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Abstract

In a first part, we study the backbone connecting two given sites of a two-
dimensional lattice separated by an arbitrary distance r in a system of size L.
We find a scaling form for the average backbone mass and we also propose a scaling
form for the probability distribution P (MB) of backbone mass for a given r. For

r ≈ L, P (MB) is peaked around LdB , whereas for r � L, P (MB) decreases as

a power law, M−τB
B , with τB ' 1.20 ± 0.03. The exponents ψ and τB satisfy the

relation ψ = dB(τB − 1), and ψ is the codimension of the backbone, ψ = d− dB .
In a second part, we study the multifractal spectrum of the current in the two-
dimensional random resistor network at the percolation threshold. Our numerical
results suggest that in the infinite system limit, the probability distribution behaves
for small i as P (i) ∼ 1/i where i is the current. As a consequence, the moments of
i of order q ≤ qc = 0 diverge with system size, and all sets of bonds with current
values below the most probable one have the fractal dimension of the backbone.
Hence we hypothesize that the backbone can be described in terms of only (i) blobs
of fractal dimension dB and (ii) high current carrying bonds of fractal dimension
going from dred to dB , where dred is the fractal dimension of the red bonds carrying
the maximal current.

1. SCALING FOR THE CRITICAL BACKBONE

The percolation problem is a classical model of phase transitions, as well as a useful model

for describing connectivity phenomena, and in particular for describing porous media.1–3

At the percolation threshold pc, the mass of the largest cluster scales with the system size L
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as M ∼ Ldf . The fractal dimension df is related to the space dimension d and to the order

parameter and correlation length exponents β and ν by df = d−β/ν.1–3 In two dimensions,

df = 91/48 is known exactly.

An interesting subset of the percolation cluster is the backbone which is obtained by

removing the non-current carrying bonds from the percolation cluster.4 The structure of

the backbone consists of blobs and links.1,5–7 The backbone can in fact be further partitioned

into subsets according to the magnitude of the electric current carried.8,9 The backbone is

relevant to transport properties1–3 and fracture.10 The fractal dimension dB of the backbone

can be defined via its typical mass MB , which scales with the system size L as MB ∼ LdB .

The backbone dimension is an independent exponent and its exact value is not known. A

current numerical estimate11 is dB = 1.6432 ± 0.0008.

The operational definition of the backbone has an interesting history.1–3 Customarily,

one defines the backbone using parallel bars, and looks for the percolation cluster (and

the backbone) which connects the two sides of the system.4 A different situation arises

in oil field applications,12 where one studies the backbone connecting two wells separated

by an arbitrary distance r. This situation is important for transport properties, since in

oil recovery one injects water at one point and recovers oil at another point.12 From a

fundamental point of view, it is important to understand how the percolation properties

depend on different boundary conditions.

We study in this first part the backbone connecting two points separated by an arbitrary

distance r in a two-dimensional system of linear size L. One goal13 is to understand the

distribution of the backbone mass MB(r, L), and how its average value scales with r and

L in the entire range 0 < r < L.

We choose two sites A and B belonging to the infinite percolating cluster on a two-

dimensional square lattice (the fraction of bonds is p = pc = 1/2). A and B are separated

by a distance r and symetrically located between the boundaries.14 Using the burning

algorithm, we determine the backbone connecting these two points for values of L ranging

from 100 to 1000. For each value of L, we consider a sequence of values of r with 2 ≤ r ≤

L − 2. In order to test the universality of the exponents, we perform our study on three

lattices: square, honeycomb and triangular lattice. For simplicity, we restrict our discussion

here to the square lattice, as we find similar results for the other two lattices.

We begin by studying the backbone mass probability distribution P (MB). We show that

P (MB) obeys a simple scaling form in the entire range of r/L,

P (MB) ∼
1

rdB
F

(

MB

rdB

)

, (1)

where F (x) is a scaling function, whose shape depends on the ratio r/L.

For r ≈ L, it seems reasonable to assume that P (MB) will be peaked around its average

value 〈MB〉 ∼ LdB . The data collapse predicted by Eq. (1) is represented in Fig. 1. In this

case, the scaling function F is peaked at approximately LdB . However, the case r � L is

far less clear. In fact, we expect for r � L that the backbone mass fluctuates greatly from

one realization to another, since its minimum value can be r and its maximum can be of

order Ldf . P (MB) has a lower cut-off of order r (since the backbone must connect points

A and B) and a upper cut-off of order LdB . We find good data collapse (Fig. 2), which

indicates that the scaling function F is a power law in the range from rdB to LdB , with

exponent approximately τB ' 1.20± 0.03 (there is a cut-off at MB ∼ LdB not shown here).

The exponent τB is connected to the blob size distribution5 since typically, the two sites
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Fig. 1 Rescaled backbone mass distribution in the case r � L.
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Fig. 2 Rescaled backbone mass distribution in the case r ' L.

belong to the same blob, and the sampling of backbones is equivalent to sampling of the

blobs. From,5

d

dB
= τB . (2)

This relation gives the estimate τB ' 1.22 in good agreement with our numerical simulation.

We now study the average backbone mass 〈MB〉. From dimensional considerations, the

r dependence can only be a function of r/L. We thus propose the following Ansatz:

〈MB(r, L)〉 = LdBG

(

r

L

)

. (3)
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Fig. 3 Rescaled average backbone mass versus versus r/L.

In order to test the Eq. (3), we scale the data of MB versus r for different values of L.

The data collapse is obtained using dB = 1.65 and is shown on Fig. 3. This (log-log) plot

supports the scaling Ansatz (3). Moreover, one can see that the scaling function G is,

surprisingly, a pure power law on the entire range [0, 1], with exponent ψ = 0.37 ± 0.02.

The results (1) and (3) are consistent, since if (1) holds with a power law behavior for the

scaling function F (x) ∼ x−τB for x > 1, and F (x) = 0 for x < 1, then the average mass is

given by

〈MB(r, L)〉 =

∫ LdB

r
F

(

M

rdB

)

dM

rdB
M . (4)

Assuming that L/r is large enough, the integral in (4) can be approximated as LdB−ψrψ,

where

ψ = dB(τB − 1) . (5)

In our simulation τB ≈ 1.20 ± 0.03, which leads to the value ψ ≈ 0.33 ± 0.05 in reasonable

agreement with the value measured directly on the average mass.

Moreover, using Eq. (2) together with Eq. (5), we obtain

ψ = d− dB (6)

which means that ψ is the codimension of the fractal backbone.

To summarize, we find that for any value of r/L, the scaling form, Eq. (1), for the

probability distribution is valid. The shape of the scaling function F depends on r/L, being

a peaked distribution for r ≈ L, and a power law for r � L. The average backbone mass

varies with r and L according to Eq. (4). For fixed system size, it varies as 〈MB〉 ' rψ

(for 0 < r < L). The value of ψ is small (ψ ≈ 0.37) indicating that the backbone mass

does not change drastically as r changes. On the other hand, the exponent governing the

variation of 〈MB〉 with L for fixed r is expected to be larger, with 〈MB〉 ∼ rdB−ψ. This

exponent dB − ψ is not equal to the fractal dimension dB of the backbone, but is smaller

by an amount equal to ψ.
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2. MULTIFRACTAL SPECTRUM AND FINITE-SIZE EFFECTS

The transport properties of the percolating cluster have been the subject of numerous

studies during the last twenty years.2,15 A particularly interesting system is the random

resistor network (RRN), where the bonds have a random conductance. The random resistor

network serves as a paradigm for many transport properties in heterogeneous systems as

well as being a simplified model for fracture.10

The first studies of the RRN were devoted to effective properties of the network

(conductivity, permittivity, etc.),16,17 but for many practical applications — such as

fracture, and dielectric breakdown10 — the central quantity is the probability distribution

P (i) of currents i. For instance, in the random fuse network, it is the maximum current

corresponding the hottest or “red” bonds which will determine the macroscopic failure of

the system.10

The probability distribution P (i) has many interesting features, one of which is

multifractality:9,18–20 in order to describe P (i), an infinite set of exponents is needed.

This idea of multifractality was initially proposed to treat turbulence21 and later ap-

plied successfully in many different fields, ranging from model systems such as DLA22 to

physiological data such as heartbeat.23

It was first believed9,20 that the low current part of P (i) and of the multifractal spectrum

follow a log-normal law as it is the case on hierarchical lattices. It is now clear,25 that for

small currents, the current probability distribution follows a power law P (i) ∼ ib−1 where

b ≥ 0. For large currents, the distribution quickly converges to an infinite system limit

with no dependence on the system size L. For small currents, governed by very long paths,

the distribution converges more slowly. It was suggested24,25 that the exponent b of the

low-current part has a 1/ log L dependence. The asymptotic value b∞ of the exponent b for

the infinite system is of crucial importance. If b∞ is finite and positive, then a subset of

bonds with low current has a fractal dimension depending on its value. On the other hand,

if b∞ is zero, then the low current part of the multifractal spectrum is flat, and the subset of

bonds with any low value of current has the same fractal dimension as the entire backbone.

It is thus important to understand if the apparent subset structure with different fractal

dimensions arises primarily from finite-size effects.

Previous estimates of b∞ include b∞ = 024 and b∞ & 0.25,25 but the maximum value of

L used was 128.24 In this part, we study a sequence of sizes from L = 50 to L = 1000, and

hypothesize26 that b∞ = 0.

We first recall the basis of multifractality applied to the percolating two-dimensional

resistor network of linear size L. Let n(i, L) be the number of bonds carrying current i.

For large L, n(i, L) scales as9,20

n(i, L) ∼ Lf(α,L) (7)

where α ≡ − log i/ log L. The multifractal spectrum f(α, L) ≡ log n/ logL can thus be

interpreted as the fractal dimension of the subset of bonds carrying the current i. The q-th

moment of the current is defined as Mq ≡ 〈
∑

iq〉, where the sum is over all bonds carrying a

non-zero current and 〈· · · 〉 denotes an average over different disorder configurations. These

moments exists for q > qc, and it can be easily shown25 that the “threshold” is qc = −b.

The asymptotic slope thus give the asymptotic value of the threshold qc.

For the fixed current ensemble, one finds Mq ∼ Lτq for large L and for q > qc and where

τq is an exponent that depends on q.9,20 In particular, τ0 = dB , τ2 = t/ν, and τ∞ = 1/ν28

where dB is the fractal dimension of the backbone, t the conductivity exponent, and ν is

the correlation length exponent. If the behavior is monofractal, then τq is a linear function
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Fig. 4 Multifractal spectrum for r ' L going from 50 to 1000.

of q with the intercept equal to the fractal dimension of the monofractal, while in the

multifractal case, the exponents are not described by a simple linear function of q. In the

L → ∞ limit, knowing f(α) is equivalent to knowing the infinite set of exponents τq, as

f(α) = τq − qdτ/dq is the Legendre transform of τq.
10

The low current part of f(α, L) was found numerically to be a power law of slope b = b(L).

It was suggested that

b(L) = b∞ +
a

logL
+ . . . (8)

which is a strong finite-size effect since logL grows very slowly, and two possibilities for b∞
were proposed, b∞ = 024 or b∞ = 1/4.25

We consider the two-dimensional random resistor network at criticality, i.e. the fraction

of conducting bonds p is equal to its critical value p = pc = 1/2. We first apply a voltage

difference between two parallel bars. We compute f(α, L), for a fixed voltage difference,

for L = 50, . . . , 1000, and average over 104 configurations for each L. We show our results

in Fig. 4. The slope b is clearly decreasing with L, confirming the strong finite size effects

already observed.24,25 Next, we consider a second type of configuration, which we call the

“two injection points” case, in contrast with the usual “parallel bars” case. We impose a

voltage difference between two points A and B separated by a distance r, and we look for

the backbone connecting these two points. This situation was studied in,13,27 but here we

keep only the backbones of linear size L. In this way, we have large backbones connecting

the two points A and B, and for r � L we expect to have a large number of small currents

on bonds belonging to long loops. The multifractal spectrum is then defined in the same

way as for the parallel bars and we calculate the slope of the small current part of the

multifractal spectrum for different values of L. The variation of the slope for the two-

injection-points case is shown in Fig. 5. We observe that there is a large amount of small

currents, and that the asymptotic limit is reached faster in this case. We expect that the

low current distribution will be asymptotically the same as in the parallel bar case, so the

consistency between the two configurations supports our results. For large currents there

are some distinct differences in the multifractal spectrum.29
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Fig. 5 Multifractal spectrum for r = 4 � L and L is going from 50 to 1000.
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Fig. 6 Slope b versus 1/ logL. The circles correspond to the parallel bars and the triangles to the
‘two-injection’ case.

Figure 6 shows the slope b versus 1/ log L according to Eq. (8) for both multifractal

spectra. The extrapolation to L = ∞ is consistent with b∞ = 0 in both cases. This result is

consistent with the behavior of the successive intercepts (Fig. 7). Another functional form

of b versus L could lead to another value of b∞. If we replace the abscissa of Figs. 2(a) and

(b) by 1/(log L)α, then we find that the extrapolated value for b∞ depends on α, ranging

from b∞ ' 0.10 for α = 2 to b∞ < 0 (which is impossible) for α = 0.5. It is numerically

difficult to distinguish between a 1/ logL and a 1/(log L)2 behavior, but the 1/ log L is the

most commonly used.24,25 If we accept this functional form, then our results are consistent

with b∞ = 0. Finally, we note that the sequence of maximum values of f(α, L) for the two

injection points case plausibly extrapolates in the variable 1/ logL as L→ ∞ to a value of

dB close to the known value 1.64.
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Fig. 7 Successive intercepts computed from the datas of Fig. 6.

Thus our results suggest the intriguing possibility that for L→ ∞, the small current part

of f(α, L) is a horizontal line at the value dB , implying that in an infinite system the fractal

dimension of the subset contributing to small current is dB , independently of the value of

i. In this sense, the small current probability distribution is apparently not multifractal.

The “perfectly balanced” bonds which carry zero current have a fractal dimension equal to

dB .24 Since these bonds contribute to f(α) for α→ ∞, the fact that their fractal dimension

is dB supports our hypothesis that b∞ = 0. A related conclusion is that qc = 0 or, in other

words, the negative moments of the current diverge in the infinite-size limit. In particular,

it shows that the first-passage time for a tracer particle travelling in a flow field in a porous

medium modelled by a percolation cluster diverges in an infinite system.

For large values of the current, the multifractal features are stable against L increase.

This suggests that in the infinite-size limit, there are essentially two different type of subsets;

the first comprises the blobs of fractal dimension dB , and the second set comprises links

carrying larger values of the current (including red bonds, which carry all the current), of

fractal dimension ranging from dred = 1/ν to dB .
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