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On the Field Dependence of Random Walks 
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Numerical simulations and scaling arguments are used to study the field depen- 
dence of a random walk in a one-dimensional system with a bias field on each 
site. The bias is taken randomly with equal probability to be + E or -E.  The 
probability density P(x, t) is found to scale asymptotically as 

{ [a(E)]~/Z/ln 2 t} exp(- {x[A(E)]B/2/ln 2 t} ~) 

with A(E )=In[ ( I+E ) / (1 -E ) ] ,  fl=4.25, and c~=1.25. The mean square 
displacement scales a s  (xZ)~[A(E)] ~F[tA~(E)], where F(u)~ln4u 
asymptotically. 

KEY WORDS:  Random walks; random fields; density distribution; fluc- 
tuations; anomalous diffusion. 

The problem of anomalous  t ranspor t  in disordered media has received 

much interest in recent years (for reviews see, e.g., Refs. 1 and  2). The basic 
quant i ty  characterizing diffusion is the probabi l i ty  density P(x ,  t) for a 
r a n d o m  walker to be on a given substrate at site x at time t s tar t ing from 

x = 0 at t = 0 .  The study of the form of the conf igurat ional  average of 
P(x ,  t) as well as its f luctuat ions has received much a t t en t ionJ  3 10) 

In  this paper  we study numerical ly  and  by scaling arguments  the Sinai 

model,  (u) for which logari thmic anomalous  diffusion has been found. Sinai 
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s t u d i e d  a o n e - d i m e n s i o n a l  r a n d o m  w a l k  in  t h e  p r e s e n c e  of  r a n d o m  fields 

a n d  f o u n d  for  t he  m e a n - s q u a r e  d i s p l a c e m e n t  

(x2( t )  ) ~ (In/)4 (1) 

In this model the random walker experiences at each site a random bias 
field E = p + - p _ .  Here p + (p_ )  is the transition probability for a step to 
the right (left), with p+ + p_  = 1; p_+ are taken from distributions where 
the mean value of ln (p§  ) is zero. Recently it has been argued that this 
type of random walk is related to random walks on random structures, 
such as random combs or the infinite percolation cluster at criticality under 
the influence of a constant bias field. (t2,x3) In both systems, the mean-square 
displacement increases logarithmically with time and the fluctuations show 
multifractal behavior/7'14) 

The purpose of this work is to study the field dependence of ( x  2 } and 
of the mean (configurational averaged) distribution function for the case 
that the bias field can accept only two values + E  or - E  with equal 
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Fig. 1. Mean square displacement (x  2) versus (ln t) 4 for (A)  E=0.9,  (O)  E=0.8,  (O)  
E=0.6,  (A)  E=0.4,  and (V1) E=0.2. The calculations were done on chains of up to 10000 
sites and are based on averages over more than 200 configurations for each value of E. Note 
the different scale for different E values. For E = 0.6, 0.4, and 0.2 the scale of the y axis is 
multiplied with 5, 25, and 125, respectively. 
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probability. The case that E is homogeneously distributed between 0 and 1 
has been recently studied analytically by Kesten/9) For determining the 
mean distribution function P(x, t) and the mean-square displacement 
(x2(t ) )  we used the exact enumeration method (see, e.g., Ref. 2). First we 
generated a linear chain with random fields ( + ]El ) associated to each site. 
Then we solved the master equation on this chain to obtain P(x, t) and the 
second moment. Finally, we averaged over many configurations. Our 
results for (x2(t)), for various field strengths E, are shown in Fig. 1, where 
(x2(t))  is plotted as a function of (In t) 4. For large times, the data fall on 
the straight lines, as predicted by (1). The mean-square displacement 
decreases with increasing bias field. Also, the crossover time to the 
asymptotic logarithmic behavior decreases with the field. The reason for 
this behavior is that the walker can get stuck in those regions of the chain 
where fields of opposite directions point toward the same site; the stronger 
the field, the more pronounced is this behavior. 

In order to describe the field dependence of (x2(t)), we assume the 
scaling form 

(x2(t) ) = A(E) -~ F{t[A(E)] ~ } (2) 

where A(E)= ln[(1 + E ) / ( 1 -  E)]. This scaling form yields the two known 
limits for (x2(t)). For t ~ 0 we expect ( x2 ( t ) )~  t, independent of E, and 
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scaled variable ( x2 )A(E)  # on Fig. 2. Dependence of the tA(E) B, where A(E)= 
ln[(1 +E) / (1 - -E) ]  and fl=4.25. The data collapse supports the scaling relation (2). The 
symbols correspond to the E values of Fig. 1. 
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thus we have F(u),,~ u for u ~ 1. For t ~ ov we have (x2(t)) ~ (In t)4 and 
thus F(u) ~ (ln u) 4 for u > 1. We determined the exponent/3 by fitting our 
numerical data from Fig. 1 to the scaling form, Eq. (2). We find that the 
best data collapse occurs for/3 = 4.25 (see Fig. 2). Following the approach 
of Ref. 12 [-Eq. (3)], we expect that A(E) and In t have the same exponent, 
i.e., /3=4. The slightly higher value obtained here might be due to 
corrections to scaling which can be neglected only asymptotically. 

Next we consider the mean density distribution P(x, t). A simple 
scaling form for P(x, t) which is consistent with (1) and (2) is 

P(x, t)= [ (x2(t) ) ] - m  G(x/(x2(t) ) ~/2) (3) 

To test this scaling form, in Fig. 3 we plot P(x, t ) (x2( t ) )  U2 as a function of 

0.5 

0.4 

0.3 
g 
A 

X 
v 

=o.2 
x" 

n 

0,1 

o 

o 

"% 

0 i 

0 1 

eo 

s o 

o 
� 9  

� 9  
O 

o 

, ~ ~  ,~oeo a~-~ 

2 3 
X/(X2(t)> 1/2 

Fig. 3. The scaled mean density probability P(x, t ) ( ( x2 ) )  1/2 v e r s u s  x/((x2)) 1/2 for several 
values of E. The symbols correspond to the E values of Fig. 1. The data collapse supports the 
scaling relation (3) for not too small x values, X/((X2))l/2~ 1/2. 
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X/(X2) 1/2 for several values of E. We find a good data collapse for large 
values of x and t, indicating the validity range of the scaling. In general, the 
analytic form of G(u) can be very complicated. As is convenient in the 
treatment of anomalous diffusion (see, e.g., Ref. 2), we assume that G(u) 
approaches an exponential function for large u, i.e., G(u)~exp(-u~). To 
determine the exponent ~, we plot ln[/5(x, t)/P(O, t)] as a function of x in 
Fig. 4, for E=0 .8  and two time values in the asymptotic region where 
(x2(t)~..~(lnt) 4. The curves are parallel straight lines with slope ~ =  
1.25 -t- 0.05. This value of ~ may be compared with the result a = 1 suggested 
by Nauenberg (s) and proven analytically by Kesten (9) for the case of 
homogeneously distributed fields. The difference can be due to the 
discreteness (5-function distribution) of the bias field considered here, 
which might change the asymptotic behavior of P(x, t). 

It is not unusual in anomalous diffusion that transport exponents are 
changed when passing from homogeneous to discrete distributions. For 
example, random walks in continuous percolation systems such as the 
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Fig. 4. Plot of -ln[P(x,t)/P(O, t)] versus x for E = 0 . 8  and (O)  t=10,000 and (O)  
t=20,000. The slopes yields a =  1.25. The results are based on averages over 4000 
configurations. 
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Swiss cheese model are governed by diffusion exponents that differ from 
those of lattice percolation, though the static structures in both systems are 
in the same universality class. (15'16) The exponents are changed, further- 
more, if in the continuous percolation system random walks with discrete 
fixed step length are considered. (~7) 

Another possibility for the discrepancy between our value of ~ = 1.25 
and the value of c~ = 1 found by Kesten is that we did not yet reach the 
asymptotic regime where c~ = 1 can be observed. However, from the result 
of Kesten (Theorem 1.2 in Ref. 9) it follows that an effective exponent in 
the nonasymptotic regime would be smaller than 1, in contrast to our 
finding. 
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