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Scale Invariance in the Nonstationarity of Human Heart Rate
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We introduce a segmentation algorithm to probe the temporal organization of heterogeneities in human
heartbeat interval time series. We find that the lengths of segments with different local mean heart rates
follow a power-law distribution and show that this scale-invariant structure is not a simple consequence of
the long-range correlations present in the data. The differences in mean heart rates between consecutive
segments display a common functional form, but with different parameters for healthy individuals and for
heart-failure patients. These findings suggest that there is relevant physiological information hidden in the
heterogeneities of the heartbeat time series.
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A time series is stationary if the mean, standard devia-
tion, and all higher moments, as well as the correlation
functions, are invariant under time translation [1]. Signals
that do not obey these conditions are nonstationary. Non-
stationarity is a prominent feature of biological variability
that can be associated with regimes (segments) of different
statistical properties. The borders between different seg-
ments can be gradual or abrupt (Fig. 1).

A major challenge in contemporary physiology is the
nonstationarity of time series generated under free-running
conditions [2]. Physiological signals obtained under
widely varying conditions raise serious difficulties to both
technical and fundamental aspects of time series analysis.
By filtering out effects of nonstationarity, much work has
focused on “intrinsic properties” of physiological signals
[3]. This approach is based on the implicit assumption
that the nonstationarity arises simply from changes in en-
vironmental conditions—e.g., different daily activities —
so environmental “noise” may be treated as a “trend” and
distinguished from the more subtle fluctuations that may
reveal intrinsic correlation properties of the dynamics.
Indeed, important scale-invariant features in physiological
processes were recently revealed after filtering out mask-
ing effects of nonstationarity [4]. However, nonstationarity
itself is also an important feature of physiological time
series and is known to change from healthy to pathological
conditions [5], suggesting more than only environmental
conditions are reflected in the phenomena. Thus one
would expect that there is a nontrivial structure associated
with the nonstationarity in physiological signals, which
may change with disease. To test this hypothesis we focus
on one statistical property, the mean heart rate, which is
related to physiologic responses and is used for medical
evaluation.

The problem we address is the partition of a nonsta-
tionary time series, which is composed of many segments
with different mean value, in such a way as to maximize
the difference in the mean values between adjacent seg-
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ments. We apply the following procedure: We move a
sliding pointer from left to right along the signal. At each
position of the pointer, we compute the mean of the sub-
set of the signal to the left of the pointer �mleft� and to
the right �mright�. To measure the significance of the
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FIG. 1. (a) Plot of 20 000 interbeat intervals (�6 h) for a
healthy subject (upper curve) and a subject with heart failure
(bottom curve). Note the larger variability and patchiness for
the healthy record. (b) Magnification of a small fraction (2000
beats) of the signals in (a). (c) Same signals as displayed in (a)
after subtracting the global average and dividing by the global
standard deviation; after this normalization both signals appear
very similar. (d) Magnification of a small fraction (2000 beats)
of the signals in (c).
© 2001 The American Physical Society 168105-1



VOLUME 87, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 15 OCTOBER 2001
difference between mleft and mright, we compute the
statistic t � j�mleft 2 mright��sD j, where sD � ��s2

left 1

s2
right���Nleft 1 Nright 2 2��1�2�1�Nleft 1 1�Nright�1�2 is

the pooled variance [6] and sleft and sright are the standard
deviations of the data to the left and to the right of the
pointer, respectively, and Nleft and Nright are the number
of points to the left and to the right of the pointer.

We next determine the position of the pointer for which
t reaches its maximum value, tmax, and compute the statis-
tical significance of tmax. The significance level P �t� of
a possible cutting point with tmax � t is defined as the
probability of obtaining the value t or lower values within
a random sequence: P �t� � Prob�tmax # t	. Thus, a se-
ries of N random numbers of fixed mean would remain
unsegmented with probability P �t�.

We check if this significance exceeds a selected thresh-
old P0, usually taken to be 95%. If so, then the signal is cut
at this point into two subsequences; otherwise the signal
remains undivided. If the sequence is cut, the procedure
continues recursively for each of the two resulting subse-
quences created by each cut. Before a new cut is accepted,
we also compute t between the right-hand new segment
and its right neighbor (obtained by a previous cut) and t
between the left-hand new segment and its left neighbor
(also obtained by a previous cut) and check if both val-
ues of t have a statistical significance exceeding P0. If so,
we proceed with the new cut; otherwise we do not cut.
Thus all resulting segments have a statistically significant
difference in their means. The process stops when none
of the possible cutting points has a significance exceeding
P0, and we say that the signal has been segmented at the
“significance level P0” (Fig. 2).

As we could not obtain P �t� in a closed analytical form,
we have developed a suitable approximation by means
of Monte Carlo simulations. P �t� � �1 2 I�n��n1t2�� 3

�dn, d�	g, where g � 4.19 lnN 2 11.54, d � 0.40, N
is the size of the sequence or subsequence to be split,
n � N 2 2 is the number of degrees of freedom, and
Ix�a, b� is the incomplete beta function [6]. To check the
validity of this approximation, we have carried out the fol-
lowing experiments: We generate 100 000 random series
of given length N and fixed mean, and we segment them at
significance level P0. In all experiments the ratio between
the number of series which remain undivided and the total
number of series is very close to P0, independently of N .

Our method leads to partitioning of a time series into
segments with well-defined means, each significantly dif-
ferent from the mean of the adjacent segments (Fig. 1),
and we probe the nonstationarity in a signal through the
statistical analysis of the properties of the segments.

Here we consider 47 datasets from 18 healthy subjects,
17 records of cosmonauts during orbital flight, and 12 pa-
tients with congestive heart failure [7]. We separately ana-
lyze 6-h long subsets of each dataset, corresponding to the
periods when the subject is awake or sleeping. Figure 1
shows a representative dataset of a healthy subject, and a
168105-2
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FIG. 2. (a) An artificial time series f�x� composed of three
segments with different mean values. (b) Values of the statistic
t obtained by moving the pointer along the time series. Note
that tmax is reached at x1. We find that if P �tmax� $ P0 � 95%,
and so we cut the series at x1. (c) We iterate the procedure
with the segment �0, x1�. We find that P �tmax� $ 95% and we
also find that the significance of t computed between �x2, x1�
and �x2, 2000� is greater than 95%, so the series is cut at x2.
(d) We iterate the procedure with the segment �x1, 2000�. Now,
P �tmax� # 95%, so this segment is not cut. Our procedure has
a limitation for the extreme case of a long segment with a given
mean, followed by a short segment with a different mean, which
again is followed by a long segment with a mean identical to
the mean of the first segment. First, we note that this is a very
unlikely event in real data. However, even in this extreme case,
the algorithm could provide a good segmentation, if we lower
sufficiently the significance level, P0. In fact, more often one
can find in real data a situation when the second long segment
has a mean value very close but not identical to the mean value
of the first long segment; in such a case the procedure works
accurately.

subject with heart failure. Superposed on the interbeat in-
terval series, we also plot the segments obtained by means
of our segmentation algorithm.

To quantify the nonstationarity in heart rate variability,
we study the statistical properties of the segments corre-
sponding to parts of the signal with significantly different
mean values. To characterize the segments, we analyze
two quantities: (i) the length of the segments and (ii) the
absolute values of the differences between the mean values
of consecutive segments, called jumps.

(i) Distribution of segment lengths.—Healthy subjects
typically exhibit nonstationary behavior associated with
large variability, trends, and segments with large differ-
ences in their mean values, while data from heart-failure
subjects are characterized by reduced variability and ap-
pear to be more homogeneous (Fig. 1) [5]. Thus, one
might expect that signals from healthy subjects will be
characterized by a large number of segments, while signals
from heart-failure subjects will exhibit a smaller number
of segments (i.e., the average length of the segments for
healthy subjects could be expected to be smaller than for
heart-failure subjects).

We find that the distribution of segment lengths for the
healthy subjects is well described by a power law with
168105-2
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similar exponents, indicating absence of a characteristic
length for the segments. Surprisingly, we also find that
this power law remains unchanged for records obtained
from cosmonauts during orbital flight (under conditions of
microgravity) and for patients with heart failure (Fig. 3).
A similar common type of behavior is also observed from
6-h records during sleep for all three groups [8].

To verify the results of the segmentation procedure, we
perform several tests. First, we check the validity of the
observed power law in the distribution of segment lengths.
We generate a surrogate signal formed by joining seg-
ments of white noise with standard deviation s � 0.5, and
mean values chosen randomly from the interval �0, 1�. We
choose the lengths of these segments from a power-law
distribution with a given exponent. Even when the dif-
ference between the mean values of adjacent segments is
smaller than the standard deviation of the noise inside the
segments, we find that our procedure partitions the surro-
gate signal into segments with lengths that reproduce the
original power-law distribution [Fig. 4(a)]. This test shows
that the distributions, obtained after segmenting surrogate
data with similar values of their exponents, appear clearly
different from each other, confirming that the distributions
obtained for the lengths of the segments for the healthy,
cosmonauts, and congestive heart-failure subjects (Fig. 3)
follow indeed an identical distribution.

Second, we test if the observed power-law distribution
for the segment lengths is simply due to the known pres-
ence of long-range correlations in the heartbeat interval
series [9]. We generate correlated linear noise [10] with
the same correlation exponent as the heartbeat data and
find that the distribution of segment lengths obtained for
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FIG. 3. Probability of finding segments with a length � larger
than a given value for the segments obtained from all subjects in
the healthy, cosmonauts, and heart-failure groups during daily
activity. The significance level is fixed to P0 � 95%, and the
imposed minimum length of the segments is �0 � 50 beats.
For all three groups we find a power law in the distribution
of segment lengths with exponent b � 2.2.
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the linear noise differs from the distribution obtained for
the heartbeat data [Fig. 4(b)]. For the noise, the distri-
bution decays faster, which means that these signals are
more segmented than the heart data. For different linear
noises with a broad range of correlation exponents, we do
not find power-law behavior in the distribution of the seg-
ments. Thus, we conclude that the linear correlations are
not sufficient to explain the power-law distribution of seg-
ment lengths in the heartbeat data.

(ii) Differences between the mean values of consecu-
tive segments (jumps).—Different healthy records can be
characterized by different overall variance, depending on
the activity and the individual characteristics of the sub-
jects. Moreover, subjects with heart failure exhibit inter-
beat intervals with lower mean and reduced beat-to-beat
variability (lower standard deviation). Thus, one can as-
sume that these larger jumps in healthy records are due
only to the fact that their average standard deviation is
larger [Figs. 1(a) and 1(b)]. In order to systematically
compare the statistical properties of the jumps between dif-
ferent individuals and different groups, we normalize each
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FIG. 4. (a) To test the validity of the observed power-law be-
havior in the distribution of segment lengths, we generate sur-
rogate signals formed by joining segments of white noise with
standard deviation s � 0.5 and average values chosen randomly
from the interval �0, 1�. We chose the lengths of these segments
from a power-law distribution with a given exponent b and find
excellent agreement between the given values of b and the val-
ues estimated from the segmentation. (b) To test the effect of
long-range correlations in the signal on the segmentation pro-
cess, we generate ten realizations, each with a length of 26 000
points, of a monofractal Gaussian-distributed correlated noise
with power spectrum decaying as f21 [10]. We find that the
distribution of segment lengths for the correlated noise does not
follow the power law found for the heartbeat data, suggesting
that the observed scale-invariant behavior in the distributions
of segment lengths in the heartbeat is not simply due to the
correlations. To verify that the curvature found in the distribu-
tion of segments for the noise is not due to finite size effects,
we also repeated the test with longer realizations of the noise
(1 000 000). (c) To test the effect of the selected value of �0 on
the segmentation process, we generate surrogate signals, as in
(a), with power-law distribution of segment lengths with an ex-
ponent b � 2.2 and a cutoff at lmin � 50. We test for different
values of �0 and find that the correct behavior is obtained only
when �0 � lmin.
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FIG. 5. (a) Probability density functions of the absolute value
of the difference between the mean values (jumps) of consecu-
tive segments. Both healthy and cosmonaut subjects follow
an identical distribution while the heart-failure subjects follow
a quite different distribution with higher probability for small
jumps consistent with reports of smaller variability in heart-
failure subjects [5]. All distributions are normalized to unit area.
Note that the distributions are plotted in units of standard devia-
tion, and that the results present a striking difference between
the healthy and the heart-failure group, which are not as ap-
parent by eye in the raw data after normalization [Fig. 1(d)].
(b) Same probability distributions as in (a), after rescaling P�s�
by Pmax, and s by 1�Pmax. This transformation preserves the
normalization to unit area.

time series by subtracting the global average (over 6 h) and
dividing by the global standard deviation. In this way, all
individual time series have zero mean and unit standard
deviation [Figs. 1(c) and 1(d)]. Such a normalization does
not affect our segmentation procedure.

We find that both the healthy subjects and the cosmo-
nauts follow identical distributions, but the distribution
of the jumps obtained from the heart-failure group are
markedly different —centered around lower values — in-
dicating that, even after normalization, there is a higher
probability for smaller jumps compared to the healthy
subjects [Fig. 5(a)]. Note that the distributions for all
groups appear to follow an identical homogeneous func-
tional form, so we can collapse these distributions on top
of each other by means of a homogeneous transformation
[Fig. 5(b)]. The ratio between the scaling parameters used
in this transformation gives us a factor by which this fea-
ture of the heart rate variability is reduced for the subjects
with heart failure as compared to the healthy subjects. This
finding indicates that, although the heart rate variability is
reduced with disease, there may be a common structure to
this variability, reflected in the identical functional form.
These observations agree with previously reported results
for the distribution of heartbeat fluctuations obtained by
means of wavelet and Hilbert transforms [11].

An important question raised by our results regards the
physiologic meaning of the finding of identical distribu-
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tions of segment length for both diseased and healthy sub-
jects. This finding is unexpected because these two groups
have radically distinct levels of physical activity and of
neuroautonomic control of the heart rate [12]. This is a
very intriguing finding for which there is no clear expla-
nation. In fact, it raises a new scientific question: What
is the origin of the mean heart rate nonstationarity? One
possible explanation is that, for both healthy and heart-
failure subjects, the effects of intrinsic (neuroautonomic)
and external stimuli on the heart rate are reflected in seg-
ments with different local mean, the characteristics of
which exhibit surprising universal features — i.e., identical
power-law distribution for the length of the segments and
identical functional form for the distribution of the jumps.
However, the smaller mean value for the jumps observed
in the heart-failure subjects, even after normalization, in-
dicates decreased reflexive-type responsiveness compared
to healthy subjects.
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