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We present a method to obtain the scaling properties for multifractal shapes and distributions ob-
tained from affine transformations. Our analysis defines two scaling exponents F(B) and F(B); the
former relates to geometry, while the latter is associated with the distribution of gradients for net-
works in Laplacian fields. We determine the exact relation between F(B8) and F(B). We argue for
electrical networks that more information on scaling behavior may be obtained by only taking into
account the maximal current leaving a node. Our picture suggests a new route to characterize the

scaling properties of electrical networks in general.

The subject of affine transformations has recently re-
ceived renewed interest among physicists. For example,
in a far-reaching development, Barnsley! has shown that
an arbitrary image can be “encoded” by a set of affine
transformations. This encoding is remarkably efficient in
the sense that orders of magnitude fewer “bits” are re-
quired to specify the affine transformations than to speci-
fy the original image. Apart from a myriad of obvious
applications, this development suggests ways in which
neural networks may encode information. Affine trans-
formations also arise in other problems of recent interest
to physicists, such as dynamical systems.?

Our purpose here is to elucidate the scaling properties
of systems described by affine transformations.” We be-
gin by considering a general set of contractive® affine
transformations of the form

W(x)=M;x+c;, i=12,...,a (1)

where M, is a matrix independent of x and c; is a transla-
tion vector. Without loss of generality we take below
a=2. The matrices M; define a tree structure (Fig. 1).
At level n there are 2" vertices, which we index by the in-
tegers k =1,2,...,2". The “initial condition” is given
by a d-dimensional vector A, and at level n each ver-
tex of the tree is associated with a vector
A, =(8; 1,842 --.,8;4). The length of A, is denoted
Ak.

A fractal image is formed as follows. One starts from
the point x=(0,0, ...,0) and iterates by using at every
step one of the transformations W,."> In the limit of
infinitely many iterations the points obtained form the
fractal image. Consider next the vector A=c,—c, as ini-
tial conditions for the corresponding matrix tree. For ex-
ample, consider the system after three iterations. The
vector A, =M M,A is the vector between the points
W, W,c, and W,W,c,, where ¢,=W,0 and c,=W,0.
Therefore these two points are covered by a stick of
length A,. In general, the approximation to the fractal
image created after n+1 iterations is covered by the
sticks of lengths A, (k=1,...,2"). Note that the ap-
proximation to the fractal image after n+ 1 iterations are
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covered by sticks obtained at the nth level of the matrix
tree.
We next use this covering to extract the scaling proper-
ties. The scaling is described in terms of the moments
2’!
ZB)= 3 (AP (2a)
k=1
This defines a hierarchy of exponents F(f3),
Z(B) <2 "FB) (2b)

In general, the scaling behavior can be found from the
partition function®T(¢q,7)= 3,pZ/I{, where p, is the
fraction of points covered by /;, and where 7(q) is defined
by I'[g,7(g)]=1. For our covering we have [, =A,.
Since every stick contains two points, all p, are equal,
Pr=2"". Thus we have the correspondence g<>—F(S)
and 7(q)<>—p. In particular, the value of B at which
F(B)=0 is the Hausdorff dimension D of the fractal im-
age. Here D is defined through N «< ¢ 2, where N is the
total number of boxes of edge ¢ in a covering. If [, =¢
and g =0, then I'(0,7(0))= 3¥_, £ " V=N¢ 770 is set
equal to 1. Hence D =—17(0) and F(B)=0 for B=D.

The framework developed above can be used for
describing not only the geometrical scaling properties of a

FIG. 1. Tree structure from which all scaling properties can
be derived for self-affine systems. M, (k=1,...,a) are ma-
trices mapping vectors at one level to a set of vectors at the next
level. Here a is taken to be 2.
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fractal object, but also the dynamical scaling properties
when placing a connected fractal set in a Laplacian field.
The corresponding distribution of gradients can have mo-
ments that exhibit a whole hierarchy of exponents, even
when the geometry of the fractal set is self-similar. To be
specific, suppose we consider a self-similar fractal net-
work that consists of a copies of itself. For this we solve
the Laplace equation with boundary conditions given by
the potentials at a number d+ 1 of nodes, or equivalently,
by d gradients (voltage drops) between these nodes.
From these gradients, the corresponding d gradients in
the ith copy (i =1,2,...,a) can be obtained through a
d-dimensional matrix M; (since the Laplace equation is
linear).” The scaling properties of the distribution of gra-
dients are determined by the matrix tree defined by the
M;’s. Based on the considerations in the previous para-
graph we notice that the distribution of gradients can be
visualized geometrically, choosing a set of translational
vectors c; (Fig. 2).

Although the scaling structure for the distribution of
gradients from the formulation above is naturally given
by F(B),® the quantities usually considered’® are the mo-
ments

N

~ " d

Z(B)=
k

|5k,[|ﬂ ’ (3a)
11=1

I

based on the components 3, , (a is taken to be 2). Equa-
tion (3a) defines a set of exponents F(f3),

Z(B)x2~"FB (3b)

One observes that while F(B) is independent of initial
conditions, this is in general not true for F(B) when B is
negative. Some of the matrices will usually have negative
elements, and zero components can therefore occur for
particular choices of initial vector A. The number of
such “critical” vectors A which lead to vectors A, with a
zero component will typically increase with the level of
construction.

One might think that if the critical vectors A are not
considered, then the full scaling structure can be obtained
from F(B). We shall show below that this is not so. For
this purpose, we find the relation between F(3) and F(8).
We begin by associating with each path j through the
matrix tree'® (Fig. 1) an energy'! E;, defined by

Ayj<a " 4)

Let further M(E)dE be the number of energies E j be-
tween E and E +dE. In the limit n — o, this defines an
entropy S (E) by the relation

184,112+ 18, 512 872=[(18, 1B B+ (8, ,|P)*/P1P/2
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FIG. 2. Geometrical visualization of the voltage-drop distri-
bution in the Sierpinski-gasket resistor network. The point (0,0)
is mapped by iterative use of three affine transformations
W.(x)=M;x+c; (i=1,2,3) as explained in the text. The ma-
trices are (Ref. 7) M, =1(_} ), M,=1(} }),and M; =13 .
The translational vectors was taken to be ¢,=(1,0), ¢,=(0,0),
and c;=(0,1).

ME)xg"S® (5)

From (4) and (5), the partition function (2a) can be ex-
pressed as an integral on E. The integrand g ~"[FE —S(E]
is maximal for that value of E satisfying

B=S'(E) . (6a)
Hence F(B) is the Legendre transform of S (E),
F(B)=BE—S(E) . (6b)

In order to relate F(B) and F(B), we study separately
the two cases f>0 and 8 <0; for =0, (3a) and (3b) im-
ply that F(0)=F(0)=—1. For the sake of simplicity we
take below d =2 We emphasize, however, that our re-
sults extend to any higher dimension. For >0,

181,118+ 184, 21P= (18, 1121272+ (18 ,|2)P72
S(|8k,1|2+ |8k,2l2)ﬁ/2
+ (184 112+ 18, 5|28
=2(]8; 117+ 18, 511572, 7
which by (3a) and (3b) yields
Z(B)<2Z(p) . (8)

To obtain a second bound, we note that

S84, 1P+ 184 5|BY B+ (18, 1 1P+ 18, ,|P)27B1P72
=[2(18y, 118 +18,, /P12 =25"2(|5, 1P+ 18, ,1P) . )

Hence

Z(B)<2PZ(B) .

(10)
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Since the bounds of (8) and (10) differ by a constant, the exponents are exactly the same,

F(B)=F(B), B=0.
For B <0 we first note that

(11)

[min(|8; ,[,18; 1) 1P=max(|8; 15,18, ,1%) <18, ;1P +8, ,|°
<2[max(|8, 15,18, ,/#)1=2[min(|8, ,[,18; .11, (12)

so that F(B) can be obtained using the smaller of the
components 8, ; and 8, ,. Next, we find the Legendre
transform S(E) of F(B). This is given by the number
ME)E «a™'BdE of energies E; between E and
E +dE, where E is defined by the behav1or of the small-
er vector components,
min(|8 1,18, <a "I . (13)
From (4) and (13) we notice that if the phase 8 of
(84,1,8y,2) is sufficiently close to an integer times 7/2,
then E; j can be large even when E; is small. Thus
N(E)dE not only includes the number of energies E; be-
tween E and E +dE, but also the number of energles E;
below E for which the associated vectors V, ;) have a
value of E i between E and E +dE. To be more concrete,
let g,(6)d O N E)dE denote the number of vectors with
phase between 6 and 6+d 6 and energy E; between E and
E+dE. Then the number J(E,E)dEdE of vectors
(84,1,0k,) associated with an energy E; in the range
(E, E+dﬁ) and E in the range (E,E +dE) is (Fig. 3)

J(E,E)dE dE= 2 g5(pm/2)86(E —E)M(E)dE dE |
p=0
(14a)
where
80(E—E)=2q"E-E) (14b)

FIG. 3. Contributions to S(E) from £ shown schematically.
The tips of the vectors (8, ;,8,,,) with associated energy E; =£
have a phase distribution gz(6) along the circle shown. Howev-
er, the vectors with tips on the solid sections of the circle have
correspondingly E j=E. The number of these vectors is given
by the integrand in (14a).

f

Now, ME)= [, J(E,E)dE. Substituting (5) and
(14b) in gl4a) yields an integrand containing the factor
a"ISEV+E—E] "4 evaluate M(E) and thereby find S(E)
we use steepest descent, distinguishing carefully the two
cases E>E_ and E <E_, where E, denotes the energy at
which S(E)+E is maximal, i.e., at which S'(E)+1=0.
Assuming that gz (60) is well deﬁned, nonzero, and bound-
ed at pw/2, we have

gy [SEITEE i E>E,
E)=s8) fE<E, . (15

Equation (15) provides a relation between S and S. Fi-
nally, we obtain a relation between F and F, using (6). (i)
For E<E,, S(E)=S(E), so the free energies F(B) and
F(pB) are the same for every 2. =S'(E,)=—1. (ii) For
E >E,, S'(E)=—1, so the Legendre transform of S(E)
is just a constant F(B,); hence all the scaling properties
given by S (E) above E=E, are lost. A phase transition
occurs at B, where the dominating terms in the partition
function Z(B) change abruptly. Our analysis shows that
F(B) and F(B) separate at B= B.= —1, below which F(8)
is linear with the slope E_,, equal to the upper bound on
the energles The phase transition also predicts a finite
entropy

S(E,,,)=S(E,)+E,—E,_,,=|F(—1)|—E_, (16

as B— — 0.

Analogous to the result above that F(B) can be found
using the smaller components, we notice that F(f3) can be
obtained using the larger components. This follows since

[max(|8k’1|,|8k,2|)]25 |8k,1|2+ |8k,2i2
<2[max(|8; |,18,,71*. (17)

Then, by raising all expressions to the power B/2, we
have for B positive

[max(|8, 1,18, ,1) 1P < AF <282 [max(|3, ,|,18,,1)1° .

(18)

For B negative the inequalities are reversed. This result
gives a strong suggestion that for general networks more
information on the scaling behavior may be obtained by
only taking the maximal current leaving (or entering) a
node into account.

In conclusion, we have developed a new framework
from which the scaling properties of systems described by
affine transformations can be found. In particular, we
have presented a novel view for characterizing networks
in Laplacian fields. For a class of networks, we find that
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the “sensitivity to initial conditions” for 8<0 and the
phase transition at B= —1 are universal results. In order
to avoid the problem of scaling for negative moments of
the gradient distribution, our picture suggests in general
that only the maximal gradient at each node should be
considered. However, to obtain full information of the
scaling structure, one must perceive the underlying set of
affine transformations.

How broad is the universality class described by
B.=—1?7 As shown here, it certainly contains every net-
work whose gradient distribution is described by a finite
number of (nontrivial) affine transformations. Random

5293

networks, however, do not meet this restriction. Never-
theless, for random networks approximations to the gra-
dient distribution may be found similar to Barnsley’s ap-
proximations to chaotic fractals. How well such approxi-
mations describe the scaling properties remains to be
shown in both cases.
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