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Perimeter growth of a branched structure: Application to crackle sounds in the lung
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We study an invasion percolation process on Cayley trees and find that the dynamics of perimeter growth is
strongly dependent on the nature of the invasion process, as well as on the underlying tree structure. We apply
this process to model the inflation of the lung in the airway tree, where crackling sounds are generated when
airways open. We define the perimeter as the interface between the closed and opened regions of the lung. In
this context we find that the distribution of time intervals between consecutive openings is a power law with an
exponent3~2. We generalize the binary structure of the lung to a Cayley tree with a coordination ndmber
between 2 and 4. F&&=4, 8 remains close to 2, while for a chaid=2 andB8=1, exactly. We also find a
mean field solution of the model.
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I. INTRODUCTION ferromagnetic materialg31,32, popping bubble$33], and
in others finite system[34,35.

There is much current interest in crackles; abrupt and dis- It is well established that the growth of colloid aggregates,
crete events triggered by small changes in the state of a giveffame fronts, and tumors occur mainly at the “active surface”
system[1]. Crackling behavior is found in a wide variety of [36,37, a concept also used to describe catal{38, poly-
systems including earthquak€g], magnetic material$3], merization, and percolation proces$89]. In particular, the
crumpled elastic sheefd], paper tearing5], and mamma- problem of lung inflation can be modeled as an invasion
lian lungs[6-10]. Usually, crackles span many orders of percolation process on a branched strucf@#&4d. In gen-
magnitude in loudness, amplitude, and the distribution ofral, the active surface is defined as the perimeter where
sizes follows a power law. growth occurs. We define the active surface in the lung, or

Pulmonary crackles are short, explosive, transient wavegictive perimeter, as the set of all closed branches connected
which are among the many lung sounds generated in tht® the root of the tree through an open pathway. During the
airways of a diseased lung during breathing. They are chagrowth of the active surface, acoustic energy is released as
acterized by a rapid initial pressure deflection, called a spikeaudible crackle$9].
followed by a short duration ringing. Crackles have long Recently, we obtained a mean field solution for a model of
been used as a qualitative diagnostic tool, since their acoustibe evolution of the active surface and the distribution of
properties correlate with certain pulmonary dysfunctionstime intervalsAt between consecutive crackles isypmmet-
[7,11-1§. The time series of crackle events are complex andic Cayley tree. We assumed that the airway opening pres-
two power laws have been discovered: one in the distributiosures are uniformly distribute®,27]. Here, we explore the
of crackle sound amplitudgd.0] and one in the time inter- €ffects ofasymmetryn the Cayley tree, coordination number
vals between consecutive crackl¢8]. However, much Z, and generation-dependent thresholds on both the active
analysis of lung sound is based on empirical observationsurface and the distribution aft. We find that the active
without solid theoretical basis. surface is sensitive to the asymmetry of the tree strucHjre,

The airway tree structure of the mammalian lung is binaryand generation dependence of the airway opening threshold
and asymmetri§19—22. The main function of the airway pressure. However, the distribution aft is insensitive to
tree structure is to conduct air from the atmosphere to the gaghanges irZ for Z>2.
exchange region, which is composed of more than 300 This paper is organized in the following way. We briefly
x 10° alveoli or tiny, thin-membraned sacs. The internal sur-describe the experimental procedure in Sec. Il. In Sec. lll, we
face of the lung is lined with a thin liquid film which can describe the dynamic model with the parameters used in this
undergo a surface-tension-driven fluid-elastic instability,paper. In Sec. IV, we show the numerical simulations. In Sec.
leading to airway closure by the formation of occluding lig- V, we analytically solve the model and in Sec. VI, we present
uid bridges[23,24. Airway closure and reopening occur of- a short discussion.
ten in diseased lungs and are associated with the generation
of respiratory cracklef7,25]. Studies of airway closure and
opening indicate that during inflation, airways open in ava-
lanches triggered by overcoming a hierarchy of critical open- A time series of sound amplitudes was recorded in the
ing threshold pressures along the airway {r2@—29. Ava-  main bronchus of dog lung lobes during inflation from the
lanche behavior is also present in chemical activifig8], collapsed state to the total lobe capacity in a titpg,

=120 s[10]. At the beginning of inflation, the sound pres-
sure time series displays a set of discrete craddes Fig.
*Electronic address: adriano@bu.edu 1(a)]. With advancing inflation, massive airway opening gen-

Il. EXPERIMENTAL DATA
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1.01 @ distinct avalanches and the small regime is related to the
0.5 dynamics of crackles within a single avalandl®é The dy-
0.0F namics of distinct avalanches play an important role in the

recruitment of closed regions of the lung and will be the
main focus of this paper.

o
o

Ill. ADYNAMIC MODEL OF CRACKLE GENERATION

o o =
o W o

To understand the scaling behavior &f, we develop a
dynamic invasion percolation model which considers the
time required for an airway to open and the avalanche to
propagate through aM-generation airway tree. For simplic-
ity, we first treat a symmetric tree structure, then generalize
to an asymmetric tree.

In Sec. lll A, we mathematically model the lung as a Cay-
ley tree with a coordination numbé&t. When the lung is

| ) | ) ) degassed, airways collapse, closing most pathways down-
23.48 23.5 23.52 23.54 stream. To mimic the process of reopening, we assign the
opening threshold pressuRg, as a parameter to each airway

10° (Sec. Il B). If the airway is connected through an open path-
—_ @ way to the root of the tree and the external pressRge
< 10" reachesP,,, the airway opens and a crackle is locally gen-
g erated. In Sec. Il C, we describe the timing related to the

102 inflation process.
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A. Airway tree structure

R Like botanical trees and rivers, the airway tree structure is
| o @) binary and asymmetric. A structure is called a binary tree if
each node has three connectiods=(3): a parent branch and
two daughtersZ=2 defines a chain and=4 is a tree that
trifurcates at each nod&0].

In this model, each branch is labeledj(, wherei is the
generation number from the root of the tred (
=1,2,... M) and, for a generic treg,e[0,(Z—1)'—1] is
used to distinguish between branches of the same generation
10‘_6' "'1(')_5' "'1(')_4' "'1(')_3' "'1(')_2' i [61]. The root of the tree is labeled (0,0).

At/t
ma:

Histogram of A ¢
=

X B. Airway closure and opening

FIG. 1. Experimental datda) The continuous line is the time When the lung deflates to very low volumes, many pe-
series of sound pressugt) during the first inflation of a dog lung ripheral airways close by forming a liquid bridge between
lobe from the collapsed state, recorded at a rate of 22 050z. the collapsed airway wall®3,24,41—-43 Each branchi(j)
Magnified segment o8(t) with consecutive spikes. The interspike s closed at the beginning of the inflation=(0). Experi-
interval At~0.2 s of this segment corresponds to the time differ-ments and models indicate that a critical opening threshold
ence between two spikegg) another segment frorte) with At pressureP; ; can characterize the opening of a single airway
50.02 s;(d) the sequence of time |ntervaA_ﬁ from {a); apd(e) the [44,45. Th'us, all branchesi(j) are assigned a randoR, ;
histogram of interspike intervals for 12 different inflatidrgd. uniformly distributed between 0 an@,.... The Simplést

model, wherP; ; is uniformly distributed independent of the
erates dense and overlapping wave packste Fig. 1&8)].  generation number, or airway diameter, has been explored in
The envelope of the time series gradually decreases witprevious studie$9,10,26,29,46,47 Imposing a generation
inflation, indicating first the generation of coarse cracklesdependence oR;  is not straightforward, since few experi-
then later of fine cracklelsll]. To characterize the statistical mental data exist on how airway generation in the lung af-
features of the crackles, we develop a moving window algofects the opening threshold pressures. However, theoretical
rithm that measures the spike size in the time series and thstudies suggest that the pressure threshold depends on sev-
time delayAt between two consecutive spikesee Figs. (b)  eral physiological parameters such as surfactant, surface ten-
and Xc)]. An example of the\t series is shown in Fig.(#l).  sion, liquid layer thickness, and airway elastic properties
The distributionIT(At) of At [Fig. 1(e)] shows one pro- [48-50.
nounced regime of power law behavibf(At) =At~#, with The two major factors contributing t8; ; are the diam-
B=2.0. The largeAt regime is related to the dynamics of eter of the airways and the surface tension of the obstructing
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liquid. The diameter of the airway decreases from the root of

the tree to the air sacs and numerical values are knowr too

[21,51]. On the other hand, surfactant is secreted by lung

cells lining the bottom portion of the tree and the air sacs. t10 ti1

Surfactant diffuses toward the root of the tree and, thus, the

concentration of surfactant is higher at the bottom than at the ta2
top [52]. Since the surfactant reduces the surface tension o

the obstructing liquid, the surface tension at the bottom of tof \t1
the tree is smaller than at the top. Direct experimental evi-

dence of the opening threshold in a lung tree has been ob _, N=3 N4 N=3
served, showing that the opening threshold is inversely de-

pendent on the diametel and proportional to the surface FIG. 2. Diagrams describing avalanche timing for a tree with

tensiony, Z=3. Initially, just the root is open and the time for that event is
to0. The number of segments on the active surface that are closed is
Cy N=2. The pressure increases and the left daughter openg atd
P(d)= a @ now N=3. Following a new increase of pressure, the right daughter

of the root opens df; ; andN=4. Next, the left daughter opens at

. . t,» which triggers an avalanche, where each segment of this ava-
whereC is a constanf45]. The two competing factors and lanche has a time delay,(andt,) with respect tat, ,. When the

d have been used as an argument for the use of generatiogll\;aIanche stopt=3
independent randonP; ;, where the randomness comes ’
from the opposite nature of both contributions. We introduce._. . i v with time. Thus. the time differ-
generation dependence & ; by adding a deterministic smceEEt\l;creafes inearty i I. h T

term, which shifts the mean of the distributionfdf; . Thus, ence between two consecutive avalanches 1s

assuming thaP; ; is not deterministic, we can add a random At=AP (4)
term and write '

or the pressure difference betwelep values that trigger two
P, M:CWM +, ) conseCl_Jtiv_e avalanches. However,_ the time associated_with
d; events inside the same avalanche is independent of the infla-
tion time; it will be related to the time required for a pressure
where the surface tension y, is a function of the surfactant wave to travel from an opening to reach the next daughter
concentration, that is, a function of the generation nuniber airway.
and the maximum number of generations in the tvkeand

7 is the random term. IV. NUMERICAL SIMULATIONS

To understand the contribution of the interavalanche time
intervals to the power law distribution dft, we assume that
Inflation is simulated by applying an external pressurethe time required to open all segments within an avalanche is
Pe(t) at the root of the tree and uniformly increasing negligible compared to interavalanche timings. Thus, all
Pe(t)=Kt in small increments, wher& =P ,/tnax iS @  crackles from the same avalanche arrive simultaneously at
constant inflation rate. In this model, we rescale both timehe root, and only interavalanche time intervals are present in
and pressure so th&,,,=1 andt,=1, makingK=1. this study. We divide the numerical simulations in three
Since an airway opens when the pressure in its parergarts. First, we study crackles in a binary tree=3) and
exceeds its critical opening threshold pressure, the airwagimulate the effect of different pressure threshold distribu-
(0,0) opens wherPe=Pg o attgo=Pgq, Wheretygis now  tions(Sec. IV A). Next, we study the effect of asymmetry of
the time associated with the opening of the root. Next, thehe tree structure for a binary tréec. IV B). Then, to study
daughter airways are checked; one, or two, or all will open ifthe effect of branching, we simulate crackles in a chan (
Pe=P,;, where] distinguishes different airways at the =2) and a tree wittz=4 (Sec. IV O.
same generation. This opening process is then continued se-
quen_tially down_the tree until no airway connec_ted to the A Binary tree (Z=3) with different P, ; distributions
root is found withP; ;<Pg. Note that the opening of a . . N
single branch can lead to openings of other branches which We numerically simulate the generation of crackle sounds
have P; j<Pg, defining an avalanche in which many air- in a symme_trlc_bmary tree using two rules: rulg the P; ;
ways open in a cascad€ig. 2. The opening of an airway are generat|on_ md_ependent and are compllletely random, hav-
also generates a crackle sound locally, which we model as dR9 ho deterministic part, Sec. IV A 1; rulgi) the P; ; are

C. The process of inflation

acoustic spike. generation dependent and the dependence can be either weak
The opening of the first segment or root of an avalanche®r strong, Sec. IV A 2. In all numerical simulations for bi-
airway (i,j), occurs at time nary trees, the diameter of the airways are assigned accord-
ing to Ref.[51], with values ofd between 1, for the root of
tii=Pi;, (3) thetree, and 0.034, for the smallest airways in a tree with 15
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FIG. 3. Opening threshold pressupg; used for the weak and
strong generation dependenca). Circles are the mean d?, for 10
C=0.01 and(b) triangles are folC=0.1 in Eq.(2). The error bar (d)
denotes the maximum and minimum value.
10* 8 6 B

generations. For the purpose of these simulations, we selec.,
C=1, and the random terny in Eq. (2) is distributed uni-
formly between 0 and 1. For all models, the opening thresh- 2 107
old pressure®; ; are normalized so that the maximum value .
max(P; ;)=1. Figure 3 shows the normalized maximum value
of P; ; as a function of the diameter for moddédsand C.

ution of A

Distrib
80

1. Generation independent, uniform distributions of;P

102+ B=2.15+0.10

We obtain generation-independent opening threshold
pressures; ; when we neglect the first term of E(R) by
consideringC=0. Thus, after normalization, only the ran- al L. L.
dom term 5 will contribute to P; ;. We calculate the dy- 1010'6 107 102 10°
namic active surface of the interface between the closed an At/t
open regions of the lung for 15 generatidf#y. 4(a)]. From ma
numerical simulations in a symmetric tree, usivigup to 20 FIG. 4. Plot of the number of active segmehtalong the active
generations, we obtain a single power law with expongnt surface as a function of the external pressgefor the numerical
= 2.1 for the distribution of the time intervals between con-simulations of the generation independent, weak and strong genera-
secutive avalanchdsee Fig. 4d)]. The active surface from tion dependence. For these simulations, we used a symmetric 15-
individual simulations shows a large deviation around thegeneration tree. The thin lines are independent simulations and the
average behavior and its maximum value around 1000 airthick lines are averages over 1000 simulatidasgeneration inde-
ways is small compared to the total number of airways, inPéndent(b) weak generation dependence, dastrong generation

this caseM = 15 having 32 769 airwayksee Fig. 4a)]. dependepce(d) Distripution of time jntervals betwegn consecutive
crackles in a tree with 15 generations for three different types of

generation dependence. Circles represents generation independent,

squares weak generation dependence, and triangles strong genera-
We obtain a weak dependence of the opening thresholtdon dependence.

pressureP; ; on the generation number by assuming that the

concentration of lung surfactant inside the lung is constantsize. The deviation between individual simulations and the

i.e., the surface tensiop, \, is independent of the generation. average behavior is smaller than in the generation-

Note that in this case, the first term of Hg) makes a small independent case becauBg; is more deterministic. How-

contribution to the opening threshold press(fFey. 3). The  ever, the distribution of time intervals between consecutive

active surface significantly changes compared to therackles does not chandEig. 4(d)].

generation-independent cd$ag. 4(b)]. The maximum value We increase the generation dependence oPtheby set-

of the active surface size is larger. This behavior is becauseng y; y=0.02 in Eq.(2). Now, the effect of the surface

all avalanches tend to stop early, reducing the probability ofension and the dependence of the diameter on the opening

reaching the alveoli and hence reducing the active surfacpressure threshold is twice as strong as in the weak genera-

X

2. Generation dependent;R
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tion dependencéFig. 3). In this simulation, the maximum

41 @

value of the active surface is even higher than in the weak g 10 .(a) © o
generation dependence and the deviations between differer '§ 192l
simulations are even smallgFig. 4(c)]. Again, the distribu- = o
tion of At is almost unaffected, indicating that the power law .2 10|
behavior ofAt is weakly related to the distribution &f; ;. A 102k

One important result of these simulations is that the dy- = 0
namic properties of the active surface are dependent on th 10 10
type of opening threshold pressures used. Comparing the 10
active surfaces from the generation-independent anc L (b)
generation-dependent models, one can see that the maximu _
size N of the active surface increases and its position shifts o
from Pc=0.9 to 0.7 when we increase the generation depen- = 0.5}
dence ofP; ;. This behavior is expected, since the sizes of s

the avalanches tend to decrease when the opening thresho ™
pressure is more dependent on the generation. On the othe
hand, the statistical behavior of the time intervals between 0.9

i~

1
5 0.6 0.7 0.8 0.9 1

consecutive crackles remains almost unchanged for all gen External pressure (P )
eration depender; ; [Fig. 4(d)]. Previously, we had shown E
that whenP; ; is uniformly distributed, the power law distri-  FIG. 5. Numerical simulations using an asymmetric tree struc-

bution of the time interval between consecutive crackles isure. (a) Time interval between consecutive crackles for 1000 inde-
due to the hierarchical tree structy@. The present results pendent simulations in a 15-generation tree. This result is indepen-
further confirm that the scaling originates from the tree struc-dent ofr in the range 0.25r <0.5; (b) plot of the number of active
ture. Another point is that the active surface decreases onlgegmentsN as a function of the external pressiPe (dots sym-
when avalanches or single openings propagate to the alvegtietric tree, r=0.5 (line) asymmetric tree withr=0.25, and
without leaving any closed branches in their path. Figure/dashedasymmetric tree witr=0.15.

~012 H
4(b) shows that at 0.8ma~2~, branches are on the active we first study the case of a chatt=2, then a tree witlZ

surface, as if all branches at generation 13 were c_Iosed ang4 and then compare the results with simulations on a bi-
all branches up to generation 12 were open in a 15

. nary tree. For simplicity, in this section all simulations use
generation tree. generation independef?; ; .

B. Asymmetric binary tree structure (Z=3) 1. Chainlike structure, Z=2

It is known that the mammalian lung is asymmetric with A chain does not have a shape similar to the mammalian
the asymmetry varying from species to specje€4,53. lung. The active surface of a chain with random closures is
There are several different ways to generate an asymmetrijways one branch. However, we can find the time interval
tree structure that is similar to the lung. We use a flow divi-between consecutive avalanches. Here, the generation num-
sion model which generates realistic tree struct(ita. In ~ ber is the total number of branches in the chambe con-
this model, we control the degree of asymmetry using a flowpistent with the previous sections we ude-2"° branches
division parameter, which is the ratio of the flow entering We assume that all segments are closed with uniformly dis-
the left daughter branch from the parent. A terminal air sac idriPuted random thresholds. In Fig. 6, we show the results for
placed at the end of all airways, which have a flow smallefthe distribution of time |_nter_vals be_twe(_en consecutive events.
than a given threshold. We can increase the size of the irdyote that now the distribution of time intervals dramatically
by reducing this thresholg1]. For a symmetric tree at each changes ang=1.
node, half of the flow goes to one daughter and the other half
goes to the other daughter, thus 0.5. If r is different from
0.5, more flow goes to one side or to the other side, leading A tree with coordinate numbet=4 is similar to some
to asymmetry. We use this model to study the effect of asym otanical trees. In Fig. 7, we show the results for the time
metry on the active surface. interval distribution between consecutive events. Note that

We carried out numerical simulations for two valueg pf now the distribution of time intervals is aga#~2, and the
r=0.25 andr =0.15, and compared with the symmetric tree functional form of the active surface is almost unchanged
r=0.5. Figure 5 shows the active surface of three indepencompared withZ=3. The major difference is a magnifica-
dent simulations and the distribution of time intervals fortion in theN(Pg) axis due to the increase of the number of
1000 simulations. Again, the asymmetry changes the activéégments in the tree.
surface but not the distribution of time intervals.

2. Tree structure with Z=4

V. ANALYTIC CALCULATION
C. Tree structures with Z=2 and Z=4 A. Chain model
In order to study the effect of different branching of the A chain is a Cayley tree witZ=2 andM segments, or
tree structure on the active surface and the distributiaktof — airways. At each node we assign a random opening threshold
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10° T e e e ment has the largest threshold pressure. The threshold pres-
sures of the first segments of the avalanches are in a strictly
increasing order. Thus, the probability of partitioning tle
segments of the chain infd distinct avalanches is given by
the Stirling numbers of the first kindg(N,M), which gives
the probability of partitioningM segments intoN cycles
[54,55. In each cycle, the first segment must have the largest
P, and the rest can be placed arbitrarily, with the first
segments of the cycles placed in an ascending order. The
order of the segments in the cycles uniquely defines a con-
figuration of avalanches.

The Stirling numbersS(N,M) are defined ag54]

1 M-1
D T SV ST SR s(N,M)zmkz%lS(N—l, k), (5

Normalized distribution
=
1

10 - - - -
10* 10° 10 10 10

At
o _ ) _ _ with S(1, k)=1/k. The generating functiog,,(x) for these
FIG. 6. Distribution of numerical simulations dft for a chain probabilities is given by

Z=2. Circles show the distribution for a chain wil= 10" seg-

ments, square foM=10", and triangle forM =10". The thick X(X+1)(x+2) - (x+M—1) M

line is a curve with exponeng=1.00. gu(X)= I :gl S(k,M)xK,
pressure. Note that for a chain, the perimeter is always a (6)
single segment. An airwayis the perimeter only when all o ]
airways before it ha®®;<Pg, for 0<j<i, and P;>P¢. For M—o, the Stirling numbers converge to a Gaussian
When a branch opens, all following branches also open in afistribution with meari56]

avalanche process until the avalanche process reaches the Mg

end of the chain or an airwaywith P;> P, which becomes _ _ e

the new perimeter. (N(M))=gn(x)x-1 Nzl N~InMe ™

In order to find the distribution of time intervals between
consecutive avalanches, we recognize thaMhsegments of and variance
the chain open ilN subgroups of segments, each subgroup

constituting an avalanche. In each avalanche, the first seg- 02=9"(X)|x=1+ 9" (X)|x=1— 9" (X)?|x=1
M M 2
, 1 1 ™
_10"F e => N—Z —~InM+c——, (®)
S (a) N=1 N=1 N
3 10°F
,-g wherec=0.577 ... is theEuler number. This result gives
2 10°F the average number of avalanc{@gM)) in a chain withM
R s segments, or in this case, generations.
107E L The next step is to find the probabilifyy(At) of finding
10 a time intervalAt in a sequence o avalanches. We will
30 derive the distribution of the interavalanche time intervals
25:_(b) . At,=P,—P,_, [see Eq.(4)], where P, is the opening
~ e threshold pressure of thath avalanche. If the opening
' 20F threshold pressure of the roBy=0, the distribution of the
MZ 15F first interavalanche time intervadlt, is uniform in the inter-
=) 105_ val [0,1],
5F . (At 1 ifo=sAy=<1 ©
Lococogopee®™ | | 1 7 (Aty) = .
G 0.6 0.7 0.8 0.9 1 0 otherwise.

External pressure (P ) o . ]

To calculate the distribution oAt,,, we first define the
FIG. 7. Numerical simulation of the time interval between con- quantityx,=1—P, (see Fig. 8 Thus,

secutive crackles for 300 independent simulations in a tree Zvith

=4 andM = 12. (a) Distribution of time intervals between consecu- Aty=Xp-1=Xp- (10

tive crackles;(b) plot of the number of active segmenlts as a

function of the external pressuR: in the simulationgcircles and ~ For a givenx,_,, the value ofx, is uniformly distributed

prediction from the analytical formulation E¢83) (line). between 0 and,_,. Thus, the conditional probability
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Tn—1

At, Ty

0 Py P, 1

FIG. 8. Schematic representation of the opening process in
chain and the illustration of Eq10).

Xy 1
0

if 0=<X,<X,_1

p(Xn|an):{ (11

otherwise.
Using Eq.(10), we can calculate the conditional probability

1xq-1
P(Aty[Xp-1)= 0 otherwise.

The distribution of thenth interavalanche time interval
m,(At,) can be defined as the convolution

if 0<At,<Xx,_
n n—-1 (12)

1 ~
71'n(Atn):Jo p(Atn|anl)anl(xnfl)dxn—lv (13

where,, is the distribution of the quantity,, , which can be
similarly expressed as

~ l ~
Trn(xn):JO p(xn|Xn71)7Tnfl(Xn71)anf1- (14

Since the expressions in Eq$2) and(13) are identical to
those in Eqs(11) and(14), respectively, the distributions,,

andr,, are given by identical functions. We can thus replace

the variablex,_, inside the integral in Eq13) with At,_;

and the corresponding distributiom,_; with m,,_;. Thus,
using Eq.(12) we can write the distribution of theth time
interval At, in terms of the distribution of then(—1)th time
interval At,,_; as

T 1(At,_q)

AL, 98ty

bt = | 1s)

th

Thus, using Eqgs(9) and(15) we can write the hierarchy
of distributions

11
Wz(Atz):f v

dAt;=—In(At
AtzAtl 1 ( 2)

1 nNT2(Aty_q)(— )N 2
Aty_1(N—2)!

WN(AIN):J dAty-;

Aty

IR AL (- N
- (N—1)!

(16)

Suppose we have exactly avalanches in our chain. The
distribution of intervalsAt for all N avalanches is thus

PHYSICAL REVIEW E 68, 011909 (2003

-2 0

10 107 10*

(M/t ) At

10

FIG. 9. Collapsed distribution oAt for a chain with 18 seg-
ments (circles; M=10° (squarey and M=10’ (triangles. The
lines are the analytical plots of E¢RO).

" Ink(At
MyAy=g5 2 f(! L1k (17
If At>1/N,

In the case of fixed number of generatidvis we substi-
tute the number of avalanchbkin Eq. (18) with the expres-
sion for(N(M)) given by Eq.(7),

[T\ (At) (19

TAtnM+c)’

However, to find an intervaht<1/N), we can use the sim-
plest model in queuing theory. This model is used for arrivals
into a queue system, assuming that the probability of an ar-
rival in a small interval of time depends only on the size of
the interval, not on any history of the procg53]. Thus, the
probability of havingAt<1/N) for M thresholds is given by
the Poisson distribution -2 exp(—AtM). We can conjecture
that the probability distribution must be well approximated
by the product

1—exp(—AtM)

(A= —Frinm+o)

(20

Thus, the cutoff of the distribution occurs At=1/M and

the three curves from Fig. 6 can be collapsed into a single
master curvegsee Fig. 9. We test our conjecture by plotting
I, (At/M)/M with the simulations fotM =10°, 1¢°, and

10’ (see Fig. 9.
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N(Pg) 1 At
At, = AP, N ~__l1_ T Y
| | '/ . NA~ 5| 1=(N=D 3],
, 1 {—o0—0—o—o-0—]
0 P, B, 1

which can be approximated by

FIG. 10. Schematic representation of the inflation. The bullets in
the pressure axis indicate ttg ; for all airways on the active I1,,(At
surface.N(Pg) is the number of airways on the active surface at
pressurePz. When Pg increases and reaches the segment with
smallestP;, on the active surface, that airway opens, @rdl new  which is the negative exponential distributifsB,59 with a
values ofP; ; drop in the pressure axis. If the new valuesRyf; mean value of
<Pg, these airways open in avalanche, othenitse>Pe and the
airway will be on the active surface.

1 .
n)%ﬁe*Atn/Atn, (24)
n

o _1Pe
" N(Pg)’

(29
B. Symmetric tree, Z>2

First, we consider the case whe?g; is uniformly distrib-  The distribution ofAt during the entire inflation is, thus, the
uted. Att=0, the root of the tree is closed and the probabil-sum of the exponential distributions corresponding tonall
ity of it being open is equal to the external pressBg0) =1,2,... Nmax avalanches, where,,, is the total number
=0. During the time interval\t,, between two consecutive of avalanches
avalanches andn+ 1, the inflation is blocked by the closed

airways on the active surface. The closed airways on the 1 max
active surface have opening threshold pressiRes uni- (At = —— Z I, (Aty). (26)
formly distributed betweefg(n) and 1, wherePg(n) is the max =1

external pressure that has produced ille avalanche. The
number of closed airwaysl(Pg) defines the size of the ac-
tive perimeter at each external pressée. The next ava-
lanche takes place whdPz becomes equal to the smallest
Pi ; on the active surfacésee Fig. 10

To evaluate this sum, we express it in termg$gf. For each
realization of opening threshold pressures, the variables
N(Pg) andAt, are step functions d?g . Since our goal is to
find the distribution ofAt for all realizations of disorder, we
will replace N(Pg) and En by their averages over many

Pe(n+1)= min{P; ;}. (21)  realizations, denoted &s - -). For clarity, we introduce a
N(Pg) new notation
Thus, the interavalanche time intervat,, is defined by o 1-Pg
T(Pe)=(Atp)) =757 (27)
At,=AP,= min{P; ;—Pe(n)}, (22 " (N(Pg))
N(Pg)

Accordingly, we will replaceAP,=Pg(n+1)—Pg(n) by
where the minimum is taken over &ll(Pg) closed airways r(Pg). Taking Eq.(24) into account, we approximate the
on the active surface. Note that is the difference between sum in Eq.(26) by an integral fromPg=0 to Pc=1, corre-
the minimum opening threshold pressure amongNh&g-  sponding to the summation from=1 to n= N,
ments on the active surface and the external pressure. Since
each of theN segments has opening threshold pressures uni- 1 \"max 7 (At,)
formly distributed betweerPe and 1, the average value of H(At)z( K)E AP AP,

At is given byAt=(1—Pg)/N. max/ n=1 n
In order to derive the distribution fakt, we first find the 1 1 e AUT(PE)
probability of having no openings betwedP: and Pg ~ K) d
+AP. Since the opening threshold pressuRgs are uni- o 7%(Pg)
formly distributed and consist of independent random vari- In order to calculatdl(At), we need to find an explicit
ables, this probability is given by expression fokN(Pg)), since it is involved in Eq(28) be-
cause of Eq(27). For simplicity we consider a binary tree
with Z=3. Suppose that on an average, the generation
containsL; open branches connected witl ;2branches at
the next generation, which can be either open or closed. The
The probability distribution oA P (or At) is then given by average number of open branches at generatignly is
differentiating Eq.(23) with respect taAP. This gives us Li 1. Since the distribution oP; ; is uniform between 0 and
1, the fraction of open branches is equalRp. Hence, the
(1_ At )N_l number of opened branches in thiet+(l)th generation is
1-Pg 1-Pg : L;.1=2P¢cL;. This recursion relation has a solution

Pe. (28)

nma

, AP \N
Prol:(mln{Pi'j}>PE+AP)=(1—1_—PE). (23

I(At)=

If N is large enough, then L,=(2Pg)". (29
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FIG. 11. Plot of the active surface. From the numerical model

M =17, circles are the averade after 1000 simulations, and the
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Normalized distribution of A ¢

10 1 1 1 1
2 100 10 100 10

") At

error bar is the standard deviation. Lines are the analytical model
for M=16-, 17-, and 18-generations trees from the bottom to the FIG. 12. Data collapse of the distributions normalized with

top, respectively. Note that & =17, the numerical and the ana-
lytical model merge.

2M/tmax- (@ Numerical simulations for binary treeZ € 3) with
M =12 generationgcircles, M =16 generationgsquares andM
=20 generationgtriangles. The solid line represents E(28) and

The number of closed branches connected to the root throughe dashed line represents the best fit exponent for the numerical

open branches at generatior-1 is given by N, ;=2L;
—L;.1, making

Niy1=2(1-Pg)(2Pg)". (30)
Note that Eq(29) and, consequently, EG30) is valid only if
the root is open. AiM generations tree with the root open is
identical to a system composed of twM (- 1)-generations
trees with the roots closed. Thus, we divide E20) by two
and increase by one generation. Now,

N;=(1-Pg)(2Pg) . (3D

Thus,

Pe)M—-1

M (2
(N(Pe)= 2 Ni=—55 =3~

(1-Pg). (32
Figure 11 compares E32) with three different realizations
of the numerical model for trees witkl =16, 17, and 18.

We can generalize Eq32) for the case of a tree with a
given coordination numbeZ, replacing Eq.(29) by L;
=[(Z—1)P¢]', and we get

M
[(Z-1)PgM -1
<N(PE)>221 Nizm(l— Pe). (33

Substituting{N(Pg)) from Eq.(33) into Eq.(27), we obtain

P (Z-1)Pe—1

AT .

Finally, substituting Eq(34) into Eqg. (28), we obtain the

simulation withM = 20. (b) Experimental data for the threshold of
1%, scaled withtM = 14 (circles and for the threshold of 8%, scaled
with M =10 (squares The dashed line represents the best fit expo-
nent for the data with the threshold of 1%.

nmax=jldPE/T(PE)%(Z—l)M/M. (35)
0

For largeM, the scaling properties of the integral in Eg8)
can be estimated by the saddle point approximation:Aor
<(Z-1)"M, we have a uniform distribution

II(At)~(Z—1)M~ L, (36)

This equation gives us an interpretation of the plateau region
of the experimental distribution akt. For 1/Z—1)M<At
<1/M, we have a power law decay

[I(At)~(Z—1)"MFTIAL= 27 M, (37

This equation gives us a mean field interpretation of the ex-
ponentB~2 from the experimental distribution aft for
Z=3. The approximations we have used affect only the fi-
nite size correction of3, which is of the order of M.

Our model predicts that the crossover between the power
law regime withB=2 (Z=3) and the plateau of the experi-
mental distribution ofAt scales withM as 1/2!. Using this
prediction, we estimat® from the experimental data &4
~14 for the spike detection threshold of 1% avid~10 for
the threshold of 8%. The two curves for different thresholds

explicit form for the distribution. The normalization constant collapse after scaling them with the corresponding values of

Nmax CaN be calculated as

M [Fig. 12b)].
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FIG. 13. Active surface features and experimental active surface. Value of the maximufa) el peak positiorib), of the active
surface vs the parametéidescribing generation dependefhEe. (2)]. (c) Experimental and predicted active surfaces. Circles with error bars
are the experimental active surfaces obtained from 12 distinct inflations from the collapsed state. The dashed line is the active surface when
a random opening pressure threshold is applied, the solid line is obtained with a small generation degkn@diiceand the dot-dash line

corresponds to a strong generation dependérd@02. In all simulated results, we used a symmetric tree with 15 generations averaged over
1000 realizations.

VI. DISCUSSION position of the peak i®m.,~(1—1/M). In the limit when

Power law behavior is usually interpreted as a fractal o€VerY genera_tion_has the same determini_stic opening pressure
scale-free phenomenon, implying the absence of a charactdfiréshold which is greater than that of its parent, branches
istic scale. Here, we examined the time intervatsbetween  Within the same generation open simultaneously. The corre-
consecutive crackles during lung inflation and find that theSPonding active surface grows in geometric steps with a fac-
distribution of At follows a power law with exponeng  tor of (Z—1) until the last generation opens. When the last
~2. To study the microscopic origins of the scaling behav-generation opens, the size of the active surface drops to zero.
ior, we used a dynamic invasion percolation model of ava-As the distribution of pressure thresholds becomes more and
lanches in a Cayley tre@7]. The exponen of the power more generation dependent, the height and width of the peak
law distribution is robust under different distributions of the monotonically increasetee Fig. 1R With increasingC in
pressure threshold, as well as the asymmetry and coordin&q. (2), the position of the peak of the active surface initially
tion numberZ>2 of the tree structure. For a linear chain shifts towards lower pressures, until the pressure threshold
Z=2, the distribution of time intervaldt is similar to the distributions of the individual generations cease to overlap
distribution of waiting times in a Poisson process of queuingsee Fig. 3. Further increasing’, the peak of the active
and consequently, the exponent of the distributioBis1 surface starts to shift towards higher pressiise® Fig. 13
[57]. An asymmetric tree has some alveoli which are closer to

Power law distributions, however, do not always providethe top of the tree while others are father away. The alveoli
information about the microscopic dynamics of the processwhich are closer to the top are more likely to open at lower
Thus, to explore the microscopic dynamics of the system, weressures than those that are deeper into the[#&k We
introduce the concept of an active surface that consists of theote that the size of the active surface decreases only when
branches that are closed but connected to the root of the trea opening sequence reaches the alveoli. Thus, in an asym-
by an open pathway. Initially, the size of the active surfacemetric tree, the size of the active surface is smaller at the
increases exponentially as the opening of a single branch doeginning of inflation than in a symmetric tree with the same
the active surface addZ (- 1) new branches, increasing the number of branches. However, since an equal number of
size by €—2). However, when an avalanche reaches thelveoli opens at higher pressures, the position and height of
boundary of the tree, the size of the active surface decreasabe peak remain almost the same, but the width of the peak
becoming zero when all branches are open. The maximurdecreasessee Fig. 5.
size of the active surface and the pressure at that point char- For a linear chain, the active surface can at most consist
acterize the dynamics of the opening process. We find that, inf a single branch. With an increasing coordination number
contrast to the distribution aft, the active surface is sensi- (Z>2), the position of the peak remains the sahf,ax
tive to the properties of the tree structure as well as to the=(1—1/M)], while the height increases &,,,<(Z—1)" 1
dynamic mechanisms of the opening process. [see Eq(33)].

For completely random opening pressure thresholds, the With regard to physiological implications, we suggest that
evolution of the active surface is given by E@2). The itis possible to reconstruct the evolution of the active surface

011909-10



PERIMETER GROWTH OF A BRANCHED STRUCTURE. . PHYSICAL REVIEW E 68, 011909 (2003

from experimental data on crackle sounds using the relatioa Cayley tree is mainly due to the branching hierarchical
between the average size of the active surface and the avatructure. From the mean field calculation, we find that de-
age time interval among crackles. For this purpose, we caltectable crackles come from the last 14 generations after the
culate the average time interval between measured crackldisst closed airway in the lobe. The agreement of the model
in a nonoverlapping moving time window and obtain thewith experimental data is consistent with the possibility that
average size of the active surface using &). The active in the 14 generations of the airway tree from which we can
surfaces thus reconstructed are averaged over data from #2tect crackles, the distributions of opening threshold pres-
different inflations. The results, shown in Fig. 13, suggestsures from different generations overlap significantly so as to
that the opening pressure thresholds have a weak generatiaflow avalanchelike opening of airways. Our findings also
dependence in the lung. Additionally, we assumed in thishave a potential clinical application. While the distribution of
study that the speed of the avalanche is infinity, which isAt can be used to estimate the accuracy of crackle sound
reasonable for the range At we investigate here. In previ- detection, the dynamic active surface may provide informa-
ous study, the importance of finite avalanche speed has be¢ion about the generation dependence of pressure thresholds,
investigated9]. When the inflation rate becomes comparablewhich in turn may be characteristic of various lung diseases.
to the avalanche speed, the overlap of avalanches may lead

to new phenomena such as instabilities and negative stiffness ACKNOWLEDGMENT
[29].
We conclude that the slop@ of the distribution ofAt for We thank NSHGrant No. BES-0114538or support.
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