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Continuum percolation threshold for interpenetrating squares and cubes
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Monte Carlo simulations are performed to determine the critical percolation threshold for interpenetrating
square objects in two dimensions and cubic objects in three dimensions. Simulations are performed for two
cases:~i! objects whose edges are aligned parallel to one another and~ii ! randomly oriented objects. For
squares whose edges are aligned, the critical area fraction at the percolation thresholdfc50.666660.0004,
while for randomly oriented squaresfc50.625460.0002, 6% smaller. For cubes whose edges are aligned, the
critical volume fraction at the percolation thresholdfc50.277360.0002, while for randomly oriented cubes
fc50.216860.0002, 22% smaller.
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I. INTRODUCTION

Lattice percolation is often used for the statistical mod
ing of transport in porous media@1–4#. The requirement tha
sites, and the bonds between them, be constrained to a
lattice may not, however, be an appropriate model for nat
porous media@1–4#. The characteristics of site and bon
percolation potentially limit their applicability to modelin
of natural phenomena such as oil and groundwater flow
extraction of melt from super-solidus regions deep insid
planetary body.

Continuum percolation offers two advantages for desc
ing porous media.

~i! The objects that form clusters are not restricted
points on a fixed lattice; they can be placed anywhere wit
the volume studied and either be barred from interpene
tion or allowed to interpenetrate, i.e., they can have eit
‘‘hard’’ or ‘‘soft’’ cores @4#. Because of the freedom of place
ment inside the system, the connections between soft
objects can range from very small to very large, depend
upon the extent of interpenetration.

~ii ! The objects can be of any shape. In two dimensio
the continuum percolation of discs is often investigated@2,4#.
In most studies of continuum percolation in three dime
sions, spheres are used as the objects, leading to the ‘‘S
cheese’’ nomenclature for continuum percolation@2,4#. Other
frequently used shapes are rods and ellipsoids of revolu
@5#. In a few cases, the continuum percolation of cubes
been considered@6#.

Here we determine the threshold for continuum perco
tion of soft core squares in two dimensions~2D! and cubes in
three dimensions~3D! whose edges are aligned parallel to,
oriented at random angles to, the axes of the system. C
tinuum percolation is believed to belong to the same univ
sality class as site and bond percolation@7,8#; once we have
determined the continuum threshold for an object of a s
cific shape, we can apply many of the characteristics of
and bond percolation, e.g., critical exponents, to describe
continuum percolation cluster.

II. METHODS

We construct 2D and 3D Monte Carlo simulations for t
determination of the percolation threshold based upon
1063-651X/2002/66~4!/046136~5!/$20.00 66 0461
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Leath method@9# and the methods Lorenz and Ziff@10# used
in their study of the continuum percolation of spheres.

We perform 2D simulations with squares whose edges
of unit length. In 3D we perform simulations with cubes
three different edge lengths: 1/A3, 0.75, and 1.0; the lengthL
of each axis of the simulation box in the 2D simulations
301, and in 3D is 101 in simulations using cubes with ed
lengths of 1/A3 and 0.75, and is 161 in simulations with th
unit cube@11#. We subdivide the system into either a 2D
3D grid of unit area squares or unit volume cubes; an ill
trative 12312 2D version of our system is shown in Fig.

The cluster begins in the center grid volume and obje
are added to it based upon a Poisson distribution cent
about the average number of objects per unit area or volu
N/Ld, chosen for the simulation of dimensiond @10#. The
product of this value and the individual object’s area or v
ume,v, is the reduced number density

FIG. 1. Two-dimensional, 12312 example of a percolation clus
ter of unit-length square objects~thick lines! for the case of ran-
domly oriented squares. The system is divided by a series of
lines ~thin lines! that create unit areas in this 2D system. Note th
the upper two objects of the cluster in the center of the sys
intersect each other even though their centers are placed in n
nearest-neighbor areas of the grid. The real 2D and 3D system
our study are much larger than this system.
©2002 The American Physical Society36-1
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h[
vN

Ld
. ~1!

If the number of objectsn generated from the Poisson distr
bution is nonzero, then thesen objects are placed at rando
locations inside the grid volume. To fix the orientation
each individual object, random numbers are generated to
termine the one angle of rotation in the 2D simulations a
the three Euler angles of rotation in the 3D simulations. T
one angle in 2D and two of the angles in 3D vary from 0
2p and are drawn from a uniform distribution. The thi
angle in 3D varies between 0 andp and is drawn from a
cosine distribution in order to yield an isotropic distributio
of orientations. The locations of the 4~2D! or 8 ~3D! corners
and the center of each object are stored in a data struc
along with a flag indicating that the grid area~2D! or volume
~3D! was visited and populated during the realization. T
nearest neighbors and next-nearest neighbors of this grid
or volume are then populated in a similar manner and
intersection between squares or cubes is tested.

To determine whether or not two squares intersect,
choose one square in the cluster as the reference squar
another square in the simulation as the test square. We u
algorithm for the intersection of two lines@12# to test if any
of the four edges of the reference square interesect the
edges of the test square. To determine if two cubes inters
we choose one cube in the cluster as the reference cube
another in the simulation as the test cube. We use an a
rithm for the intersection of a line and a facet@13# to test if
any of the edges of the reference cube intersect the face
the test cube. In this algorithm, the location of each of the
edges of the reference cube are compared to the locatio
the 12 triangular facets that describe the locations of all fa
on the test cube using the corners and diagonal of each
If the test object intersects the reference object, it is adde
the growing cluster. This process is repeated for each
square or cube added to the system until the cluster ca
longer grow. Intersections between squares or cubes in
areas or volumes up to two units away can occur for e
lengths 0.75 and 1, as exemplified in 2D for squares of u
edge~Fig. 1!, but cubes of edge 1/A3 can only interesect if
they are in the same or neighboring volumes of the g
which reduces the number of grid volumes that must
checked for cube overlap in simulations with cubes of t
smallest size.

The cumulative distribution of cluster sizes is calculat
from the cluster size of each realization,s, by binning the
cluster sizes such that all bins in the range of 20 to 2s11

21 are incremented by 1. In order to estimate finite-s
effects of the simulation, objects in each cluster are teste
determine whether they touch the edge of the simulation
so, the cluster size is compared to the smallest cluster siz
previous realizations that touch the edge and the sma
value is stored. Bins of sizes greater than the smallest clu
that touched the edge of the system are not used in the
termination of the percolation threshold.

At the end of the simulation, the value of each bin
divided by the number of realizations, from 10 000 to 50 0
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to yield the probability of achieving a cluster of sizes,
P(suh), for a given value ofh. Power law behavior of the
probability as a function of the bin size is interpreted
indicate the critical percolation thresholdh5hc @2,4#. To
accurately determine the threshold, we follow the techniq
of Ref. @10#. The probability of generating a cluster siz
greater thans at a specifiedh is @2,4#

P~suh!;As22t f @~h2hc!s
s#, ~2!

where botht ands are universal exponents andA is a non-
universal constant. In 2D the values of these exponents
187/91 and 36/91@4#, respectively. In 3D the values oft and
s are 2.189 0660.000 06 and 0.452260.0008, respectively
@14#. Near the percolation threshold the scaling functionf (x)
can be expanded in a Taylor series:

f ~x!511Bx1O~x2!. ~3!

Combining Eqs.~2! and ~3!,

P~suh!st22;A1AB~h2hc!s
s1•••, ~4!

which demonstrates thatP(suh)st22 becomes constant a
the percolation threshold ass becomes asymptotically large

III. RESULTS

The percolation threshold can be expressed as either
critical reduced number density,hc , or the critical area~or
volume! fraction,fc , which are related to each other by@15#

fc512e2hc. ~5!

A. Two dimensions

For square objects aligned parallel to each other in the
system we find

hc51.09860.001 ~6a!

or, from ~5!,

fc50.666660.0004 ~6b!

@see Fig. 2~a!#. Our value offc is within the error bars of
two previous determinations by Monte Carlo techniqu
where fc50.66860.003 @16# and fc50.6560.02 @17#.
However, our determination offc is slightly lower than that
calulated in@6#, whose Monte Carlo simulations produce
fc50.675360.0008, and whose application of the direc
connectedness expansion method yieldedfc50.6912. In
contrast, our value offc is significantly higher than the ex
perimental one of@18# whose average for nine trials isfc
50.61360.013.

We find that for randomly oriented square objects in 2

hc50.981960.0006 ~7a!

or

fc50.625460.0002 ~7b!
6-2
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@see Fig. 2~b!#.
These values for the continuum percolation threshold

aligned and randomly oriented squares are lower than
discs, fc50.676 33960.000 004 @19#, by a maximum of
'1% for aligned squares and'7% for randomly oriented
squares. We attribute the significant difference infc between
discs and randomly oriented squares to the possibility of r
domly oriented squares intersecting other squares whose
ters are located at distances up to the diagonal length o
square~see Fig. 1!, whereas two discs can only intersect
their centers are no further than one diameter away fr
each other. The similarity offc for aligned squares and disc
may occur because both objects only have the potentia
intersect other objects whose centers are separated by at
either the edge length of the square or the diameter of
disc.

B. Three dimensions

For cubic objects aligned parallel to each other in the
system,

FIG. 2. Power-law scaled plots for determination of percolat
threshold for squares of unit size in a 3013301 system based upo
50 000 realizations at each area fraction. At the thresholdh5hc ,
P(suh)st22 is independent ofss, which allows for accurate deter
mination of hc , which is related tofc by Eq. ~5!. ~a! Squares
whose edges are aligned parallel to each other, for which cas
estimatehc51.09860.001, sofc50.666660.0004 by Eq.~5!. ~b!
Squares that are randomly oriented as shown in Fig. 1, for which
estimatehc50.981960.0006, sofc50.625460.0002.
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hc50.324860.0003 ~8a!

or

fc50.277360.0002 ~8b!

@see Fig. 3~a!#. The precision of this result is greater than t
most precise previous determinationfc50.28060.005 @6#.
The critical volume fraction is significantly less when cub
objects are allowed to have random orientations,

hc50.244460.0003 ~9a!

or

fc50.216860.0002 ~9b!

@see Fig. 3~b!#. The result for randomly oriented cubes is th
same for cubes of edge lengths 1/A3, 0.75, and 1. Thus, a
expected, the percolation threshold is independent of
cube and system size used. Our value offc for the con-

we

e

FIG. 3. Power-law scaled plots for determination of percolat
threshold for cubes of unit size in a 16131613161 3D system
based upon 50 000 realizations for each volume fraction. At
thresholdh5hc , P(suh)st22 is independent ofss, which allows
for accurate determination ofhc , which is related tofc by Eq.~5!.
~a! Cubes whose faces are aligned parallel to each other, for w
case we estimatehc50.324860.0003, so by~5! fc50.2773
60.0002.~b! Cubes that are randomly oriented, for which we es
matehc50.244460.0003, sofc50.216860.0002.
6-3
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TABLE I. Percolation threshold, excluded areas and volumes, and average bond numbers.

Object Vex for unit object fc Nc Bc ~calculated! Bc ~literature!

Discs 4 0.676 339@19# 1.128059 4.51 4.560.1 @24#

4.7 @6#

Aligned squares 4 0.666660.0004 1.09860.001 4.3960.01 4.560.1 @24#

4.7 @6#

Random squares 4.547 0.625460.0002 0.981960.0006 4.4660.01

Spheres 8 0.289 573@10# 0.341889 2.74 2.79@6#

Aligned cubes 8 0.277360.0002 0.324860.0003 2.5960.01 2.60@6#

Random cubes 11 0.216860.0002 0.244460.0003 2.6960.01
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tinuum percolation of randomly oriented cubes is sign
cantly more precise than the previous one of 0.2260.01@20#.

Comparision of the critical volume at the percolatio
threshold for aligned cubes with that determined for sphe
fc50.289 57360.000 002@10#, demonstrates that the diffe
ence in shape between spheres and cubes affectsfc by
'4% @6#. Allowing cubes to randomly orient lowersfc
'22%. The difference between the randomly oriented cu
and spheres is due to the same process as discussed abo
discs and squares, but in this case it is the greater lengt
the body diagonals of cubes compared to the diamete
spheres or the edge length of aligned cubes that enhance
probability of connectedness for randomly oriented cube
any given volume fraction.

IV. DISCUSSION

The continuum percolation threshold can be approxima
with excluded volume theory@6,21,22#:

NcVex5Bc , ~10!

whereNc is the critical density of objects@23#, Vex is their
excluded area or volume, andBc is the average number o
bonds per object@24#. Originally, Bc was thought to be one
constant for all parallel~i.e., not randomly oriented! convex
objects in 2D and another constant in 3D@24#, but laterBc
was determined to be different for spheres and for cube
3D @6#. The excluded area for discs and aligned square
unit area is 4 and for randomly oriented unit squares 4.
@21#. For both spheres and aligned cubesVex is equal to 8
times their volume in 3D. For randomly oriented cubesVex is
11 times their volume@25#. Calculated values ofBc in 2D
and 3D are presented in Table I.

In 2D we determine thatBc54.3960.01 for aligned
squares andBc54.4660.01 for randomly oriented square
The value for aligned squares is similar to that origina
proposed by Balberg for discs and squares,Bc54.560.1
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@24#, and to the values for discs and squares calculated f
Monte Carlo simulations:Bc54.51 @19# and Bc54.560.1
@6#, respectively. On the other hand, our value forBc is
somewhat lower than that calculated by a series expan
technique,Bc54.7 @6#. Thus we confirm thatBc has the
same value, within error, for discs and for aligned and r
domly oriented squares in 2D.

Our Monte Carlo simulations yieldBc52.5960.01 for
aligned cubes, as is expected because of the agreemen
tween our estimate of the percolation threshold and previ
estimates. For randomly oriented cubesBc52.6960.01 is
closer to the value ofBc for the continum percolation o
spheres~Ref. @6#! than is the value ofBc for aligned cubes.
However, theBc value for randomly oriented cubes does n
exceed the limiting value predicted by the excluded volu
theory of the continuum percolation threshold Ref.@21#. The
increases inBc and decreases infc observed for both
squares and cubes when they are randomly oriented c
pared to when they are aligned is consistent with the i
that increasing connectivity results in decreasing percola
thresholds for these objects.

Our results confirm previous research demonstrating
effect of object shape on the threshold for continuum per
lation. We find, furthermore, that the incorporation of ra
dom orientations of objects in continuum percolation sim
lations significantly affects the percolation threshold. Most
these effects are predicted by the application of exclu
volume theory to the calculation of the percolation thresho
Randomly oriented squares and cubes haveBc values similar
to those determined by other researchers for discs
spheres, respectively.
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