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We present a unified scaling theory for the optimal path connecting opposite edges of a disordered lattice of
size L. Each bond of the lattice is assigned a cost exp�ar�, where r is a uniformly distributed random variable
and a is disorder strength. The optimal path minimizes the sum of the costs of the bonds along the path. We
argue that for L�a�, where � is the correlation exponent of percolation, the path becomes equivalent to a
directed polymer on an effective lattice consisting of blobs of size �=a�. It is self-affined and characterized by
the roughness exponent of directed polymers �. For L�a�, or on the length scales below the blob size �, the
path behaves as an optimal path in the strong disorder limit. It has a self-similar fractal shape with fractal
dimension dopt. We derived the scaling relations for the length of the path, its transversal displacement, the
average cost and its fluctuation. We test our scaling theoretical predictions by numerical simulations on a
square lattice.
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The statistical properties of optimal paths in a disordered
energy landscape have been studied extensively in recent
years �1–16�. Path properties are relevant to many optimiza-
tion problems, including folding of proteins, spin glasses and
the well-known traveling salesman problem �17�. Several
studies considered the optimal paths in the strong disorder
limit, where a single site or bond weight dominates the
weight of the whole path, and found that the length � of the
optimal path scales with distance r as rdopt, where dopt
=1.22±0.02 in d=2 and dopt=1.43±0.03 in d=3 �6,10�. For
weak disorder, the optimal path between the opposite edges
of the lattice is assumed to belong to the directed polymer
universality class characterized by a self-affined shape of the
path with roughness exponent � �5,9�. The total cost of the
optimal path in weak disorder increases linearly with the
distance L between the edges; however, its root mean square
fluctuation increases as L�, with ��1/2. The exponents �
=� /	 and �=� are related to the exponents of the Kardar,
Parisi, and Zhang �KPZ� equation 	 and � in d+1 dimen-
sions �2�. For d=1, the values of 	=1/2 and �=1/3 are
known exactly �4,5�.

The weak disorder problem characterizes the behavior of
a long polymer chain of total length N which crosses a slab
of width L�N �Fig. 1�. The slab is filled with a disordered
media which repulses the monomers with potential E�ri�

0 which is a random function of the coordinates ri of the
monomers. The media outside the slab does not interact with
the polymer. The ends of the polymer cannot penetrate
through the membrane of the slab. In the limit of zero tem-
perature, the polymer minimizes its total potential energy E
=�i=1

� E�ri�, where � is the number of monomers inside the
slab. If the distribution of E�r� becomes very broad and non-
uniform, the sum of the potential energies is dominated by
the largest potential energy, and we have a transition to
strong disorder. Here we present a unified scaling approach
for the behavior of the polymer inside the slab for both weak
and strong disorder and for the crossover between these two

regimes that is supported by numerical simulations on a
square lattice.

We consider lattices of linear size L in which each bond is
assigned a cost Ei=exp�ari� where ri is uniformly distributed
between 0 and 1. The optimal path minimizes the total cost
of its bonds between the two edges of the lattice. In the
strong disorder limit, when a→�, the cost of the path is
dominated by the largest cost ri,max. Thus the optimal path
must minimize ri,max, hence all bonds of the optimal path
must belong to the backbone of the percolation cluster
�18,19� first connecting the opposite edges of the lattice as
we include into it the bonds with larger and larger ri. By
construction, the fraction of bonds p1 at which percolation

FIG. 1. The polymer penetrating through the slab of width L is
characterized by the total number of monomers inside the slab �,
their potential energy E, and the transversal displacement w be-
tween the monomers at the opposite sides of the slab. A blob of
percolation correlation length �, within which the polymer has a
self-similar shape with fractal dimension dopt, is represented sche-
matically by a large circle.
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occurs is equal to the minimum of ri,max among all possible
paths connecting the opposite edges of the lattice �12�. For
finite lattices of linear size L, the value of p1 for which
percolation first occurs is distributed as a narrow distribution
with mean pc, and standard deviation �0=C /L1/�, where C is
some constant of the order of unity �19�. Here we assume
that the narrow distribution is Gaussian and we support its
numerical simulations. The largest weight on the optimal
path is thus equal to exp�p1a�. The distribution of the total
cost E�exp�p1a� of the optimal path is thus a log-normal
distribution

P�E� =
1

�2�0aE
e�ln�E� − apc�2/2a2�0

2
, �1�

with mean

� = exp�apc +
�a�0�2

2
	 �2�

and standard deviation

� = ��exp��a�0�2� − 1. �3�

The crossover from strong to weak disorder starts to occur
when the optimal path may not necessarily go through the
bond with the cost exp�ap1� but may prefer to go through the
bond with the larger cost exp�ap2�, where p2
 p1 is the frac-
tion of bonds at which percolation would occur, provided
that the bond p1 has been removed. These values p1 and p2
belong to the same Gaussian distribution of the percolation
thresholds and hence their expected difference 
p2− p1�
=C1�0 where C1 is a constant of the order of unity. The next
to the best path in strong disorder limit may become the best
for finite disorder a if a�p2− p1� is a small number of the
order of unity and hence a�0�a /L1/� must be of the order of
unity when the deviation from the strong disorder behavior
can be observed. �See also Refs. �14,15� for the analogous
conductance problem and Refs. �13,16� for random net-
works.� Our numerical simulations on a square lattice con-
firm this theoretical prediction. Figure 2 shows the distribu-
tion of the total cost for large a=32, and several small values
of L. One can see that when a /L1/��3.8, the distribution of
the total cost can be well approximated by a log-normal dis-
tribution with mean apc and variance a�0�0.36a /L1/�,
where �=4/3 �18,19� in two dimensions. However, for
a /L1/��2.3 we already see a significant departure of the
mean value of the total cost from the percolation predictions.

The above considerations suggest that we can introduce a
blob of correlation length �=a�, within which a path behaves
as in the strong disorder limit, while for length scales much
larger than � it behaves as a directed polymer of

nb = L/� = L/a� �4�

effective bonds of length �. For each bond the cost is distrib-
uted according to a relatively narrow log-normal distribution
�1� with a scaling parameter �*a�0�1, which determines
mean �, and standard deviation � according to Eqs. �2� and
�3�.

Next we study the distribution of the total cost E. For
L /a��1, we expect that the total cost E behaves as in the

directed polymer problem. Due to global optimization, the
values of the cost for each bond cannot be considered inde-
pendent random variables, and thus their sum does not con-
verge to a Gaussian distribution but converges to an asym-
metric distribution,

P�E� = �E
−1PD��E − 
E��/�E� , �5�

of the directed polymer problem with mean 
E� and standard
deviation �E. For large nb, we expect that


E�/nb → ����,�� �6�

and standard deviation

�E/nb
� → ����,�� , �7�

where the limits ���� ,�� and ���� ,��, are homogeneous
functions of � and � of the first order, i.e., ����� ,���
=����� ,�� and ����� ,���=����� ,�� for any �
0 �20�.
Assuming �=exp�apc�, we find from Eqs. �2� and �3� that

�� = exp�apc�f���*� �8�

and

�� = exp�apc�f���*� , �9�

where the functions f���*� and f���*� with �*�1 may have
only weak dependence on a and must converge to some lim-
its when a→�. In the strong disorder limit L /a��1, we
expect


E� � exp�a2�2/2� = exp�Ca2L−2/�� �10�

FIG. 2. Logarithm of the distribution of the logarithm of the
total cost for a=32 and several small L scaled by a /L1/�. For very
small L, the graphs are indeed log-normal distributions �1�, which is
demonstrated by the parabolic fit, giving �0=0.36L−1/�. While for
large a /L1/��3.8 �L=4,8 ,16�, the distributions scale almost ex-
actly as predicted by the percolation theory in the strong disorder
limit; for smaller a /L1/��2.3 �L=32�, one can already see signifi-
cant deviations from the percolation theory.
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and

�E � exp�a2�0
2/2� = exp�Ca2L−2/�� �11�

to diverge as L /a�→0.
To test the predictions of Eqs. �6�–�11�, we plot the loga-

rithm of the average cost 
E� and its standard deviation �E

versus the logarithm of L /a� �Figs. 3�a� and 3�b�� and find
good agreement with Eqs. �6� and �7�. Indeed, for L /a�

→�, the graphs for 
E� and �E become straight lines with
slopes 1 and �=1/3, respectively, and their intercepts ln ��

and ln �� converge for a→� to finite limiting values as
indicated in the inset of Fig. 3�b�. For L /a�→0, we find
divergence of 
E� and �E as expected from Eqs. �10� and

�11�. Figure 3�c� illustrates the convergence for nb→� of the
scaled distributions of the total cost to a universal function
PD defined in Eq. �5�. In addition to the strong disorder dis-
tributions, we also plot the scaled distributions of the total
costs for the uniform distribution and log-normal distribution
of costs Ei of the individual bonds. These two distributions
are obtained for a uniform distribution of Ei on the interval
�0, 1� and a log-normal distribution of P�Ei�
= �Ei

�2�−1 exp�ln2�Ei� /2� for L=256 and for L=16. We can
see a relatively good convergence to the distribution of the
same general shape with the left tail decaying slower than the
right tail.

Next we discuss the behavior of the optimal path length �.

FIG. 3. �a� Double logarithmic plot of the scaled average total cost 
E� versus the scaling variable L /a�. For L /a��1, the total cost
rapidly decreases with L, while for large L /a� the total cost increases proportionally to nb with different proportionality coefficients f��a�,
which can be found as the intercepts of the straight line fit with slope 1 �bold line� to the graphs for large L /a�. �b� Double logarithmic plot
of the scaled standard deviation of the total cost versus scaling variable L /a�. For L /a��1, the behavior is analogous to the behavior of the
average cost. For large nb, the slopes of the graphs approach asymptotic value �=1/3 indicated by a bold straight line. The intercepts of the
straight line fits gives the values of the coefficients f��a�. Inset: the behavior of the coefficients f��a� and f��a� found in part �a� and �b�, as
functions of 1/a indicate the convergence of their values for a→�. �c� The scaled distribution of the total cost for various L and a for nb


5 in comparison to the distribution of the total cost for the uniform and log-normal distribution of the bond costs.
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The distribution of the optimal path length within a blob, �b,
is a relatively narrow distribution with mean


�b� � a�dopt �12�

and standard deviation

��b
� a�dopt. �13�

If we assume that the lengths of the path within each blob are
identically distributed independent random variables, the dis-
tribution of the total optimal path length � must converge for
large nb to a Gaussian with mean


�� = nba�dopt = Ldopt = nb
1−dopt �14�

and standard deviation

�� = ��b
�nb = Ldoptnb

1/2−dopt. �15�

Figures 4�a� and 4�b� show good agreement with these the-
oretical predictions.

Thus, the distribution of the scaled optimal path length
x=� /Ldopt can be represented in a general scaling form:
P��x ,nb�, where nb=1 for L�a� and nb�L /a� for L�a�

�Fig. 4�c��. To achieve better data collapse in Fig. 4, we use
instead of Ldopt the quantity ����, which is the length of the
path in the strong disorder limit a→�. For L�1 the quan-
tities asymptotically coincide �����Ldopt. The mean and
standard deviation of P��x ,nb� decrease with nb as nb

1−dopt and
nb

1/2−dopt, respectively �Figs. 4�a� and 4�b�� as given by Eqs.
�14� and �15�.

Analogously, we can explain the behavior of the transver-
sal deviation w between the beginning and the end of the

FIG. 4. �a� Double logarithmic plot of the scaled averaged path length ��a� /���� for various values of a. The slope of the graph
converges to 1−dopt�−0.2 for large nbL /a�. �b� Double logarithmic plot of the scaled averaged path fluctuation ���a� /����� for various
values of a. The slope of the graph converges to 1/2−dopt�−0.7 for large nbL /a�. �c� Scaled distributions of the optimal path for three
different relative disorder strengths L /a�. The L /a�=0 curves correspond to the distribution of optimal path in strong disorder �a=��.
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path at the opposite edges of the system. Indeed, for a di-
rected polymer on a lattice of nb= �L /�� effective bonds of
size �=a�, the distribution of w converges for nb→� to a
Gaussian with zero mean and standard deviation

�w = Cw��nb��, �16�

where Cw is a constant. The factor � comes from the fact that
within each blob, the path is self-similar and thus its trans-
versal deviation scales as the size of the blob �. For L /a�

�1 we have nb=1 and the standard deviation of the trans-
versal deviation scales as

�w = CwL . �17�

From these two limiting behaviors one can conclude that the
dimensionless variable �w /� depends only on the ratio L /�,
so that �w /�=Fw�L /��, where

Fw�x� � � x , x � 1

x�, x � 1.
� �18�

For large a, percolation theory predicts that ��a�. However,
for small a, one can expect deviations from scaling due to
discreteness, so it is reasonable to define a parameter ac such
that �=ac

�, where ac�a� /a→1 as a→�. This parameter, if it
exists, should not depend on L, as we confirm numerically.
Thus, taking into account Eqs. �4� and �16� we conclude

�w = CwL�ac
��1−��. �19�

For d=2, it is known that �=2/3 �5�, thus �w=CwL2/3ac
4/9.

To test Eq. �18� we present in Fig. 5�a� the scaled plot of
the average absolute value of the deviation 
�w��. Since the
average deviation is equal to zero, we can expect that this
quantity scales the same way as �w. To achieve good scaling
in Figs. 5�a� and 5�b�, we select ac�a� as shown in the inset
of Fig. 5�b�. The main part of Fig. 5�b� shows the conver-
gence of the distribution of w for large nb, to the Gaussian
limit expected for the directed polymer problem.
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