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Abstract – Taylor’s law of temporal and ensemble fluctuation scaling has been ubiquitously
observed in diverse complex systems including financial markets. Stock illiquidity is an important
nonadditive financial quantity, which is found to comply with Taylor’s temporal fluctuation scaling
law. In this paper, we perform the cross-sectional analysis of the 1 min high-frequency illiquidity
time series of Chinese stocks and unveil the presence of Taylor’s law of ensemble fluctuation
scaling. The estimated daily Taylor scaling exponent fluctuates around 1.442. We find that Taylor’s
scaling exponents of stock illiquidity do not relate to the ensemble mean and ensemble variety of
returns. Our analysis uncovers a new scaling law of financial markets and might stimulate further
investigations for a better understanding of financial markets’ dynamics.

Copyright c⃝ EPLA, 2018

Introduction. – A complex system is composed of
many interacting constituents {i|i = 1, 2, · · · , N} that
form a complex network. For a given quantity f of the
nodes, we can record N time series sampled at evenly
spaced time intervals, {fi(t)|t = 1, 2, · · · , T}. A well-
studied example in econophysics is about financial mar-
kets, in which the listed companies are constituents or
nodes and the recoded time series are returns and trading
volumes. In addition to the widely adopted analysis based
on the random matrix theory [1–3], Taylor’s law of fluc-
tuation scaling has also attracted much attention [4]. As
pointed out by Eisler et al. [4], the fluctuation scaling law
was first discovered in 1938 by Smith [5], who found that
the variance of the yields of crop fields scales as a power
law of the average yield or equivalently the plot size. In
1961, Taylor obtained a similar power-law relationship be-
tween the variance and the mean of populations [6], which
is later known as Taylor’s law of spatial fluctuation scaling.

When time series are considered, there are two forms of
Taylor’s law, describing the temporal and ensemble fluc-
tuation scaling of a complex system [4]. Taylor’s law of
temporal fluctuation scaling considers the variance-mean

(a)E-mail: wxzhou@ecust.edu.cn

relationship of time series, in which the mean is

µi = ⟨fi(t)⟩t =
1

T

T
∑

t=1

fi(t), (1)

and the variance is

σi = ⟨f 2
i (t)⟩t − µ2

t , (2)

where ⟨⟩t calculates the temporal average over t. Taylor’s
law of temporal fluctuation scaling reads [4]

σi = a × µb
i , (3)

where a is a positive constant and b is the scaling exponent.
Another form of Taylor’s law concerns the ensemble

or cross-sectional fluctuation scaling between the variance
and the mean of cross-sectional fluctuation signals. For an
observation period t ∈ (0, T ] and an observation resolution
∆t = 1 min, we denote fi(t) the illiquidity time series of
stock i over the time interval [1, T ], whose mean is

µ(t) = ⟨fi(t)⟩i =
1

N(t)

N(t)
∑

i=1

fi(t), (4)
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Fig. 1: Taylor’s law of cross-sectional fluctuation scaling of the 1 min illiquidity of all the Chinese stocks from 26 July 1999 to
30 December 2011. (a) Full sample. (b) Sample in which each point has only two stocks. (c) Sample in which each point has
more than two stocks. (d) Sample in which each point has more than 40 stocks.

where N(t) is the number of stocks available at t, and the
variance is

σ2 (t) = ⟨f 2
i (t)⟩i − ⟨fi(t)⟩

2
i . (5)

Taylor’s law of cross-sectional fluctuation scaling reads [4]

σ(t) = a × [µ(t)]b, (6)

where a is a positive constant and b is the scaling exponent.
To estimate the parameters a and b, one can simply rewrite
eq. (6) as follows:

lnσ(t) = ln a + b lnµ(t), (7)

and then performs the ordinary least-squares linear
regression.

Taylor’s law of fluctuation scaling has been docu-
mented in diverse systems [4], such as species abun-
dance in population dynamics [6–8], cosmic rays [9],
heavy-ion collisions [10], cell numbers [11], hematogenous
organ metastases [12], human single nucleotide polymor-
phisms [13], traffic fluxes recorded at individual nodes in
transportation networks (the number of bytes on Inter-
net, the stream flow in river networks, the number of cars
on highways) [14–17], individual health [18], gene expres-
sion time series from yeast and human organisms [19],
gene network of yeast [20], trading activities in stock mar-
kets [21–29], application installations [30], quotation ac-
tivities and transaction activities in the foreign exchange
market [31], and species abundance [32,33], bacterial pop-
ulations in the human microbiome [33], and tornado out-
breaks [34].

Taylor’s law can further be extended to higher orders us-
ing the k-th vs. the j-th cumulants [35], where the special
case of k = 2 and j = 1 recovers the convention expression

of Taylor’s law. In addition, there is evidence showing that
stock illiquidity, a nonadditive quantity, also complies with
Taylor’s law of temporal fluctuation scaling [36]. Here,
we investigate the high-frequency illiquidity time series of
Chinese stocks and confirm the presence of Taylor’s Law
of ensemble fluctuation scaling in stock illiquidity.

Data description. – Our data sets contain the 1 min
high-frequency time series of prices P (t) and trading vol-
umes v(t) of 2197 A-share and B-Share stocks traded on
the Shenzhen Stock Exchange (SZSE) and the Shanghai
Stock Exchange (SHSE) from 26 July 1999 to 30 December
2011. Different stocks have different starting dates.

For each stock i, the 1 min logarithmic returns are cal-
culated from the stock prices Pi(t) as follows:

ri(t) = lnPi(t) − lnPi(t − 1). (8)

The 1 min dollar trading volume vi(t) in the time interval
(t − 1, t] is computed as the sum over all transactions in
the interval. The 1 min illiquidity at time t of stock i is
defined as the ratio of the absolute 1 min return to the
1 min trading volume [37]:

fi(t) = |ri(t)|/vi(t). (9)

Results. – For each minute t, we calculate the mean
µ(t) and the standard deviation σ(t) of the cross-sectional
illiquidities fi(t). The points with µ = 0 or σ = 0 are not
included in the following analysis.

Full sample. Figure 1(a) presents the scatter plot of
σ(t) against µ(t) at log-log scales. It is found that there is
a power-law relationship between σ(t) and µ(t). However,
since there are too many data points, we are not able to
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Fig. 2: (Colour online) (a) Evolution of the Taylor exponent b

of the 1 min illiquidity time series. (b) Histogram of the Taylor
exponents.

obtain the scaling exponent. We also observe that there
are seemingly parallel “lines” in the plot.

A close scrutiny shows that there are many points that
are obtained from only two stocks. These points are pre-
sented in fig. 1(b), which shows an evident straight line
with slope b ≈ 1 forming an upper boundary. Assume
that the 1 min returns of the two stocks at certain time is
r1 and r2 . We have

µ =
r1 + r2

2
(10)

and

σ =
|r1 − r2 |

2
=

√

µ2 − r1 r2 . (11)

When |r1 | ≫ |r2 | or |r1 | ≪ |r2 |, we find approximately
that σ = µ. These points are located on the approxi-
mate straight line in fig. 1(b). According to eq. (11), other
points lie below the upper boundary σ = µ.

In fig. 1(c), we show the sample in which each point has
more than two stocks, while in fig. 1(d) we present the
sample in which each point has more than 40 stocks. It
is observed that the “parallel line” phenomenon becomes
weaker and the scaling exponent of the bulk data points
seems greater than 1.

Daily evolution. Figure 2(a) shows the daily evolution
of the Taylor scaling exponent b of the 1 min illiquidity
time series of all Chinese stocks. Each Taylor scaling ex-
ponent is obtained from the data in a single day. The expo-
nent fluctuates remarkably in time and exhibits irregular
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Fig. 3: (Colour online) Dependence of σ on µ for three spe-
cial days on 2003/09/13, 2005/09/24 and 2005/10/22. The
estimated scaling exponents are, respectively, the largest, the
smallest and the second smallest among all the daily exponents.

patterns. The mean of b is 1.436 and the standard devia-
tion is 0.169.

Figure 2(b) shows the histogram of the Taylor expo-
nents. We find that b is left-skewed and the skewness
is −0.831. In addition, the kurtosis is 5.289, indicat-
ing the non-Gaussianity of the distribution of scaling
exponents.

We observe that there are many very small exponents
and a very large exponent in fig. 2(a). The largest ex-
ponent b = 2.74 ± 0.53 was on 2003/09/13. We have
ln a = 26.35 ± 7.78, the p-value of b is 0.0356, the p-value
of ln a is 0.077, and the adjusted R2 is 0.90. The smallest
exponent b = 0.70 ± 0.28 was on 2005/09/24. We have
ln a = −4.01 ± 4.22, the p-value of b is 0.0884, the p-value
of ln a is 0.413, and the adjusted R2 is 0.57. The second
minimum exponent b = 0.71 ± 0.28 was on 2005/10/22.
We have ln a = −3.98 ± 4.35, the p-value of b is 0.1283,
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Fig. 4: (Colour online) Taylor’s law for four normal days on 1999/12/21, 2004/08/12, 2007/03/05 and 2010/01/15. All the
plots exhibit nice power-law scalings. The solid lines are the least-squares fits.

the p-value of ln a is 0.457, and the adjusted R2 is 0.64.
The third minimum exponent b = 0.74 ± 0.10 was on
2003/06/14. We have ln a = −3.23 ± 1.43, the p-value
of b is 0.0003, the p-value of ln a is 0.065, and R2 is 0.89.
We find that only the third minimum exponent is signifi-
cantly different from 0 at the significance level of 0.01. The
dependence of σ on µ on the first three days investigated
above is illustrated in fig. 3. It is found that all the three
plots have very few data points. Further analysis on small
Taylor exponents gives similar results.

For comparison, fig. 4 illustrates the dependence of σ
on µ for four normal days on 1999/12/21, 2004/08/12,
2007/03/05 and 2010/01/15. There are nice power law
scalings over two orders of magnitude in all the four
plots, indicating the presence of Taylor’s law of cross-
sectional fluctuation scaling. For 1999/12/21, we have
b = 1.37± 0.02, ln a = 6.93± 0.37, the p-value of b is 0.0000,
the p-value of ln a is 0.000, R2 is 0.93. For 2004/08/12,
we have b = 1.53 ± 0.03, ln a = 9.65 ± 0.41, the p-value
of b is 0.0000, the p-value of ln a is 0.000, R2 is 0.93. For
2007/03/05, we have b = 1.61 ± 0.04, ln a = 12.14 ± 0.60,
the p-value of b is 0.0000, the p-value of ln a is 0.000, R2

is 0.88. For 2010/01/15, we have b = 1.49 ± 0.03, ln a =
10.87± 0.50, the p-value of b is 0.0000, the p-value of ln a is
0.000, R2 is 0.92. It is evident that both a and b are signif-
icantly different from 0 at the significance level of 0.0001.

According to the above analyses, we discard the days
with less than 50 data points. Figure 5 illustrates
the evolution of the daily Taylor exponent b and its
histogram. The exponent fluctuates in time. The mean
and standard deviation of b are, respectively, 1.442 and
0.158. The distribution of b is still left-skewed with a
skewness of −0.868. The kurtosis 3.782 becomes smaller
than in fig. 2(b).
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Fig. 5: (Colour online) (a) Evolution of Taylor exponent b

in which the days with less than 50 data points have been
removed. (b) Histogram of the Taylor exponents.

Relationship to ensemble returns and dispersions.
We now check if the Taylor exponent is related to
the cross-sectional returns and dispersions. The cross-
sectional dispersion is also known as the ensemble variety
in econophysics [38–41]. The cross-sectional return µr(t)
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Fig. 6: Scatter plots of b vs. µr (a) and σr (b). No evident
dependence is observed.

at time t is defined as follows [38]:

µr(t) = ⟨ri(t)⟩ =
1

N(t)

N(t)
∑

i=1

ri(t), (12)

where N(t) is the number of stocks included in the cal-
culation. The cross-sectional dispersion σr(t) at time t is
defined as follows [38]:

σ2
r(t) =

1

N(t)

N(t)
∑

i=1

[ri(t) − µr(t)]
2 . (13)

In fig. 6, we present the scatter plots of b with respect to
µr and σr at the daily level. No evident interdependence
is observed. It implies that Taylor’s law of cross-sectional
fluctuation scaling may not relate to the overall market
fluctuations and volatilities.

Summary and discussions. – In this paper, we have
performed a cross-sectional analysis of the 1 min high-
frequency illiquidity time series of Chinese stocks. The
presence of Taylor’s law of ensemble fluctuation scaling
has been confirmed. We found that the estimated daily
Taylor scaling exponent fluctuates around 1.442 in time.
We further observed that Taylor’s scaling exponents of
stock illiquidity are not related to the ensemble mean and
ensemble variety of stock returns. Our analysis unveiled
a new scaling law of financial illiquidity that complements
Taylor’s temporal fluctuation scaling law of illiquidity [36].

Our findings also contribute to the literature by docu-
menting Taylor’s ensemble fluctuation scaling law on a
non-additive quantity.

Our work might stimulate further investigations on Tay-
lor’s law to gain a better understanding of financial mar-
kets’ complex dynamics. One can study financial time
series at different sampling frequencies at different stock
markets or industrial sectors. Other than trading ac-
tivities and illiquidity, one can investigate other finan-
cial quantities such as bid-ask spread [42], volatility [43],
turnover rate [44], and immediate price impact [45–47].
It is interesting as well to check if Taylor’s law holds for
other financial assets, such as foreign exchange rates, in-
terest rates, equity futures and options, and commodities.

Several models have been developed to explain the emer-
gence of Taylor’s law in different systems [14,17,35,48,49].
However, the observed scaling law in stock illiquidity can-
not be explained by these models. The microscopic origins
of Taylor’s law in stock illiquidity remain an open problem.
Further research is required.
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