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We address the problem of diffusion and reaction in porous catalysts subjected to percolation disorder. The
results with an idealized pore network indicate that the fractal characteristics of the void space can have a
remarkable influence on the transport and reactive properties of the system. Within a specific range of length
scales, we observe scaling behavior relating the catalytic effectiveness of the network and the diffusion-
reaction ratio J̄N}(D/K)1/dR. In addition, the exponent dR is consistently in the range dw,dR,dw8 , where
dw is the two-dimensional random walk exponent on the incipient infinite cluster and dw8 is the corresponding
diffusion exponent which includes all clusters of the system at the percolation threshold. Moreover, in contrast
with diffusion under ‘‘inert’’ conditions, where the ‘‘dangling’’ bonds in the percolating cluster do not play
any role in transport, these elements become active zones due to the reaction mechanism. We also outline some
specific guidelines to demonstrate the relevance of these results in the context of design and characterization
problems in heterogeneous catalysis. @S1063-651X~97!10801-7#

PACS number~s!: 47.55,Mh, 05.40.1j

I. INTRODUCTION

The development of modeling techniques for the descrip-
tion of transport phenomena through the interstitial void
space of disordered porous catalysts represents a genuine
challenge, due to inherent limitations of traditional models
which cannot explicitly account for topological and morpho-
logical characteristics of real porous media @1#. The classical
approach to model diffusion and reaction in porous catalysts
is to consider the catalyst particle as a homogeneous system
where reagents and products can freely diffuse and react ac-
cording to a given effective transport coefficient and an in-
trinsic reaction mechanism. Under steady-state conditions,
this situation can be mathematically formulated as

Deff¹
2C1R50, ~1!

where C is the concentration of the reacting species within
the catalyst, Deff its effective diffusivity, and R represents
the intrinsic kinetics, expressing the local rate of creation or
annihilation per unit volume of the species one desires to
trace in the system.

Recently, it became clear that the classical diffusion for-
malism, which is valid for Euclidean geometries, cannot be
used to provide a macroscopic description of transport phe-
nomena in many disordered materials. In the case of porous
media, the breakdown of this conventional transport theory
can be clearly understood as a consequence of the intrinsic
structural heterogeneity of the complex void space geometry,
causing significant modifications in the diffusional character-
istics of the system. Generally speaking, the departure from
the classical behavior usually occurs in the form of a subdif-
fusive regime which has been extensively investigated @1–4#.
The mathematical concept of fractals and the use of percola-
tion models as an idealized description for disordered media
turned out to be fundamental ingredients to analyze and pre-

dict theoretical properties of anomalously diffusive systems
of transport @3,5–10#. There are a number of experimental
works showing strong evidence that, within some limited
range of length scales, many porous catalysts can be consid-
ered as realizations of fractal morphologies @11#. Much less
effort has been dedicated to the study of diffusion and reac-
tion in fractal geometries, and its consequences on the reac-
tive properties of porous catalysts @12–16#. However, it is
not easy to transpose and systematically apply fractal con-
cepts in order to solve problems in catalysis.

An important issue in the design of most catalytic reactors
is the choice of the size of the catalyst pellet. Diffusion is
normally considered to be a deleterious mechanism because
it might restrict the transport of reagent into the deepest re-
gions of the pellet, reducing the overall reactivity of the
available active surface area. Under these circumstances, the
smallest pellet would be the preferred material. On the other
hand, it is well known that small particles produce ‘‘tight’’
packings, which require a large consumption of energy to
pump the reacting species through the extraparticle void
space in a fixed bed reactor. Thus, there is an important
trade-off between catalyst efficiency and energy consump-
tion. The problem could be better analyzed if we had a more
realistic model for the structure and phenomenology of the
diffusion-reaction system, but few attempts have been made
to develop a coherent framework where this problem could
be properly examined. Sahimi applied the network of pores
model to simulate the effectiveness of an idealized catalyst
under different diffusion-reaction conditions @17#. The re-
sults with a disordered and fully occupied lattice show a
marked contrast when compared with the classical descrip-
tion, but no reference is made relating the structural features
of the pore space and its transport properties.

Just above the critical point, the incipient infinite percola-
tion cluster is an example of a random fractal that can be
used as a conceptual model for real pore catalysts ~Fig. 1!.
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One advantage of using the percolating structure as a model
of porous media is the large amount of research work per-
formed to characterize such morphology, and a comprehen-
sive set of precisely calculated critical exponents is available
to describe its fractal features. Our main objective here is to
investigate the effects of structural self-similarity upon the
catalytic effectiveness of percolating pore networks. We
show by computational simulation that, within some range of
diffusion reaction conditions, the fractal aspect of the porous
structure can strongly influence the global effectiveness of
the reacting system. This might have profound implications
on the design strategy currently applied for the project of real
catalytic reactors in important technological processes.

II. MODEL

Based on the general framework of bond percolation dis-
order, we develop a practical model to study the influence of
the void space on the catalytic characteristics of the system.
We represent the structure of the porous catalyst by a two-
dimensional square network of size L , where cylindrical
pores of constant length and radius r are connected to sites of
negligible volume. Each cylinder is open with a probability
p and blocked with a probability 12p .

We assume that the inner surface of every open pore has
a homogeneous distribution of active sites, at which a first-
order reaction (A→B) can take place in the presence of
reagent species A . Also, if the reactant and product mol-
ecules are considerably smaller than the capillary radius r , a
continuum description for diffusion and reaction can be
adopted at the mesoscopic pore level. The concentration pro-
file c(x) of the reactive tracer A diffusing inside a typical
open pore joining adjacent nodes i and j satisfies the mass
conservation equation

D
d2c

dx2
5Kc , ~2!

where x is the axial coordinate in the pore, D the molecular
diffusion coefficient, and K the intrinsic reaction rate con-
stant. The boundary conditions are

c~0 !5c i and c~ l !5c j . ~3!

The molar flux of the tracer into a pore is,

J i j52pr2DS dcdxU
x50

D
i j

. ~4!

From the solution of Eqs. ~2! and ~3!, J i j can be expressed as
a linear function of the two concentrations at the connected
nodal points @17,18#

J i j5pr2~KD !1/2F c i
tanh~bl !

2

c j
sinh~bl !G , ~5!

where b[(K/D)1/2.
Considering the sites to be perfect mixing points with no

reaction or tracer accumulation, we find the following iden-
tity for the mass conservation at each internal site:

(
j51

d

J i j50, ~6!

where the sum runs over the d nodes j51, . . . ,d connected
to node i in the capillary maze. We also impose a fixed
concentration C0 at the entrance of the inlet pores, periodic
boundary conditions in the transverse direction of the lattice
(y direction in Fig. 1! and gradientless boundary conditions
at the exit of the outlet pores. Hence, the mass balance for all
internal nodes can be expressed in matrix form as

FIG. 1. Typical realization of a 2003200 per-
colating square network at the threshold probabil-
ity (p5pc). The thick lines correspond to the
conducting backbone available for electrical
transport in the system. Periodic boundary condi-
tions are imposed in the transverse direction (y
direction!.
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A•c5b. ~7!

Here A is a matrix of conductance coefficients, c a vector of
nodal concentrations, and b an input vector corresponding to
the network boundary conditions. We used a standard sub-
routine for sparse matrices to solve the system of linear al-
gebraic Eq. ~7! for the nodal concentrations.

III. RESULTS

Before relating any transport property of the system with
its fractal characteristics in a quantitative way, it is instruc-
tive to visualize the effect of increasing the diffusion-
reaction ratio a[D/K(51/b2) on the transport of reactant
inside a typical pore volume. Figures 2~a!–2~d! have been
generated from the solution of Eq. ~7! for a single random
realization of the network at p5pc , plotting all bonds in the

FIG. 2. Mass flux fields in a typical realization of a 2003200 percolating square network subjected to various diffusion-reaction
conditions parametrized by a[D/K: ~a! a5102, ~b! a5104, ~c! a5106, and ~d! a5108. The thickness of the bonds corresponds to the
magnitude of the mass flux of reactant through them.
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percolating structure and assigning their thickness in accord
with the mass flux J i j through the respective cylindrical tube
in the capillary model.

At low values of a , the reactant either diffuses very
slowly into the catalyst pore space, or it is rapidly consumed
by reaction at the active surface area of the capillaries. As a
consequence, the mass flux of the reacting tracer is entirely
confined to the entrance pores of the lattice @Fig. 2~a!#. As
we gradually increase a , the tracer molecules can penetrate
deeper into the pore space @Figs. 2~b! and 2~c!#. In the ab-
sence of diffusional limitations to mass transfer, or at very
large values of a @Fig. 2~d!#, the localized flux through all
accessible pores in the lattice should be the same, and equal
to a maximum value

J i j
max

5pr2lKC0 . ~8!

Under these conditions, we can readily identify the regions
in the network where transport and reaction are allowed to
occur.

It is interesting to note that, unlike the problem of electri-
cal transport in percolating resistor networks, the ‘‘dangling
zones’’ @3# are an active part of the incipient ‘‘infinite’’ clus-
ter, i.e., the large cluster which ‘‘spans’’ from one side to
another in the x direction of the lattice. Apart from the span-
ning cluster, the clusters in direct contact with the inlet side
of the network are also accessible to tracer diffusion and
reaction.

The active role played by the dangling zones under
diffusion-reaction conditions provides a plausible explana-
tion for the following unsolved question in the field of het-
erogeneous catalysis. There is a substantial amount of ex-
perimental research showing strong evidence that the
macroscopic measure of the diffusion coefficient in some
catalysts under inert conditions can be significantly different
from the ‘‘reactive’’ value of this transport parameter @19–
21#. From the simulations presented here, we could simply
argue that this discrepancy is due to the dramatic change in
the active volume when switching from reactive to inert con-
ditions. Correspondingly, the diffusivity in the absence of
reaction would be equivalent to the conductivity in a resistor
network analog, where the dangling bonds behave as stag-
nant zones with no current passing through them. This con-
trast can be easily seen in Fig. 3, where the active bonds
from one reactive realization of the system with no diffu-
sional limitation @large a , see Fig. 2~d!# have been plotted
together with the ‘‘conducting backbone’’ of the correspond-
ing percolating resistor network.

The implications of these facts on the scaling behavior of
the system can be quantitatively analyzed. From the solution
of Eq. ~7! for different values of a , we can calculate the total
molar flux JN penetrating a given realization of the network
pore volume. In order to measure how much the reaction rate
is decreased by diffusional resistances, it is practical to de-
fine a quantity usually called the ‘‘effectiveness factor’’ of
the pore catalyst @17#,

J̄N[
JN
JR

, ~9!

where JR is the molar flux due to reaction without diffusional
limitations. In particular, for a first-order reaction,

JR5Napr
2lKC0 , ~10!

where Na is the total number of accessible pores in the net-
work.

We performed simulations comprising 100 realizations of
2003200 networks at the percolation threshold, p5pc . Fig-
ure 4 is a double logarithmic plot of the average J̄N values
against the parameter ratio a . At very low values of a , the
concentration of reactant drops rapidly, and approaches zero
at the entrance pores of the structure. In this situation of

FIG. 3. Plot of the conducting backbone ~thick lines! and the
active bonds available for diffusion and reaction ~thin lines! in a
typical realization of a percolating network.

FIG. 4. Double-log plot of J̄N as a function of the diffusion-
reaction ratio a[D/K . The error bars are smaller in size than the
symbols. Straight lines showing the expected limiting, and scaling
behaviors, are also plotted for reference.
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strong pore resistance, we expect to recover the classical
behavior for diffusion and reaction in a single pore @14#,

J̄N}a1/2[l , ~11!

where we interpret the ratio a1/2 as a penetration length, l .
At very large values of a , diffusion offers negligible re-

sistance to reaction, and the penetrating molar flux should be
constant and equal to a factor times the total accessible vol-
ume of the pore network. This is the point where the reactant
species can have free access to the active surface of all pores
in the percolating cluster, a situation which is equivalent to
stating that the catalytic effectiveness of the system is maxi-
mum or equal to 1,

J̄N51. ~12!

At intermediate values of a , however, a typical scaling
behavior can be observed, which persists for more than four
orders of magnitude. In this range of a values, the reactive
tracer experiences the fractal structure of the available pores
in the network. We would then expect the mass transport
through the porous media to follow an anomalous diffusion
behavior. The penetration length l in this regime should
scale as

l}~Dt !1/dR, ~13!

where dR is the critical exponent for diffusion and reaction in
the percolating structure. In addition, if we make use of the
relations J̄N}l and K}t21, the scaling ansatz Eq. ~13! can
also be expressed in a time independent way as

J̄N}a1/dR, ~14!

which is more appropriate for the description of our particu-
lar system.

The accessible volume for diffusion and reaction involves
not only the incipient infinite cluster but also the smaller
clusters attached to the open side of the lattice. Accordingly,
the critical exponent dR should be taken as an intermediate
value between the two-dimensional random walk exponent
on the incipient cluster (dw'2.87) and the corresponding
diffusion exponent which includes all clusters of the system
at the percolation threshold (dw8 '3.02) @2#. Indeed, this is
consistent with the results shown in Fig. 4, where the loga-
rithmic variation of the normalized flux penetrating the net-
work in the diffusion-reaction range of 1,a,105 closely
follows a straight line with slope g51/dw8 . These limits for
a can be directly related to the particular minimum length
scale and system size adopted in this study. Therefore, the
smaller limit should correspond to the square of the lower
cutoff size of the system (l251), and the larger limit should
be comparable to the square of the network size used in the
simulations (L2543104). Both are in perfect agreement
with our simulations.

Finally, it is interesting to compare the results shown in
Fig. 4 for percolating pore networks at the critical point
(p5pc) with the behavior of a fully occupied lattice
(p51). As shown in Fig. 5, this can be done if we plot the
normalized flux for both systems against the rescaled
diffusion-reaction parameter,

f5aS N iNal
D
2

, ~15!

where N i is the number of accessible pores at the network
inlet. Expectedly, in the limiting situations of strong ~low
f) and negligible ~high f) diffusional resistances, the two
systems should follow exactly the same behavior which is
independent of the structural features of the network. How-
ever, in the limited range of f values where the fractal ge-
ometry of the percolating structure has a marked influence on
its diffusive characteristics, a large discrepancy can be ob-
served between the effectiveness of both idealized catalysts.

IV. DISCUSSION

We developed a model that is capable of describing dif-
fusive mass transport and chemical reaction in percolating
pore structures. The results from steady-state simulations re-
veal the strong influence of the pore fractality on the global
effectiveness of the diffusion-reaction system. This repre-
sents a clear indication that one must characterize the pos-
sible self-similar morphology of the catalyst porous matrix in
order to understand its behavior under reactive conditions. In
this way, we believe that the modeling technique utilized
here can provide some interesting guidelines for the design
problem of a suitable catalyst porous structure for a given
reactive system. For example, our results clearly show that,
in the scaling range of the diffusion-reaction parameter a ,
the effectiveness of the pore catalyst can be largely overes-
timated if the self-similar aspect of the void space is not
taken into consideration. Another result of potential interest
from our simulations is the remarkable difference we found
between the effective volumes for transport in the pore net-
work under inert and reactive conditions. We believe that
this might be intimately related with the divergence previ-

FIG. 5. Double-log plot of J̄N as a function of the rescaled
variable f . The solid line corresponds to the fully occupied lattice
(p51), and the circles to the average values obtained from simu-
lations with percolating networks (p5pc).
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ously reported in several experiments to measure effective
diffusion coefficients. In conclusion, the present modeling
approach is flexible to represent more specific morphological
and topological characteristics of the pore space and can also
be applied to other phenomena occurring with diffusion
through a porous medium.
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