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Abstract
In the gatheredmultiplex systems, nodes inherit a part of their original system’s topological features,
as in theworld economic system, national policies and resource distribution bring industry advantages
and resource advantages to the domestic industry. Although they represent one of the important
original topological features of nodes, the inherited topological features of nodes have not received
sufficient attention and have hardly been analyzed by existing networkmodels. In our research, we
defined the inherited topological features of nodes as ‘cluster-based topological features. To accurately
calculate the cluster-based topological features of nodes inmultiplex networks, wefirst provide a
networkmodel to summarize themultiplex networks into a calculable network of networks (NoN).
Based on our networkmodel, we propose a series of algorithms for calculating industries’ cluster-
based topological features. Our calculating process contains 2 steps: ‘abstracting’ theNoN into one-
layer calculable network; ‘inheriting’ subnetworks’ topological features into the inner nodes. Our
networkmodel and calculation algorithms are applied in a series of theoretical and empirical
multiplex networks. The results not only confirm the realizability of ourmodel but also produce
several interesting findings, themost important of which is that some unremarkable nodes in
multiplex networkmay have a very high contributory value fromNoNperspective.

1. Introduction

The statisticalmechanics of networks, such as topological features and clusters, as one of themost critical issues
in both theoretical and real-world networks, have attractedmuch attention frommany researchers [1–12].
Moreover, calculating the statistical features of nodesmore precisely is one of themain challenges in this
researchfield [3, 13]. Recently, alongwith the development of economics and technology, real-world networks
are becomingmuchmore complex;multiple kinds of independent social and economic networks are connected
and evolve intomultiplex (wheremultiple nodes and edges coexist in one network system) social or economic
networks [14–27]. To achieve the goal of precisely calculating nodes’ statistical features, previous studies
calculated topological features (such as centralities indexes, Page rank, Leader rank) [1, 3], separating processes
(like k-core and k-shell) and h-indexes [5, 28]. Other studies calculated the cluster characteristics based on a
‘community’, which defined communities based on network structures [4, 29]. However, previous studies
insufficiently address themultiplex network environment, which exists widely in social and economic systems.

Under this circumstance, formore precisely calculating the topological features of nodes, we propose
‘cluster-based’ topological features. Cluster-based topological features indicate that within the gathering process
of independent clusters, nodes will inherit a part of their original clusters’ topological features. For example, in
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global economicmultiplex networks, countries contain various types of nodes, such as companies and
industries. In other words, countries will be the original cluster of the industries and companies. Thus,
companies and industries will benefit from their nation’s policies andwill inherit parts of their countries’
development strategies.Moreover, this ‘inheriting from cluster’ phenomenon exists widely in society and
natural systems, such as researchers’ cooperation networks and ants’ cooperation networks. Researchers inherit
ideas and experiences from their clusters, or research groups, just as ants inherit pheromones from their clusters,
or colonies. Due to thewide existence of the ‘inheriting’ phenomenon in real-world systems, precisely
calculating inherited topological features will be helpful in better understanding nodes’ functions and
contributions inmultiplex networks and real-world systems. Therefore, our primary research goal is to quantify
how these clusters’ topological features (such as topological features) are inherited and howmuchnodeswill
inherit from their clusters inmultiplex network environments.

To simulate themultiplex network into a calculable networkmodel, we propose a network of networks
(NoN)model. The basic idea ofNoN is abstracting the clusters or subnetworks (like countries) into nodes, and
simulating the relationships between clusters as edges, as shown infigure 1. Based on this approach, the
multiplex network can be abstracted into a calculable one-layer network to calculate the topological features of
each cluster. Asmembers of the cluster, the topological features will be inherited to inner nodes based on their
contributions. This allocation process also recovers themissing information in the abstracting process from
multiplex networks to one-layer networks. Based on the ‘abstracting-allocating’ calculation process, cluster-
based statistic features (such as cluster-based topological features) of each node in themultiplex network can be
effectively calculated.

In this article, we provide two calculation processes for calculating cluster-based statistic features, fromboth
theoretical andmathematical approaches: an abstracting process (abstractingmultiplex network into a one-
layer network, calculating the statistical features of each cluster) and an allocating process (allocating statistical
features of each cluster into the cluster’s inner nodes based on the nodes’ contribution). To verify the realizability
and computability of ourmodel, we applied our calculating algorithm infive types of theoreticalNoN and
compared the results with a traditional one-layer network analysismodel.Moreover, for the empirical analysis
of ourmodel, we calculated the cluster-based topological features of each industry based on the global input–
output table and compared the results with the theoretical NoN.Due to the interactions within each country is
different with the interactions between different countries, we choose this typical NoNas our empirical case
study.

2.Methods

2.1. Calculation procedure of nodes’ topological properties in relational social and economic systems
Based on the basic idea of simulatingNoN, the theoretical calculation processes have four steps.

1. Simulatingmultiplex networks intoNoN.

2. Calculating edges’weights in theNoN.

3. Calculating topology indexes of the subnetwork in theNoN.

4.Defining the allocation process of each index into subnetworks.

Figure 1.The basic idea of constructingNoN, abstracting subnetworks into nodes, and abstracting intersubnetwork relationships to
edges inNoN.
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Our approach not only extends some single-layer networkmetrics toNoN, but also computes topological
features that will be inherited from the subnetworks. The topological features inherited from the subnetworks
can often affect the development of the node to a large extent. For example, in the collaboration network of
scientists, different research organizations and academic schools have formed several relatively close ‘academic
collaboration subnetworks’. Scholars located in different subnetworks continue to learn and inherit the
academic resources, academic ideas and experience of other scholars in the subnetworks. Themain research goal
of ourmodel is to calculate for these inherited topological features. In the following sections, we describe these
steps in detail and provide themathematical formulation of each step.

2.2. Simulatingmultiplex network intoNoN
In this section, we provide the construction definition and algorithmof theNoNmodel. Thismodel will be
helpful in abstracting the relationships amongmultiple real-world social groups ormultiplex social systems into
a calculable, integrated networkmodel.

In themathematical approach, the algorithm for theNoN construction can be described inmatrix
manipulations. Thematrix of all large networks can be described as:
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represents thematrix of a subnetwork, and lHJ K represents the relationships’matrix point out

fromnetwork J to networkK. Based on this, we can transform this large networkmatrix into theNoNmatrix.
The subnetworks are abstracted into nodes and thematrices of internetwork relationshipsmerge into edges.
Thus, thematrix ofNoN can be described as:
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where lwj k represents theweight of the edge between node j (which is the subnetwork J in themultiplex
network) and node k (which is the subnetworkK inmultiplex network). Based on thematrix ofNoN, the
topological properties of each node (subnetwork) can be calculated.

2.3. The calculation algorithmof edges’weights inNoN
The edge between nodes j and k inNoN ismerged by the intersubnetwork edges between subnetworks J andK,
as shown infigure 2. Briefly, the edges inNoN represent the interactions among different subnetworks. The
weights of these edgesmeasure the tightness or information flow among different clusters. Thus, theweight of
the edge between nodes j and node k should contain all the connecting ability from the internetwork edges
between subnetworks J andK.

In a relational network, theweights of internetwork relationships usually represent the ‘interaction
frequency,’ rather than the ‘ability’. Like in social networks, the propagation path of a piece of information does
not necessarily follow the highest weighted edges, but follows the shortest pathway. Effective information is
usually thefirst received information. Therefore, we introduce an index to calculate the ‘ability’ of internetwork
relational edges: internetwork betweenness centrality (BC) of edges.
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where BClk
edge represents the internetwork BCof the edge between nodes l and k, gij represents all of the shortest

pathways between nodes i and j, and ( )g l k,ij represents the shortest pathways that pass through edge (l, k).We
believe that the shortest pathways can reflect information transmission channels. Thus, internetwork BC can
reflect the transmission topological features of internetwork edges. A larger internetwork BCof one edgemeans
thatmore informationwill be transmitted through the associated edge. Based on this index, wemultiply the
edge’s internetwork BCby the edge’s weight to represent the connecting ability of the edge. Therefore, the
weights of edges inNoN can be calculate based on the formula:

å= ´
Î
Î
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where wlk
NoRNs represents theweight of the edge between nodes l and k in theNoN, respectively simulating

networks L andK. wlk represents theweight of edge between nodes l and k in the original network. Based on the
weights of the edges in theNoN, the networkmatrix ofNoN can be calculated as shownby formula (2).

2.4. Topology indexes of clusters
In this section, several essential indexes of calculating the topological features of nodes inNoNare provided
using both theoretical andmathematical approaches. These indexes include In-degree, Out-degree, In-Strength,
Out-strength, BC and closeness centrality (CC), respectively calculated by the following formulas.
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where ID ,r OD ,r IS ,r OS ,r BCr and CCr respectively represents the In-Degree, Out-degree, In-Strength, Out-
Strength, BC andCCof node r in theNoN; air represents the connecting conditionwhich is the element of the
adjacencymatrix; wir represents theweights of the edges connectedwith node r; dri represents the distance
between nodes r and i; gpq represents all of the shortest pathways between nodes p and q; ( )g rpq represents the
shortest pathways that pass through node r; and n represents as the total number of nodes in theNoN.

These indexes calculate three kinds of information transmission ‘ability’ of the nodes inNoN: information
impacting ability (Degree and Strength), information intervening ability (BC), and information anti-intervening
ability (CC). A higher Strength indicates a higher frequency of information exchange and awider scope of
information spreading, which leads to a broader and stronger impacting ability. A higher BCmeans that the

Figure 2.Themerging process of intersubnetwork relationships into edges inNoN.
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node passes throughmore transmission channels of information, and the node can also intervenemore in the
information transmission process. A higher CCmeans that the spreading of informationwill pass through fewer
nodes, intervening less with the transmission process. Based on these indexes, we can calculate the essential
characteristics of the small primary network for thewhole system.Our next step is to inherit these topological
features into the inner nodes of each subnetwork, to achieve themain purpose of this research: calculating the
topological properties of individuals inNoN.

2.5. Allocating algorithms of each index
Based on the topological indexes, three topological features of each subnetwork in thewhole system can be
calculated.However, this abstracting process loses some information inside subnetworks: the topological
features of the nodes are unable to be calculated. In this section, we provide an algorithm for ‘allocating’
subnetworks’ topological features into inside nodes. Because the different indexes reflect various information
transmission topological features, the allocating algorithmof each indexwill be different.

Degree and Strength represents the influencing scope and intensity of nodes,mainly reflecting the
information diffusibility of the entire subnetwork. Inside the subnetwork, not only intercluster connecting
nodes (which have connections with other subnetworks) contribute the outward-diffusing channels of the entire
group but also the internal individuals contribute information sources and information processing to the
subnetwork. Thus, the allocation ofDegree and Strength should evaluate the information dominance of each
node and its neighbors. To achieve this purpose, we propose an index called self-eigenvector-centrality (SEC)
which can be described as follows:

l=K K ( )Jx x , 8
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where SECJ
p represents the SECof node p in network J, Kx represents themaximum eigenvector of the network

matrix, and xq and xp respectively represent the eigenvalues of nodes q and p from themaximumeigenvector Kx .
Further, l represents the eigenvalue of thematrix. Regarding the SEC as the evaluation index of the contribution
on information diffusibility, theDegree and Strength of the group can be inherited to everyone in the group. The
A-ID (inherited In-Degree), A-OD (inheritedOut-Degree), A-IS(inherited In-Strength) andA-OS (inherited
Out-Strength) of each node is described as follows:

=
å

´ Î Î ( )J Jp jAID
SEC

SEC
ID , , , 10

J

J Jp
p

j

=
å

´ Î Î ( )J Jp jAOD
SEC

SEC
OD , , , 11

J

J Jp
p

j

=
å

´ Î Î ( )J Jp jAIS
SEC

SEC
IS , , , 12

J

J Jp
p

j

=
å

´ Î Î ( )J Jp jAOS
SEC

SEC
OS , , , 13

J

J Jp
p

j

Where AID ,p AOD ,p AIS ,p and AOSp respectively represents theA-ID, A-OD,A-IS andA-OS, åSECJ
j

represents the sumof the SECof all nodes in network J, SJ is the strength of network J, and ASp reflects the
information diffusibility of each individual on thewhole system.

BC andCC represent the betweenness capability and centered degree of information transmission,mainly
reflecting the influence on information transmitting channels, or in otherwords, the influence on the shortest
pathways.We believe information is transmitted through the shortest pathways not only inNoNbut also inside
each small group. Thus, evaluating nodes’ contributions of BC andCC is based on their influencing ability on
shortest pathways. TheA-BC (inherited betweenness centrality) andA-CC (inherited closeness centrality) of the
nodes in small groups can be respectively described as:
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where ABCJ
p and ACCJ

p respectively represent theA-BC andA-CCof node p in network J, BCJ
p and CCJ

p
respectively represent the BC andCCof node p in network J, and BCJ and CCJ respectively represent the BC and
CCof network J in theNoN.

Based on indexes of A-Str, A-BC andA-CC, the topological centrality of nodes can be calculated in an
agglomerate social economic fromnetwork of network perspective. To verify the effectiveness and validity of
ourmodel, we set upfive groups of theoretical NoNmodels containing scale-free networks, small-world
networks and randomnetworks. Additionally, in order to highlight specific information calculated by our
model, we analyzed topological centralities of nodes in theoreticalmodels from a traditional network analyzing
perspective, in contrast to the experiments. All results are analyzed and discussed in the following section

3. Results

3.1. Theoretical results
To verify the effectiveness and validity, as well as to determine general theoretical conclusions of ourmodel, we
apply ourmodel tofive groups of theoretical NoN: SF–SF (scale-free and scale-free), SF–SW (scale-free and
small-world), SW–SF (small-world and scale-free), SW–SW (small-world and small-world) andRD–RD
(random and random). SF–SF contains 100 scale-free networks connected in scale-free characteristics. SF–SW
contains 100 scale-free networks connected in small-world characteristics. SW–SF contains 100 small-world
networks connected in scale-free characteristics. SW–SWcontains 100 small-world networks connected in
small-world characteristics. RD–RDcontains 100 randomnetworks connected randomly. The schematic
figures of theseNoNmodels are shown infigure 3. Based on these theoretical NoNmodels, we calculate the
influence capability, betweenness capability and centered degree of nodes based on the indexes of A-S, A-BC,
andA-CC. The distributions of these indexes are shown infigure 4.

The distributions of A-Str, A-BC, andA-CCperformed differently, whichmeans the influence capability (A-
Str), betweenness capability (A-BC) and centered degree (A-CC) of all nodes are distributed differently in
differentNoN.Overall, the distributions of betweenness capability have a higher scale-free characteristic
(figure 4(A)), whereas the centered degree is distributed randomly (figure 4(C)). The distribution of the SW–SW
networkmodel is similar to the RD–RDmodel, whichmeans that the randomness of SW–SW is relatively strong
(almost as strong as the randomnetwork). To compare the distribution of eachNoN, all curves arefittedwith a
mathematical distribution.

Thefitting results are listed in table 1. Based on the results of themathematical fitting, almost all distribution
curves (except SF–SF) of A-Str andA-CC fit a normal distribution. The distribution curves of A-BC for theNoN,
with a power-law character (SF–SF, SF–SW, and SW–SF),fit a power-law distribution. Additionally, we also
calculate theMode andDivergence of the normal distribution curves. Themode reflects themajority value (A-
Str, A-BC orA-CC), where a highermode indicates a lower concentration (fewer nodes have high value).
Divergence reflects the randomization of the distribution, where higher divergence indicates higher
randomization. The highestmode and the highest divergence of the distribution inA-Str, A-BC, andA-CC are
the distributions of RD–RD and SW–SW (SW–SF once). This indicates that the influence capability and

Figure 3.Construction schematic of the fourNoNmodels. Red networks and green networks respectively represent the scale-free
networks and small-world networks. The red and green links represent the connecting type of the networks, where red and green
coloration respectively represents the scale-free character and small-world character.
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intervening/centered degree of RD–RDand SW–SWhave low concentration and high randomness. The
distribution result of theNoN is consistent with the distribution of a one-layer network topological feature
calculation (SF’s high concentration). However, compared to the topological feature of each node in the one-
layer network, we achieve comparable results, which are shown infigure 5.

Based on the compared distributions shown infigure 5, the distributions of the threeNoN indexes (A-Str,
A-BC andA-CC) are similar to those of the one-layer network indexes (strength, BC andCC).Moreover, the
values (the topological features) ofmost nodes in theNoN and one-layer network performdifferently, especially
in the SF–SF and SF–SWnetworks. From the comparison results shown infigure 5, the nodes inmost figures are
not distributed around line =y x.Thismeans that, in thesefigures (all ‘A-BC andBC’ figures and all ‘A-Str and
Strength’figures infigure 5), most highA-Str or A-BCnodes usually have lower strength or BC. The
distributions of ‘A-CC andCC’ performdifferently, wheremost nodes in SF–SF and SF–SWare distributed
around line =y x; nodes in SW–SF and SW–SWare distributed randomly around a circle.

Combinedwith previous results, the distributions of A-CC and SW–SWhave relatively strong randomness,
and the compared distributions of topological centralities and inherited topological centralities have the
following characteristics: (1)The compared distribution of SF–SWand SW–SF network is relatively high
negative correlated. (2) In the highly randomSW–SW, the correlation of the two indicators ismore random,
whichmeanswhen the randomness increases, the two kinds of indicators becomemore corelated.

3.2. Case study—The global input–outputNoN
To achieve the goal of examining our theoreticalmodel andmethod and calculating the highest contribution
industries, we construct a global input–output network of a network and calculate the contribution topological
features (BC,CC, degree, and strength) of each industry. However, the high-contributory industries calculated
by statistical data and the traditional one-layer complex network are exterior, i.e. the fastest developed industries
or greatest export industries. These results ignored implied contributory industries, i.e. supporting industries
and educational industries. The contributions of Public Administration and Education,Health andOther
Services industries, due to their low statistical data cannot be ignored. Under this circumstance, we applied our

Figure 4.The distribution and fitting curves of all three inherited centralities (A-BC, A-Str, A-CC) in thefiveNoNmodels (SF–SF, SF–
SW, SW–SF, SW–SWandRD–RD).

Table 1. Fitting results and fitting parameters (mode and divergence) of the curves shown infigure 4.

Fitting result R2 (Power-law) R2 (Normal) Mode Divergence

A-BC SF–SF Power-law 0.795 0.233 N/A N/A
SF–SW Power-law 0.918 0.349 N/A N/A
SW–SF Power-law 0.87 0.298 N/A N/A
SW–SW Normal 0.577 0.8 0.0964 0.0108
RD–RD Normal 0.6 0.851 0.1276 0.0362

A-Str SF–SF Power-law 0.99 0.349 N/A N/A
SF–SW Normal 0.261 0.947 0.0791 0.0383
SW–SF Normal 0.3 0.962 0.0929 0.0526
SW–SW Normal 0.525 0.959 0.2899 0.1309
RD–RD Normal 0.556 0.953 0.2664 0.1311

A-CC SF–SF Normal 0.14 0.941 0.5327 0.0717
SF–SW Normal 0.336 0.94 0.3919 0.1016
SW–SF Normal 0.431 0.996 0.607 0.1526
SW–SW Normal 0.359 0.996 0.4217 0.1256
RD–RD Normal 0.23 0.999 0.7471 0.0736
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model and calculating algorithm to the global input–output network of the network to calculate the
contributory topological features of each industry and determine themost important contributory industries.

Wefirst built the global input–output network of the network based on themethod described in the
‘Simulatingmultiplex network intoNoN’ section. Groups of industries fromone country formbasic
subnetworks. Then, we calculated the A-BC, A-CC, A-ID (inherited In-degree), A-OD (inheritedOut-degree),
A-IS (inherited In-strength) andA-OS (inheritedOut-strength) of each industry. TheA-ID, A-OD,A-IS and
A-OSmainly represent the contributory diffusion capabilities of industries. A-BC andA-CCmainly reflect the
contributory intervening and contributory centered degree of industries. The results of the distribution of
industries’ contributory topological features are shown infigure 6.

Based on the distribution curves shown infigure 6, the distribution of industries’ contributory topological
features is very similar to the results of the ‘SF–SF’NoN in the theoretical experiments (which are shown in
figure 4). The contributory betweenness capability (A-BC) of industries performed high in scale-free properties,
whereas the contributory centered degree (A-CC) performed high in randomproperties, which is similar to the
theoretical results. The contributory diffusion capability (A-ID, A-OD, A-IS andA-OS) also performed high in
scale-free properties. These distribution results show that the contributory topological features of global
industries have relatively high scale-free properties, and this high centralizationmakes the global industrial
systemmore fragile. The comparison results of global input–output networks are similar with theoretical
networks, which is shown infigure 7. The results of global input–output networks are highly negative correlated
with one-layer input–output networks.

To calculate themost intervening industries of the system,we also calculate the highest contribution
industries for targetmonitoring and target controlling. The results are shown in S-table 1. The highest
contribution industries of the betweenness capability are Financial, Retail, Recycling and surprisingly,
Education andHealth and Public Administration. Thismeans that some support industries domake a large
contribution to the betweenness capability. Due to the high randomness of the distribution of centered degree,
the results are irregular, and the highest contribution industries aremainly from relatively small and
underdeveloped countries.

The results of the highest contribution industries of diffusion capacity aremuchmore regular.Most
industries are from relatively large or developed countries, such asGermany, theUnited States, Japan, China,
Belgium, France, Spain, and theUnited Kingdom.However, the highest contribution industries in these
countries are not Financial andManufacturing. Education,Health and Public Administration contributemore
than some of themajor industries. Combinedwith the results of the highest contribution industries of

Figure 5.Compared distributions with correlation coefficientR2 of the three inherited centralities (A-BC, A-Str andA-CC) and three
one-layer topological centralities (BC, strength andCC) in the fourNoNmodels (SF–SF, SF–SW, SW–SF and SW–SW).
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betweenness capability, we discover that the contribution of supporting industries (such as Education,Health,
Public Administration) ismore than somemajor industries (such asManufacturing and Financial). In this
circumstance, supporting industriesmay bemore important thanmajor industries.

Figure 6.The distribution of industries’ contributory topological features, including ‘inherited BC’, ‘inherited CC’, ‘inherited In-
degree’, ‘inheritedOut-degree’, ‘inherited In-strength’ and ‘inheritedOut-strength’ in the years 2000, 2003, 2006, 2009, 2012 and
2015.

Figure 7.Compared distributions of the In-Degree, In-Strength, Out-Degree andOut-Strength in the global input–outputNoN and
global input–output one-layer network in 2015.
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4.Discussion

To achieve the goal of calculating topological features with original cluster characteristics in amultiplex network
environment, we provide a calculatingmodel from the perspective of ‘NoN (network of networks)’. The
calculation process of the calculationmodel contains four steps: (1)NoNconstruction; (2)weight calculations of
edges; (3) definition of the topology indexes of the subnetwork in theNoN; and (4) defining the allocation
process of each index into subnetworks. Based on the calculation process, we can calculate three inherited
topological centralities including A-Str (inherited strength), A-BC (inherited betweenness centrality) andA-CC
(inherited closeness centrality). The three inherited topological centralities respectively represent the influence
capability (A-Str), betweenness capability (A-BC) and centered degree (A-CC) of the nodes in theNoN. To verify
the effectiveness and validity and develop general theoretical conclusions for ourmodel, we apply themodel in a
series of theoreticalNoN constructed by SF (scale-free)networks and SW (small-world)networks and the
empirical global input–output network of the network.

Based on the theoretical experiments, we achieve the following conclusions: (1)Ourmodel is achievable and
calculable in theoreticalNoN. The results of three new topological centralities are valid and the results show a
certainmathematical distribution. (2)The concentration of nodeA-BC is higher, and the randomness of A-CC
is higher. (3)A scale-free character promotes a stronger concentration of theNoN, and a small-world character
causes strong randomness. (4)Under the circumstances of high concentration, the distributions of inherited
topological centralities (A-BC andA-Str) and distributions of one-layer network topological centralities are
negatively correlated. As the randomness increases, the distributions of inherited topological centralities and
one-layer topological centralities are positively correlated.

The results of the empirical application verified that ourmodel is not only achievable and calculable in real-
world systems; it also produced excitingfindings regarding the highest contribution industries. The highest
contribution industries are not onlymajor industries (such as the Financial andManufacturing); some support
industries (such as Education,Health and Public administration) also contribute substantially. From the
contribution perspective, these supporting industries are evenmore critical thanmajor industries. To be
noticed, the computational complexity will increase a lot when this calculatingmethod is applied in huge
networks, especially detecting shortest pathways. Thus, when apply ourmodel in huge networks, we useK-path
centrality (both for nodes and edges) instead of shortest pathway related centralities in huge real-world networks
[30–33].

To extend the application scope of our calculationmodel, our next studywill apply themodel to other real-
world social and economic systems. To achievemore accurate and abundant results,more inherited topological
centralities will be discovered in future research.
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