents generation indepen
squares weak generation dependence, and triangles strong ge
tion dependence.
9-4
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PERIMETER GROWTH OF A BRANCHED STRUCTURE: . . . PHYSICAL REVIEW E 68, 011909 ~2003!
tion dependence~Fig. 3!. In this simulation, the maximum
value of the active surface is even higher than in the w
generation dependence and the deviations between diffe
simulations are even smaller@Fig. 4~c!#. Again, the distribu-
tion of Dt is almost unaffected, indicating that the power la
behavior ofDt is weakly related to the distribution ofPi , j .

One important result of these simulations is that the
namic properties of the active surface are dependent on
type of opening threshold pressures used. Comparing
active surfaces from the generation-independent
generation-dependent models, one can see that the maxi
sizeN of the active surface increases and its position sh
from PE50.9 to 0.7 when we increase the generation dep
dence ofPi , j . This behavior is expected, since the sizes
the avalanches tend to decrease when the opening thre
pressure is more dependent on the generation. On the o
hand, the statistical behavior of the time intervals betwe
consecutive crackles remains almost unchanged for all g
eration dependentPi , j @Fig. 4~d!#. Previously, we had shown
that whenPi , j is uniformly distributed, the power law distri
bution of the time interval between consecutive crackles
due to the hierarchical tree structure@9#. The present results
further confirm that the scaling originates from the tree str
ture. Another point is that the active surface decreases
when avalanches or single openings propagate to the alv
without leaving any closed branches in their path. Fig
4~b! shows that at 0.8Pmax'212, branches are on the activ
surface, as if all branches at generation 13 were closed
all branches up to generation 12 were open in a
generation tree.

B. Asymmetric binary tree structure „ZÄ3…

It is known that the mammalian lung is asymmetric w
the asymmetry varying from species to species@21,53#.
There are several different ways to generate an asymm
tree structure that is similar to the lung. We use a flow di
sion model which generates realistic tree structures@51#. In
this model, we control the degree of asymmetry using a fl
division parameterr, which is the ratio of the flow entering
the left daughter branch from the parent. A terminal air sa
placed at the end of all airways, which have a flow sma
than a given threshold. We can increase the size of the
by reducing this threshold@51#. For a symmetric tree at eac
node, half of the flow goes to one daughter and the other
goes to the other daughter, thusr 50.5. If r is different from
0.5, more flow goes to one side or to the other side, lead
to asymmetry. We use this model to study the effect of asy
metry on the active surface.

We carried out numerical simulations for two values ofr,
r 50.25 andr 50.15, and compared with the symmetric tr
r 50.5. Figure 5 shows the active surface of three indep
dent simulations and the distribution of time intervals f
1000 simulations. Again, the asymmetry changes the ac
surface but not the distribution of time intervals.

C. Tree structures with ZÄ2 and ZÄ4

In order to study the effect of different branching of th
tree structure on the active surface and the distribution ofDt,
01190
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we first study the case of a chainZ52, then a tree withZ
54 and then compare the results with simulations on a
nary tree. For simplicity, in this section all simulations u
generation independentPi , j .

1. Chainlike structure, ZÄ2

A chain does not have a shape similar to the mamma
lung. The active surface of a chain with random closures
always one branch. However, we can find the time inter
between consecutive avalanches. Here, the generation n
ber is the total number of branches in the chain~to be con-
sistent with the previous sections we useM5215 branches!.
We assume that all segments are closed with uniformly
tributed random thresholds. In Fig. 6, we show the results
the distribution of time intervals between consecutive eve
Note that now the distribution of time intervals dramatica
changes andb51.

2. Tree structure with ZÄ4

A tree with coordinate numberZ54 is similar to some
botanical trees. In Fig. 7, we show the results for the ti
interval distribution between consecutive events. Note t
now the distribution of time intervals is againb'2, and the
functional form of the active surface is almost unchang
compared withZ53. The major difference is a magnifica
tion in theN(PE) axis due to the increase of the number
segments in the tree.

V. ANALYTIC CALCULATION

A. Chain model

A chain is a Cayley tree withZ52 andM segments, or
airways. At each node we assign a random opening thres

FIG. 5. Numerical simulations using an asymmetric tree str
ture. ~a! Time interval between consecutive crackles for 1000 in
pendent simulations in a 15-generation tree. This result is indep
dent ofr in the range 0.25<r<0.5; ~b! plot of the number of active
segmentsN as a function of the external pressurePE ~dots! sym-
metric tree, r 50.5 ~line! asymmetric tree withr 50.25, and
~dashed! asymmetric tree withr 50.15.
9-5
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ALENCAR et al. PHYSICAL REVIEW E 68, 011909 ~2003!
pressure. Note that for a chain, the perimeter is alway
single segment. An airwayi is the perimeter only when al
airways before it hasPj,PE , for 0< j , i , and Pi.PE .
When a branch opens, all following branches also open in
avalanche process until the avalanche process reache
end of the chain or an airwayi with Pi.PE , which becomes
the new perimeter.

In order to find the distribution of time intervals betwee
consecutive avalanches, we recognize that theM segments of
the chain open inN subgroups of segments, each subgro
constituting an avalanche. In each avalanche, the first

FIG. 6. Distribution of numerical simulations ofDt for a chain
Z52. Circles show the distribution for a chain withM51013 seg-
ments, square forM51015, and triangle forM51017. The thick
line is a curve with exponentb51.00.

FIG. 7. Numerical simulation of the time interval between co
secutive crackles for 300 independent simulations in a tree witZ
54 andM512. ~a! Distribution of time intervals between consec
tive crackles;~b! plot of the number of active segmentsN as a
function of the external pressurePE in the simulations~circles! and
prediction from the analytical formulation Eq.~33! ~line!.
01190
a

n
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ment has the largest threshold pressure. The threshold p
sures of the first segments of the avalanches are in a str
increasing order. Thus, the probability of partitioning theM
segments of the chain intoN distinct avalanches is given b
the Stirling numbers of the first kind,S(N,M ), which gives
the probability of partitioningM segments intoN cycles
@54,55#. In each cycle, the first segment must have the larg
Pth , and the rest can be placed arbitrarily, with the fi
segments of the cycles placed in an ascending order.
order of the segments in the cycles uniquely defines a c
figuration of avalanches.

The Stirling numbersS(N,M ) are defined as@54#

S~N,M !5
1

M (
k5N21

M21

S~N21, k!, ~5!

with S(1, k)51/k. The generating functiongM(x) for these
probabilities is given by

gM~x!5
x~x11!~x12!•••~x1M21!

M !
5 (

k51

M

S~k,M !xk.

~6!

For M→`, the Stirling numbers converge to a Gaussi
distribution with mean@56#

^N~M !&5gN8 ~x!ux515 (
N51

M
1

N
' ln M1c ~7!

and variance

s25g9~x!ux511g8~x!ux512g8~x!2ux51

5 (
N51

M
1

N
2 (

N51

M
1

N2
' ln M1c2

p2

6
, ~8!

wherec50.577 . . . is theEuler number. This result give
the average number of avalanches^N(M )& in a chain withM
segments, or in this case, generations.

The next step is to find the probabilityPN(Dt) of finding
a time intervalDt in a sequence ofN avalanches. We will
derive the distribution of the interavalanche time interv
Dtn5Pn2Pn21 @see Eq.~4!#, where Pn is the opening
threshold pressure of thenth avalanche. If the opening
threshold pressure of the rootP050, the distribution of the
first interavalanche time intervalDt1 is uniform in the inter-
val @0,1#,

p1~Dt1!5H 1 if 0<Dt1<1

0 otherwise.
~9!

To calculate the distribution ofDtn , we first define the
quantityxn512Pn ~see Fig. 8!. Thus,

Dtn5xn212xn . ~10!

For a givenxn21, the value ofxn is uniformly distributed
between 0 andxn21. Thus, the conditional probability

-
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PERIMETER GROWTH OF A BRANCHED STRUCTURE: . . . PHYSICAL REVIEW E 68, 011909 ~2003!
p~xnuxn21!5H 1/xn21 if 0<xn<xn21

0 otherwise.
~11!

Using Eq.~10!, we can calculate the conditional probabili

p~Dtnuxn21!5H 1/xn21 if 0<Dtn<xn21

0 otherwise.
~12!

The distribution of thenth interavalanche time interva
pn(Dtn) can be defined as the convolution

pn~Dtn!5E
0

1

p~Dtnuxn21!p̃n21~xn21!dxn21 , ~13!

wherep̃n is the distribution of the quantityxn , which can be
similarly expressed as

p̃n~xn!5E
0

1

p~xnuxn21!p̃n21~xn21!dxn21 . ~14!

Since the expressions in Eqs.~12! and~13! are identical to
those in Eqs.~11! and~14!, respectively, the distributionsp̃n
andpn are given by identical functions. We can thus repla
the variablexn21 inside the integral in Eq.~13! with Dtn21

and the corresponding distributionp̃n21 with pn21. Thus,
using Eq.~12! we can write the distribution of thenth time
intervalDtn in terms of the distribution of the (n21)th time
interval Dtn21 as

pn~Dtn!5E
Dtn

1 pn21~Dtn21!

Dtn21
dDtn21 . ~15!

Thus, using Eqs.~9! and ~15! we can write the hierarchy
of distributions

p2~Dt2!5E
Dt2

1 1

Dt1
dDt152 ln~Dt2!

A

pN~DtN!5E
DtN

1 lnN22~DtN21!~21!N22

DtN21~N22!!
dDtN21

5
lnN21~DtN!~21!N21

~N21!!
. ~16!

Suppose we have exactlyN avalanches in our chain. Th
distribution of intervalsDt for all N avalanches is thus

FIG. 8. Schematic representation of the opening process
chain and the illustration of Eq.~10!.
01190
e

PN~Dt !5
1

N (
k50

N21
lnk~Dt !

k!
~21!k. ~17!

If Dt@1/N,

PN~Dt !'
1

NDt
. ~18!

In the case of fixed number of generationsM, we substi-
tute the number of avalanchesN in Eq. ~18! with the expres-
sion for ^N(M )& given by Eq.~7!,

PN~Dt !'
1

Dt~ ln M1c!
. ~19!

However, to find an intervalDt<1/̂ N&, we can use the sim
plest model in queuing theory. This model is used for arriv
into a queue system, assuming that the probability of an
rival in a small interval of time depends only on the size
the interval, not on any history of the process@57#. Thus, the
probability of havingDt<1/̂ N& for M thresholds is given by
the Poisson distribution 12exp(2DtM). We can conjecture
that the probability distribution must be well approximat
by the product

PM~Dt !5
12exp~2DtM !

Dt~ ln M1c!
. ~20!

Thus, the cutoff of the distribution occurs atDt51/M and
the three curves from Fig. 6 can be collapsed into a sin
master curve@see Fig. 9#. We test our conjecture by plotting
PM(Dt/M )/M with the simulations forM5103, 105, and
107 ~see Fig. 9!.

a

FIG. 9. Collapsed distribution ofDt for a chain with 103 seg-
ments ~circles!; M5105 ~squares!; and M5107 ~triangles!. The
lines are the analytical plots of Eq.~20!.
9-7
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B. Symmetric tree, ZÌ2

First, we consider the case wherePi , j is uniformly distrib-
uted. At t50, the root of the tree is closed and the probab
ity of it being open is equal to the external pressurePE(0)
50. During the time intervalDtn between two consecutiv
avalanchesn andn11, the inflation is blocked by the close
airways on the active surface. The closed airways on
active surface have opening threshold pressuresPi , j uni-
formly distributed betweenPE(n) and 1, wherePE(n) is the
external pressure that has produced thenth avalanche. The
number of closed airwaysN(PE) defines the size of the ac
tive perimeter at each external pressurePE . The next ava-
lanche takes place whenPE becomes equal to the smalle
Pi , j on the active surface~see Fig. 10!,

PE~n11!5 min
N(PE)

$Pi , j% . ~21!

Thus, the interavalanche time intervalDtn is defined by

Dtn5DPn5 min
N(PE)

$Pi , j2PE~n!%, ~22!

where the minimum is taken over allN(PE) closed airways
on the active surface. Note thatDt is the difference between
the minimum opening threshold pressure among theN seg-
ments on the active surface and the external pressure. S
each of theN segments has opening threshold pressures
formly distributed betweenPE and 1, the average value o
Dt is given byDt5(12PE)/N.

In order to derive the distribution forDt, we first find the
probability of having no openings betweenPE and PE
1DP. Since the opening threshold pressuresPi , j are uni-
formly distributed and consist of independent random va
ables, this probability is given by

Prob~min$Pi , j%.PE1DP!5S 12
DP

12PE
D N

. ~23!

The probability distribution ofDP ~or Dt) is then given by
differentiating Eq.~23! with respect toDP. This gives us

P~Dt !5
N

12PE
S 12

Dt

12PE
D N21

.

If N is large enough, then

FIG. 10. Schematic representation of the inflation. The bullet
the pressure axis indicate thePi , j for all airways on the active
surface.N(PE) is the number of airways on the active surface
pressurePE . When PE increases and reaches the segment w
smallestPth on the active surface, that airway opens, andZ21 new
values ofPi , j drop in the pressure axis. If the new values ofPi , j

<PE , these airways open in avalanche, otherwisePi , j.PE and the
airway will be on the active surface.
01190
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P~Dt !'
1

Dt
S 12~N21!

Dt

12PE
D ,

which can be approximated by

Pn~Dtn!'
1

Dtn
e2Dtn /Dtn, ~24!

which is the negative exponential distribution@58,59# with a
mean value of

Dtn5
12PE

N~PE!
. ~25!

The distribution ofDt during the entire inflation is, thus, th
sum of the exponential distributions corresponding to aln
51,2, . . . ,nmax avalanches, wherenmax is the total number
of avalanches

P~Dt !5
1

nmax
(
n51

nmax

Pn~Dtn!. ~26!

To evaluate this sum, we express it in terms ofPE . For each
realization of opening threshold pressures, the variab
N(PE) andDtn are step functions ofPE . Since our goal is to
find the distribution ofDt for all realizations of disorder, we
will replace N(PE) and Dtn by their averages over man
realizations, denoted aŝ•••&. For clarity, we introduce a
new notation

t~PE![^Dtn&5
12PE

^N~PE!&
. ~27!

Accordingly, we will replaceDPn[PE(n11)2PE(n) by
t(PE). Taking Eq. ~24! into account, we approximate th
sum in Eq.~26! by an integral fromPE50 to PE51, corre-
sponding to the summation fromn51 to n5nmax

P~Dt ![S 1

nmax
D (

n51

nmax Pn~Dtn!

DPn
DPn

'S 1

nmax
D E

0

1 e2Dt/t(PE)

t2~PE!
dPE . ~28!

In order to calculateP(Dt), we need to find an explicit
expression for̂ N(PE)&, since it is involved in Eq.~28! be-
cause of Eq.~27!. For simplicity we consider a binary tre
with Z53. Suppose that on an average, the generatioi
containsLi open branches connected with 2Li branches at
the next generation, which can be either open or closed.
average number of open branches at generation (i 11) is
Li 11. Since the distribution ofPi , j is uniform between 0 and
1, the fraction of open branches is equal toPE . Hence, the
number of opened branches in the (i 11)th generation is
Li 1152PELi . This recursion relation has a solution

Li5~2PE! i . ~29!

n

t
h
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The number of closed branches connected to the root thro
open branches at generationi 11 is given by Ni 1152Li
2Li 11, making

Ni 1152~12PE!~2PE! i . ~30!

Note that Eq.~29! and, consequently, Eq.~30! is valid only if
the root is open. AnM generations tree with the root open
identical to a system composed of two (M21)-generations
trees with the roots closed. Thus, we divide Eq.~30! by two
and increase by one generation. Now,

Ni5~12PE!~2PE!( i 21). ~31!

Thus,

^N~PE!&5(
i 51

M

Ni5
~2PE!M21

2PE21
~12PE!. ~32!

Figure 11 compares Eq.~32! with three different realizations
of the numerical model for trees withM516, 17, and 18.

We can generalize Eq.~32! for the case of a tree with a
given coordination numberZ, replacing Eq.~29! by Li
5@(Z21)PE# i , and we get

^N~PE!&5(
i 51

M

Ni5
@~Z21!PE#M21

~Z21!PE21
~12PE!. ~33!

Substitutinĝ N(PE)& from Eq. ~33! into Eq. ~27!, we obtain

t~PE!5
~Z21!PE21

@~Z21!PE#M21
. ~34!

Finally, substituting Eq.~34! into Eq. ~28!, we obtain the
explicit form for the distribution. The normalization consta
nmax can be calculated as

FIG. 11. Plot of the active surface. From the numerical mo
M517, circles are the averageN after 1000 simulations, and th
error bar is the standard deviation. Lines are the analytical mo
for M516-, 17-, and 18-generations trees from the bottom to
top, respectively. Note that atM517, the numerical and the ana
lytical model merge.
01190
gh

nmax5E
0

1

dPE /t~PE!'~Z21!M/M . ~35!

For largeM, the scaling properties of the integral in Eq.~28!
can be estimated by the saddle point approximation: ForDt
!(Z21)2M, we have a uniform distribution

P~Dt !'~Z21!M21. ~36!

This equation gives us an interpretation of the plateau reg
of the experimental distribution ofDt. For 1/(Z21)M!Dt
!1/M , we have a power law decay

P~Dt !'~Z21!2M11Dt2221/M. ~37!

This equation gives us a mean field interpretation of the
ponentb'2 from the experimental distribution ofDt for
Z53. The approximations we have used affect only the
nite size correction ofb, which is of the order of 1/M .

Our model predicts that the crossover between the po
law regime withb52 (Z53) and the plateau of the exper
mental distribution ofDt scales withM as 1/2M. Using this
prediction, we estimateM from the experimental data asM
'14 for the spike detection threshold of 1% andM'10 for
the threshold of 8%. The two curves for different thresho
collapse after scaling them with the corresponding values
M @Fig. 12~b!#.

l

el
e FIG. 12. Data collapse of the distributions normalized w
2M/tmax. ~a! Numerical simulations for binary trees (Z53) with
M512 generations~circles!, M516 generations~squares!, andM
520 generations~triangles!. The solid line represents Eq.~28! and
the dashed line represents the best fit exponent for the nume
simulation withM520. ~b! Experimental data for the threshold o
1%, scaled withM514 ~circles! and for the threshold of 8%, scale
with M510 ~squares!. The dashed line represents the best fit exp
nent for the data with the threshold of 1%.
9-9
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FIG. 13. Active surface features and experimental active surface. Value of the maximum size~a! and peak position~b!, of the active
surface vs the parameterC describing generation dependence@Eq. ~2!#. ~c! Experimental and predicted active surfaces. Circles with error b
are the experimental active surfaces obtained from 12 distinct inflations from the collapsed state. The dashed line is the active sur
a random opening pressure threshold is applied, the solid line is obtained with a small generation dependenceC50.01, and the dot-dash line
corresponds to a strong generation dependenceC50.02. In all simulated results, we used a symmetric tree with 15 generations average
1000 realizations.
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VI. DISCUSSION

Power law behavior is usually interpreted as a fractal
scale-free phenomenon, implying the absence of a chara
istic scale. Here, we examined the time intervalsDt between
consecutive crackles during lung inflation and find that
distribution of Dt follows a power law with exponentb
'2. To study the microscopic origins of the scaling beha
ior, we used a dynamic invasion percolation model of a
lanches in a Cayley tree@27#. The exponentb of the power
law distribution is robust under different distributions of th
pressure threshold, as well as the asymmetry and coord
tion numberZ.2 of the tree structure. For a linear cha
Z52, the distribution of time intervalsDt is similar to the
distribution of waiting times in a Poisson process of queu
and consequently, the exponent of the distribution isb51
@57#.

Power law distributions, however, do not always provi
information about the microscopic dynamics of the proce
Thus, to explore the microscopic dynamics of the system,
introduce the concept of an active surface that consists o
branches that are closed but connected to the root of the
by an open pathway. Initially, the size of the active surfa
increases exponentially as the opening of a single branc
the active surface adds (Z21) new branches, increasing th
size by (Z22). However, when an avalanche reaches
boundary of the tree, the size of the active surface decrea
becoming zero when all branches are open. The maxim
size of the active surface and the pressure at that point c
acterize the dynamics of the opening process. We find tha
contrast to the distribution ofDt, the active surface is sens
tive to the properties of the tree structure as well as to
dynamic mechanisms of the opening process.

For completely random opening pressure thresholds,
evolution of the active surface is given by Eq.~32!. The
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r
er-

e

-
-

a-

g

s.
e

he
ee
e
on

e
es,
m
ar-
in

e

e

position of the peak isPmax'(121/M ). In the limit when
every generation has the same deterministic opening pres
threshold which is greater than that of its parent, branc
within the same generation open simultaneously. The co
sponding active surface grows in geometric steps with a
tor of (Z21) until the last generation opens. When the la
generation opens, the size of the active surface drops to z
As the distribution of pressure thresholds becomes more
more generation dependent, the height and width of the p
monotonically increases~see Fig. 13!. With increasingC in
Eq. ~2!, the position of the peak of the active surface initia
shifts towards lower pressures, until the pressure thresh
distributions of the individual generations cease to over
~see Fig. 3!. Further increasingC, the peak of the active
surface starts to shift towards higher pressures~see Fig. 13!.

An asymmetric tree has some alveoli which are close
the top of the tree while others are father away. The alve
which are closer to the top are more likely to open at low
pressures than those that are deeper into the tree@46#. We
note that the size of the active surface decreases only w
an opening sequence reaches the alveoli. Thus, in an a
metric tree, the size of the active surface is smaller at
beginning of inflation than in a symmetric tree with the sam
number of branches. However, since an equal numbe
alveoli opens at higher pressures, the position and heigh
the peak remain almost the same, but the width of the p
decreases~see Fig. 5!.

For a linear chain, the active surface can at most con
of a single branch. With an increasing coordination num
(Z.2), the position of the peak remains the same@Pmax
'(121/M )#, while the height increases asNmax}(Z21)M21

@see Eq.~33!#.
With regard to physiological implications, we suggest th

it is possible to reconstruct the evolution of the active surfa
9-10
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from experimental data on crackle sounds using the rela
between the average size of the active surface and the a
age time interval among crackles. For this purpose, we
culate the average time interval between measured crac
in a nonoverlapping moving time window and obtain t
average size of the active surface using Eq.~25!. The active
surfaces thus reconstructed are averaged over data from
different inflations. The results, shown in Fig. 13, sugg
that the opening pressure thresholds have a weak gener
dependence in the lung. Additionally, we assumed in t
study that the speed of the avalanche is infinity, which
reasonable for the range ofDt we investigate here. In previ
ous study, the importance of finite avalanche speed has
investigated@9#. When the inflation rate becomes compara
to the avalanche speed, the overlap of avalanches may
to new phenomena such as instabilities and negative stiff
@29#.

We conclude that the slopeb of the distribution ofDt for
ob

tt

J

d

.
B
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c-

d

d
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a Cayley tree is mainly due to the branching hierarchi
structure. From the mean field calculation, we find that
tectable crackles come from the last 14 generations after
first closed airway in the lobe. The agreement of the mo
with experimental data is consistent with the possibility th
in the 14 generations of the airway tree from which we c
detect crackles, the distributions of opening threshold pr
sures from different generations overlap significantly so a
allow avalanchelike opening of airways. Our findings al
have a potential clinical application. While the distribution
Dt can be used to estimate the accuracy of crackle so
detection, the dynamic active surface may provide inform
tion about the generation dependence of pressure thresh
which in turn may be characteristic of various lung diseas
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@14# P. Piirilä, A.R.A. Sovijärvi, T. Kaisla, H.M. Rajala, and T. Ka-

tila, Chest99, 1076~1991!.
@15# Y. Ploysongsang, R.P. Michel, A. Rossi, L. Zocchi, J. Mili

Emili, and N.C. Staub, J. Appl. Physiol.66, 2061~1989!.
@16# N. Al-Jarad, B. Strickland, S. Lock, R. Logan-Sinclair, an

R.M. Rudd, Thorax48, 347 ~1993!.
@17# N. Al-Jarad, S.W. Davies, R. Logan-Sinclair, and R.M. Rud

Respir. Med.88, 37 ~1994!.
@18# A.R.A. Sovijärvi, P. Pirilä, and R. Luukkonen, Clin. Physiol
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