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Effect of nonlinear filters on detrended fluctuation analysis
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When investigating the dynamical properties of complex multiple-component physical and physiological
systems, it is often the case that the measurable system’s output does not directly represent the quantity we
want to probe in order to understand the underlying mechanisms. Instead, the output signal is often a linear or
nonlinear function of the quantity of interest. Here, we investigate how various linear and nonlinear transfor-
mations affect the correlation and scaling properties of a signal, using the detrended fluctuation @pBdysis
which has been shown to accurately quantify power-law correlations in nonstationary signals. Specifically, we
study the effect of three types of transforrfiglinear (y;=ax +b), (ii) nonlinear polynomialy; :a><§<), and(iii)
nonlinear logarithmidy;=log(x,+A)] filters. We compare the correlation and scaling properties of signals
before and after the transform. We find that linear filters do not change the correlation properties, while the
effect of nonlinear polynomial and logarithmic filters strongly depend&bthe strength of correlations in the
original signal,(b) the powerk of the polynomial filter, andc) the offsetA in the logarithmic filter. We further
apply the DFA method to investigate the “apparent” scaling of three analytic functipnsxponential
[exp(xx+a)], (i) logarithmic[log(x+a)], and(iii) power law[ (x+a)], which are often encountered as trends
in physical and biological processes. While these three functions have different characteristics, we find that
there is a broad range of values for paramateommon for all three functions, where the slope of the DFA
curves is identical. We further note that the DFA results obtained for a class of other analytic functions can be
reduced to these three typical cases. We systematically test the performance of the DFA method when estimat-
ing long-range power-law correlations in the output signals for different parameter values in the three types of
filters and the three analytic functions we consider.
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I. INTRODUCTION parameter—the scaling exponedt—to quantify the scale-

Many physical and biological systems under multicompo-nvariant properties of a signal. One advantage of the DFA
nent control mechanisms exhibit scale-invariant feature§i€thod is that it allows the detection of long-range power-
characterized by long-range power-law correlations in theitaW correlations in noisy signals with embedded polynomial

output. These scaling features are often difficult to quantif}rends that can mask the true correlations in the fluctuations
due to the presence of erratic fluctuations, heterogeneity, arf] & Signal. Recent comparative studies have demonstrated

nonstationarity embedded in the output signals. This problerif1at the DFA method outperforms conventional techniques in
becomes even more difficult in certain casés:when we accurately quantifying correlation properties over a wide

cannot probe directly the quantity of interest in experimentaf"’mg.e of scale$6-10. The DFA method has .been widely
settings—i.e., the measurable output signal is a linear or norﬁgmlaer? etloe cltjrglé\n[(?é&h? élllt)l _r? m(éaég;af?ug% r:tllrgrl]csﬁf]_i%
linear function of the quantity of interedfij) when measur- P grap '

) ; ) . . : man motor activity[32] and gait [33—37], meteorolo
ing devices impose a linear or nonlinear filter on the system’ yl32] gait | 1 gy

o i ) : 38,39, climate temperature fluctuatioh40—45, river flow
output; (iii) when we are interested not in the output signaly 4 dischargé46,47, electric signal§48-50, stellar x-ray

but in a specific component of it, which is obtained throughpinary systemd51], neural receptors in biological systems
a nonlinear transfornfe.g., the magnitude or the sign of the [52] ‘muysic[53], and economic§54—64. In many of these
fluctuations in the signal (iv) when comparing the dynam- applications the main problem is to differentiate scaling fea-
ics of different systems by applying nonlinear transforms totures in a system’s output which are inherent to the underly-
their output signals; ofv) when preprocessing the output ing dynamics, from the scaling features which are an artifact
signal by means of linear or nonlinear filters before the actuabf nonstationarities or different types of transforms and fil-
analysis. Thus, to understand the intrinsic dynamics of a sygers.
tem, in such cases it is important to correctly analyze and In two previous studies we have examined how different
interpret the dynamical patterns in the system’s output. types of nonstationarities such as superposed sinusoidal and
Conventional two-point correlation, power spectrum, andpower-law trends, random spikes, cutout segments, and
Hurst analysis methods are not suited for nonstationary sigpatches with different local behavior affect the long-range
nals, the statistical properties of which change with timecorrelation properties of signald0,62. Here we use the
[1-3]. To address this problem, detrended fluctuation analypFA method to investigate how the scaling properties of
sis (DFA) method was developed to accurately quantifynoisy correlated signals change under linear and nonlinear
long-range correlations embedded in a nonstationary timé&ansforms. Further(i) we test to see under what types of
series [4,5]. This method provides a single quantitative transforms(filters) it is possible to derive information about
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the scaling properties of the signal of interest before theone often first obtains the relative price returfi)
transformation, provided we know the correlation behavior=log[X(i+1)/X(i)] before performing correlation analysis
of the transformedfiltered signal, and(ii) we probe the [55 63. It is assumed that upon taking the returns one does
“‘apparent” scaling of three common transformation func-pot alter the information contained in the original signal. To

tions after applying the DFA method—exponential, logarith-test this assumption we compare the correlation properties of
mic, and polynomial. We also evaluate the limitations of they,q signal before and after a logarithmic filter.

DFA method under linear and nonlinear transforms. Specifi- (2) Correlation properties of transformation functians

cally, we cons!der the foII_owmg. . When analyzing the correlation properties of a signal after a
(1) Correlation properties Of S|gnaI§ after transforms of given transform, it may be valuable to know what is the DFA
th_e Wpe{xi}m 00, \(vhere{xi} IS a stationary signal with result for the transformation function itself. In addition, it is
priori_ known correlation properties. . often the case that noisy signals are superposed on trends
(i) Linear transform {x} 0 {ax+bj. Transforms of this  \hich can be approximated by a certain function. Previous
type are often encountered in physical systems. For examplgy,dies have demonstrated that the DFA result of a correlated
(a) from the fluctuations in the _acqeleratlon of a partlclesigna| with a superposed trend is a superposition of the DFA
(measurable quantifyone can derive information about how et for the signal and the DFA result for the analytic func-
fche fo_rce(quan_uty of mte_reStactlng on th|§ particle changes jgn representing the trerfd0,62. Here we investigate sepa-
in time without directly measuring the force: rately the results of the DFA for three functions which are
{a(t);0 {F(t)=ma(t)}; (b) in pnp transistors a difficult to  \ery often encountered in physical and biological processes:
directly measure bag@nput) currentlg (quantity of interest (i) exponential (ii) logarithmic, and (i) power-law
is amplified hundreds of times, so that small fluctuations in ~ The layout of this paper is as follows: In Sec. II, we
Ig may lead to significantand measurabjechanges in the gescribe how we generate signals with desired long-range
collector (outpuy = signal Ic (measurable quantlly  power-law correlations and introduce the DFA method used
{lc(t)} 0 {Ig(t)=1c(t;)/ B}, and(c) changes in the volum¥€ {4 quantify correlations in nonstationary signals. In Sec. I,
(quantity of interestof an ideal gas can be determined from we compare the correlation and scaling properties of signals
fluctuations in the temperaturgneasurable quantitypro-  pefore and after linear and nonlinear polynomial transforms.
vided the pressure is kept constanfT(t)}0 {V(t) |n Sec. IV, we consider the effect of nonlinear logarithmic
=(nR/P)T(t;)}. filter on the long-range correlation properties of stationary
(i) Nonlinear polynomial transform{x;} 0 {ax}, where signals. In Sec. V, we investigate the performance of the
k+# 1 and takes on positive integer values. For exam(@ale, DFA method on three analytic functions—exponential, loga-
from fluctuations in the currert (measurable quantityone  rithmic, and power-law—which are often encountered as
can extract information about the behavior of the power lostrends in physical and biological time series. We systemati-
as heatP (quantity of interestin a resistor:{I(t)} 0 {P(t;) cally examine the crossovers in the scaling behavior of cor-
=RIA(t)}; (b) measuring the temperatuflefluctuations of a  related signals resulting from the transforms and trends dis-
radiating body the Stefan’s law defines the power emitted pecussed in Secs. IlI-V, the conditions of existence of these
unit area: {T;}0 {¢=0T?}. Further, linear and nonlinear crossovers, and their typical characteristics. We summarize
polynomial filters are also used to renormalize data seriesur findings in Sec. VI.
representing an identical quantity measured in different sys-

tems before performing correlation analysis, &ig.normal- 1. METHODS

izing heart rate recordings from different subjects to zero

mean and unit standard deviatigimear filter or (i) ex- We analyze two types of signals.

tracting the absolute valu@onlinear filtej of the heartbeat (1) Stochastic stationary signafs} (i=1,2,3, ... Nyay

fluctuations in datasets obtained from different subjg2%g. ~ with different type of correlationguncorrelated, correlated,
In this study we consider two examples of nonlinear poly-and anticorrelatgdand surrogate signals obtained frdm}
nomial filters—quadratic and cubic filters—which representafter linear and nonlinear transforms. We use an algorithm
the class of polynomial filters with even and odd powers, andased on the Fourier transform to generate stationary signals
we investigate how these filters change the correlation propx} with long-range power-law correlations as described in
erties of signals. Since polynomial filters with even power[62,64,63. The generated signals;} have zero mean and
wipe out the sign information in a signal, we expect qua-unit standard deviation.
dratic and cubic filters to have a different effect. A recent (2) Exponential, logarithmic, and power-law functions
study by Ashkenazgt al.[25] shows that the magnitude of a which often represent transformations or trends in physical
signal (without sign informatioh exhibits different correla- and biological data.
tion properties from that of the original signal. Thus it is  We use the detrended fluctuation analysis mefléod to
necessary to investigate how quadratic and cubic filterguantify the correlation and scaling properties of these sig-
change the scaling properties of correlated signals. nals. The DFA method is described in detail elsewhere
(iii ) Logarithmic filter {x} O {log(x;+A)}, is also widely [10,62. Briefly, it involves the following stepsii) we inte-
used in renormalizing datasets obtained from differengrate the signal after subtracting the global averdigewe
sources before comparative analysis. For example, to conthen divide the time series into boxes of lengttand per-
pare the dynamics of price fluctuationgi) of different  form, in each box, a least-squares polynomial fit of ortley
company stocks, which may have a different average pricghe integrated signal to remove the local trend in each box;
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(iii ) in each box we calculate the root-mean-square fluctuascaling curve of the original signdk;}, and the scaling ex-
tion function F(n) quantifying the fluctuations of the inte- ponenta=0.5 remains unchangééig. 1(a)].
grated signal along the local tren@y) we repeat this proce- For signals with correlations we find that the linear and
dure for different box size@ime scalesn. nonlinear polynomial filters have a different effect. In par-
A power-law relation between the average root-meanticular, for both correlateda>0.5 and anticorrelated«
square fluctuation functioR(n) and the box size indicates < 0.5 signals{x;} we find that the scaling properties remain
the presence of scaling{(n) ~n®. The scalen for which this  unchanged after the linear filter. In contrast, the quadratic
scaling holds represents the length of the correlation. Thand cubic filters change the scaling behavior of both corre-
fluctuations in a signal can be characterized by the scalingated and anti-correlated signdkigs. 1b), 1(c), and 1d)].
exponenta, a self-similarity parameter which quantifies the Specifically, foranticorrelatedsignals, we find thati) after
strength of the long-range power-law correlations in the sigthe quadratic filter the scaling behavior is dramatically
nal. If «=0.5, there is no correlation and the signal is uncor-changed to uncorrelatédandon) behavior witha=0.5 at all
related(white noise; if «<0.5, the signal is anticorrelated; scalesii) after the cubic filter the scalin@orrelation) func-
if a>0.5, the signal is correlated. Since we use a polynomiation F(n) of anticorrelated signals is also changed and exhib-
fit of order¢, we denote the algorithm as DFA-Further, we its a crossover from anticorrelated behavior at small scales to
note that for stationary signafs;} with long-range power- uncorrelated behavior at larger sca[€sg. 1(b)]. We note
law correlations, the value of the scaling exponanis re-  that the quadratic filter removes the sign information in a
lated to the exponeng in the power spectrun®(f)=f# of  signal, thus completely eliminating the anticorrelations in a
signals{x;} by B=2a—-1[6]. Since the power spectrum is the signal. In contrast, the effect of the cubic filter is not as
Fourier transform of the autocorrelation function, one canstrong as the effect of the quadratic filters, since a cubic filter
find the following relationship between the autocorrelationpreserves the sign information and the anticorrelations at
exponenty and the power spectrum exponegfit y=1-8  small scales. Focorrelatedsignals we find that after both
=2-2a, wherey is defined by the autocorrelation function quadratic and cubic filters, the scaling behavior is unchanged
C(7n)=7"7 and should satisfy & y<<1 [9]. at small and intermediate scales. At large scales we observe a
The upper threshold for the value of the scaling exponengrossover to weaker correlations which is less pronounced
a is related to the ordef of the DFA methoda<¢+1 for  when increasing the strength of the correlatidnigher val-
DFA-¢ [10]. In addition, integrating the signal before apply- ues ofe) in the signaKx;} [Figs. 1c) and Xd)]. For signals
ing the DFA method will increase the value of the scalingwith very strong correlationéa> 1), we find that the scaling
exponenta by 1; thus, the upper threshold will becomme  behavior remains almost unchanged after nonlinear polyno-
+1<(+1 for DFA-¢. Therefore, after integrating correlated mial filters. We also find that the quadratic filter leads to a
signals with the scaling exponeat> ¢, one needs to apply more pronounced crossover at large scales compared to the
the DFA method with an order of polynomial fit higher than cubic filter for all positively correlated signals.
€. We also note that for anticorrelated signals, the scaling
exponent obtained from the DFAmethod overestimates the IV. LOGARITHMIC FILTER
true correlations at small scalEs0]. To avoid this problem, . ) ) )
one needs first to integrate the original anticorrelated signal !N addition to nonlinear polynomial transforms, logarith-
and then to apply the DFA&-method[10,62. The correct MIC transfor_ms are often used in preprocessing proced_ures
scaling exponentr can then be obtained fromi(n)/n [in- when there is a need to renormalize ou_tput S|gnals obta_lned
stead ofF(n)] [10,25,62. For that reason we first integrate from different systems before comparing their correlation

and then apply the DFA method when considering anticorrepmp?rtie?[5.5]' In this sectior_1, we investigate the effect of
lated signals logarithmic filters on the scaling properties of stationary sig-

nals with long-range power-law correlations.

We first generate stationary correlated sigajs with a
zero mean and unit standard deviation, and vétlpriori
known and controlled correlation properties quantified by

In this section, we study the effect of linear and nonlinearDFA scaling exponentr. To ensure that all values in the
polynomial transformgfilters) on the scaling properties of signal are positive, before the logarithmic transform, we shift
stationary signalgx} with long-range power-law correla- {x}0 {X+A}, whereA=—Xqn+ €, Xpi, is the minimal value
tions. Specifically, we consider two types of nonlinearin the series{x} and € is a positive constant. This linear
transforms—quadratic and cubic—as an example of evetransform does not alter the correlation propertiegxdf as
and odd polynomial filters. We generate the sigfalswith demonstrated in Sec. lll, Fig. 1. Next we integrate the signal
linear fractal properties and withpriori built-in correlations ~ after the logarithmic transfornflog;o(x;—Xmin+€)} and we
characterized by a DFA scaling exponent[4,10,64. We  perform a DFA-2 analysis.
compare how the exponentchanges after the transform. For uncorrelatedwhite nois¢ signals after the logarith-

We first test to see if these transforms affect the propertiemic filter, we find no change in the scaling properties and the
of uncorrelated signalevhite noisg. We find that the linear, correlation exponent remaing=0.5 in the entire range of
guadratic, and cubic filters do not change the scaling propesscalegFig. 2(b)]. However, we find that the scaling proper-
ties of white noise—the curves of the detrended fluctuationiies of signals with certain degree of correlation change sig-
function F(n) for the filtered signalgf(x;)} collapse on the nificantly. Specifically, for anticorrelated signdls<<0.5) we

Ill. EFFECTS OF LINEAR AND NONLINEAR
POLYNOMIAL TRANSFORMS
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FIG. 1. Effects of linear, quadratic, and cubic filters on the scaling behavior of long-range correlated stationary, Gaussian-distributed
(zero mean and unit standard deviajisignals{x;}: (a) uncorrelated(b) anticorrelated(c) correlated, andd) strongly correlated. The length
of each signal ifN.=2%". In our analysis we use the DFA-1 method. The curves of the detrended fluctuation fuR@i)dior all signals
are vertically shifted so that they start at the same valug(of at the minimal scal@. For anticorrelated signals we first integrate and then
apply the DFA-1 method to avoid overestimation of the true correlations at small scales due to limitations of the DFA(fiétBadand
Sec. I). Our analysis shows that after a linear filter the scaling behavior remains unchanged. In contrast, nonlinear polynomial filters change
the scaling behavior of anticorrelated and correlated signals, leading to crossovers at large scales.

observe a crossover to uncorrelatadhite nois¢ behavior at  variede. For strongly anticorrelated signals we find that even
large scales. This crossover becomes more pronouf@eetl for large values ofe, there is a crossover to uncorrelated
shifted to smaller scalgawvhen increasing the strength of behavior in the scaling curvé(n) at large scalegnote thate
anticorrelationgdecreasingy) [Fig. 2(b)]. This crossover be- is the minimal value of the signdk, —x.,,*+€}). This cross-
havior is caused by negative spikes in the signal followingover shifts to smaller scales with decreasiagFig. 3@)].
the logarithmic transforniFig. 2(a)]. A similar effect was  Further, we find that for decreasirgthe scaling curveB(n)
previously reported for stationary correlated signals with suconverge to a single curve, indicating random uncorrelated
perposed random spikel$2]. For correlated signalda  behavior in the range of large and intermediate scales. For
>0.5), we find a threshold value for the correlation exponentanticorrelated signals witlke=0.1 we find that this conver-
apn=1.3, below which the scaling properties of the signalgence is reached foe<0.1 [Fig. 3@]. For signals with
remain unchanged after the logarithmic filter. Abowg,  strong positive correlationsa> «y,), we also observe a
there is a reduction in the strength of the positive correlachange in the scaling behavior which becomes more pro-
tions, i.e., the value of the estimated exponent after the loganounced where decreases. However, in contrast to the anti-
rithmic filter is much lower compared to the correlation ex- correlated signals, the deviation from the expected accurate
ponente in the original signa[Fig. 2(d)]. scaling starts at intermediate scales and extends to smaller
Since the logarithmic filter is a nonlinear transform which scales with decreasing [Fig. 3(b)]. For signals with very
diverges for values of the sign@;—xqi,+ €} close to zero, strong correlations—e.gg=2—the deviation from the ac-
we next test how the scaling properties of the signal dependurate scaling is observed only far<<0.1, while for €
on the value of the offset parameterWe consider anticor- >0.1, there is no effect on the scalifigig. 3b)]. This is in
related and correlated signals with fixed valuescofind  contrast to the situation observed for signals with strong an-

011104-4



EFFECT OF NONLINEAR FILTERS ON DETRENDED.. PHYSICAL REVIEW E 71, 011104(2005

Anti—correlated Isignal {x}, o=0.1

Signal {Iog10(xi—)l<min+a)}, e=10"

. . |

0 100000 200000
(b) T T A T T
{log,,(x—X;,+€)}, e=10 it
107 | - FIG. 2. Effects of the nonlinear logarithmic filt¢log o(X;
= —Xmint €)} on the scaling behavior of stationary correlated sig-
>=\ nals{x;}, wherexy,, is the minimal value in the original signal
E {X} and € is a positive constant. The original signdls} have
zero mean, unit standard deviation, and lenbth,,=2'¢. (a)
102 L J Original strongly anticorrelated sign@t} with DFA correlation
exponente=0.1 and the corresponding signal after logarithmic
) - ) ) filter. (b) DFA scaling curves-(n) for anticorrelated signals and
10" 10° 10° 10° white noise after the logarithmic filter show a crossover to
n “white noise” behaviof(i.e., slope=0.bat large scales. To ob-
© 4 tain more accurate scaling, we first integrate the signal
o [ Correlated signal {x}, a=2.0 ' 1 {logio(X;—Xmin+ €)} and then apply DFA-2 methogee Sec. )l
0k b (c) Original strongly correlated signgk;} with the DFA corre-
5| 1 lation exponenta=2 and the corresponding signal after loga-
_4 . . rithmic filter. (d) DFA scaling curves for correlated signdls}
Signal {l0g,(xx.., +¢]}, ecl0™ after the logarithmic filter. We find thgt the |anl’lthm.IC filter .
2t 1 does not change the correlation properties of signals with certain
oL i positive correlationge.g.,«a=0.7 anda=1.2), though it weak-
ens the correlations in signals with very strong positive correla-
-6 * * I =
0 100000 200000 tions (e.g., @=2).
d | ' ' ' '
107+ {log, (X=X, +€)}, e=1 0° i
4
AN
] 01 i oc1=0.7 ‘/M"\P Jj\,/' |
=
=
=
=
107 1
107

ticorrelations(a=0.1) where the logarithmic filter alters the 4). Therefore, the logarithmic filter is not recommended for
scaling behavior even for much larger values 10 [Fig.  anticorrelated signals and signals with very strong positive
3@]. correlations—applying this filter will mask the true correla-
Finally we study the relation between the scaling expo-ions in the original signals.
nenta of the original “input” signal and the estimated expo-
nent a,,; of the “output” signal after the logarithmic filter.
We find that for correlated signals within given range for the
value of the scaling exponent [0.4,1.3, there is no
change in the scaling properties after the logarithmic trans- In this section we investigate the scaling properties of
form. However, for signals with correlation exponents three functions:exponential, logarithmic and power-law
< 0.4 anda>1.3, we find that the logarithmic transform can These functions are often used in signal processing as trans-
dramatically change the scaling behavior and this effect alséorms of various stochastic correlated signals and also appear
strongly depends on the value of the offset paramet€ig.  as trends superposed on noisy signals derived from physical

V. RESULTS OF THE DFA FOR TRANSFORMATION
FUNCTIONS
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(b) 10° FIG. 4. Relation between the scaling exponerdf the original
“input” stationary signals and the correlation exponegi; of the
signals after the logarithmic filteflog(x;, —Xmin+ €)}, Where Xy, is
the minimal value in the original signdk;} and e is a positive

> constantag,, is obtained from the DFA-2 analysis after integrating
______ e=10 i the signal{log(x;—Xmin*+€)} and fitting the detrended fluctuation
____________________ e=10 B functionF(n) in the regionn € [30,3000. Our results show that for
107 Foo a0 1 signals with a correlation exponeatoutside the shaded region, the
logarithmic filter changes the scaling behaviay,,# «) and this
change depends on the offset parameter

Correlated signals: o=2

o {x}

L {10g,(X~X iy +e)}:

©

Fig. 5. We find that the slope of the detrended fluctuation
DFA_2 function F(n) versus the scale obtained from the DFA
method does not depend on the values of the parameters
10° 10 and a [there is only a vertical shift irfF(n) for different
n values ofa andc] [Fig. 5a@)]. Instead, we find that the DFA
scaling exponentr depends only on the ordérof polyno-
mial fit in the DFA method—a={+1—suggesting that the
results of the DFA method do not depend on the details of the
for an anticorrelated signal with the DFA correlation exponent exponentlal_ functlor{_Flg. S(b)]. An analytic derivation fpr
=0.1 and varied values af. We find that for smaller values &, the fluctuation functlorF(n) and .the value Of_ the scaling
there is a more pronounced crossover to uncorrelated behavior wiXPonenta obtained from DFA-1 is presented in the Appen-
«=0.5. (b) Detrended fluctuation functiof(n) from the DFA-2  dix.

FIG. 3. Dependence of the effect of logarithmic fil{gwg, o(X;
—Xmin* €)} On the offset parametet (a) Detrended fluctuation func-
tion F(n) from the DFA-2 after integration oflog;o(X; = Xmin* €)},

after integration of{log;o(X, —Xmin*€)}, for a signal with strong (i) We next consider the performance of the DFA method
positive correlation{a=2) and varied values ot. We find that On a logarithmic function of _the ge_neral form 'y
signals with strong positive correlations are less affected by the=10g;o(x+a), where 0<x<1, X=i/Npa 1=1,... Npae

logarithmic filter compared to the anticorrelated signalganand  N.,=2%', and the offset parameteris a positive constant.
that for smaller values of, there is a more pronounced crossover. Specifically, we investigate the dependence of the DFA scal-
ing exponenta on the value of the offset parametar We
and biological systems. In previous wofk0,62 we have find that for very small values dd, the DFA scaling expo-
demonstrated that the scaling behavior of a correlated signaient isa=1.5. With increasing, we observe a crossover in
with a superposed trend is superposition of the scaling beF(n) at intermediate scales—from a=1.5 at large scales to
havior of the correlated signal and the “apparent” scalinge=3 at small scales for DFA-PFig. 6(@)]. For larger values
behavior obtained from the DFA method for the analyticof a, we observe a scaling behaviorkitn) characterized by
function representing the trend. Therefore, understanding the single exponen&=3 in the entire range of scales[Fig.
results of the DFA for certain analytic functions becomes &(a)]. In Fig. 6b) we present the dependence of the DFA
necessary step to quantify the scaling behavior of system’scaling exponenta [obtained in the fitting rangen
outputs where correlated fluctuations are superposed witk (30,3000] on the offset parametea for different DFA
different trends. order ¢. We find that fora<107° the exponenix does not
(i) We first consider the exponential function in the formdepend on the ordef of the DFA method and takes on a
y=explcx+a), where 0<x<1, X=i/Npae 1=1,... Nmnae single valuea=1.5. In contrast, for large values af>1072,
Npa= 21, the parametec= + 1, and the offset parametaiis ~ the exponentx depends only on the ordef of the DFA
a positive constant. We show the result of the DFA method irmethod and takes on values=€+1. This behavior is iden-
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FIG. 5. The results of the DFA method for general exponential
function: y=explcx+a), O0<x<1, X=Zi/Npa 1=1,2,..., FIG. 6. The results of the DFA method for general logarithmic
Nimax Nmax=217, wherec=+1 and offseta is a positive constant. ~function y=logyo(x+a), 0<x<1, X=i/Npay 1=1,2,... Nmay
(a) Detrended fluctuation functioR(n) obtained using the DFA-2 Nma=2"", where offset is a positive constanta) Detrended fluc-
method for different values of the offset parameteWhile there is  tuation functionF(n) obtained using the DFA-2 method for differ-
a vertical shift inF(n) for different values ofa, all scaling curves ~ €nt values of the offset paramet@rWe find that the slope of the
are characterized by an identical slope(b) Dependence of the scaling curve(scaling exponent) depends on the value of the
scaling exponent on the parametera andc. We find that for any ~ Offseta. (b) Dependence of the scaling exponenbn the offseta

exponential function the scaling exponentdepends only on the [fitting region for « is ne(30,3000]. We observe a dramatic
order{ of the DFA method:a=¢+1. change frome=1.5 ata=0 to a=€+1 ata>0.01, where( is the

order of the DFA method.
tical with the behavior obtained for the exponential functionant =3 for large values of for DFA-2. In a previous

in Fig. 5b). For intermediate values cd, we observe a study[10] we have found a specific relationship between the
crossover in the scaling behavior of the fluctuation functionpra exponentx and the value of the powerfor the case of
F(n) from a=1.5 toa=€+1. power-law function with offset parameter0: a=€+1 for
(ii) Finally, we consider the general power-law function \ > ¢-0.5, a=\+1.5 for —1.5< A <¢-0.5, a=0 for A <

y=(x+a)*, where 0<x=<1, X=i/Nyay i=1,... Nnax Nmax  —1.5, where{ is the order of polynomial fit in the DFA-
=217  the powen takes on real values and the offset param-method. Our current analysis shows that this behavior is
eterais a positive constant. As in the case of the logarithmiceven more complicated whea>0 [Fig. 7(b)]. Specifically,
function, we find again that the DFA scaling exponent we find that for values oh<107° the scaling exponent
depends on the value of the offset paramet¢Fig. 7(a)]. [obtained in the fitting range € (30,3000] depends only on
For certain fixed values of and with increasing, we ob-  the value of the powek: a=\+1.5. In contrast, for large
serve a gradual transition in the fluctuation functiém)  values of the offset parametat>1072, we find that the ex-
from a scaling behavior spanning over a broad range oponenta depends only on the ordér of the DFA method
scalesn characterized by a small value of the exponenb  and takes on values=¢+1, which is similar to the results

a crossover at intermediate scalegor larger values ofa, obtained for the general exponential and logarithmic func-
and finally to a scaling spanning over all scatesith expo-  tions in this range oa [Figs. §b) and b)]. For intermediate
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FIG. 7. The results of the DFA method for general power-lawg

function y=(x+a)*, 0<x<1, X=i/Npax 1=1,2, ... Nmax Nmax
=27, where\ is the power and the offset parameteis a positive
constant(a) Detrended fluctuation functiof(n) obtained using the
DFA-2 method for fixed\ =—0.39 and different values of the offse
parametera. We find that the slope of the scaling cur(gzaling
exponenta) depends on the value @ (b) Dependence of the
scaling exponend on the offseta for different values of the power
\ [fitting region for « is ne (30,3000]. We observe a dramatic
change froma=A+1.5 ata=0 for different values ol to a=¢
+1 for a>10"2, wheref is the order of the DFA method.

values ofa and for —1.5< A <{¢-0.5, we observe a crossover

in the scaling behavior of the fluctuation functiin) from
a=\+1.5 to a=€+1. Further, we find that fok >¢-0.5,
the DFA< scaling exponent remains constant{+1 and
does not depend on the values of the offset paranaetere
note that forh=0.41(close ton=0.5=¢-0.5 for DFA-1) the
dependence ot ona is close to a horizontal ling=ig. 7(b)].

Analytic arguments

PHYSICAL REVIEW E 71, 011104(2005

6(b), and 71b)]. The reason for this common behavior is that
(i) for large values of, in each DFA box of a given length
all three functions can be expanded in converging Taylor
series, allowing for a perfect fit by a finite order polynomial
function, and(ii) that, due to this convergence, the same
polynomial function can be used when shrinking the box
lengthn. In contrast, for very small values of the offset pa-
rametera, the DFA results for all three functions are dis-
tinctly different and does not depend on the ordeof the
DFA method. Below we give some general analytic argu-
ments for the dependence of the DFA exponanbn the
offset parametea presented in Figs. 5—7.

(i) General exponential functionsexpx+a),0<x<1.
First, we substitute the variabl& by z=x+a: y=¢%,
ze (a,1+a]. Next, we consider a DFA box starting at the
coordinatez’ =s and ending at’=s+t, wheret is propor-
tional to the number of point31 in the box—t=(1+a
—a)N/Npa=n/Nyaxe For any value ofze (s,s+t) we can
expand the function in a Taylor series:

&= eXF(S+ZO)|0<zo<t:eS|:1+ZO+§+"':|- 1)

Since this expansion converges, a finite polynomial func-
tion can accurately approximate the exponential function in
each DFA box. We note that the DFAmethod applied to
the above polynomial functions gives the scaling exponent
a=¢+1 (see[10]). Thus, for any exponential function we
find that the DFA scaling does not depend on the value of the
offset parametea and depends only on the ordérof the
polynomial fit in the DFA{ procedurdFig. 5b)].

(i) General logarithmic function ylog;o(x+a),0<x
1. First, we substitute the variablg by z=x+a: y
=log,¢(2),ze (a,1+a]. Next, we consider a DFA box start-
ing at the coordinate’ =s and ending at’=s+t, wheret is

¢ proportional to the number of points in the box—t

=n/Npa FOr any value oz e (s,s+t) the Taylor expansion
is

l0g10(2) = log;o(s+ ZO)|0<zo<t ~In(1 +2zy/s)

:E_l(é>2+ ...<-1_>”“(é>m+
s 2\s m S

This series is converging only wheg/s<1—i.e.,zy<s.
Sincez, e (0,t), the condition for convergence in any DFA
box (s,s+t) partitioning the function ist<s. From t
=n/Npaxandse[a,1+a-t], we find that ifa>n/N,,,, the
logarithmic function in all DFA boxes is converging, and
thus each box can be approximated by a polynomial func-
tion, leading to scaling exponent=¢+1—depending only
on the order of the DFA<{ method(Fig. 6).

Whent>s, for certain values of, e (0,t), the series in

(2)

Our results show that for large values of the offset paramEQ. (2) is diverging. Sincese[a,1+a-t], for s=a<t
etera, the detrended fluctuation functidf(n) for all three ~ =n/Ny, we find that the logarithmic function is divergent
analytic functions—exponential, logarithmic, and power-in the first DFA box(a,a+t), leading to deviation in the DFA
law—exhibits identical slope, where the DFA scaling expo-scaling for small values doé (Fig. 6).
nenta does not depend on the particular functional form but (i) General power-law function y(x+a)*,x e (0,1].
only the order¢ of the DFA method.a=¢+1 [Figs. 5b), First, we substitute the variable by z=x+a: y=2',
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ze (a,1+a]. Next, we consider a DFA box starting at the P41RR13622 and by the Spanish Ministerio de Ciencia y
coordinatez’ =s and ending at’=s+t, wheret is propor-  Tecnologia (Grant Nos. BFM2002-00183 and BIO2002-
tional to the number of points in the box—=n/Ny,,, For ~ 04014-CO3-02

any value ofz e (s,s+t) the Taylor expansion is

2= (54 20 gt~ (1 . z_0>A i, A()\ZI— 1) <2_0>2 APPENDIX: DFA-1 IN EXPONENTIAL FUNCTIONS

S S ' S We consider an exponential function of the type @xp
o ) +a), where the parametersanda take on real values. The
first step of the DFA method is to integrate the sigftéc.

Similar to the case of the logarithmic function, this series
is converging only whem,/s<1. Following the same argu-
ments as for the logarithmic function we find that when
>n/Npay the power-law function is converging in any DFA X cy gN+a_ g2
box and thus can be approximated by a polynomial function, J ex N +a|dy= N—c ,
leading to the scaling exponeat=¢+1 (Fig. 7), which is 0
identical to the case of exponential and logarithmic function. ) ) o

In contrast, fora< n/Ny,g, the power-law function is di- whereN is the length of the signal ande (0,N]. We divide
vergent in the first DFA boxa,a+t), as in the case of the the variable in the exponential B, so that(x/N) is in the
logarithmic function, leading to a deviation in the scaling of interval (0, 1, as considered in Sec. V. The next step of the
F(n) for small values ofa (Fig. 7). While in the case of DFA method is to divide the integrated signal into boxes of
logarithmic function this divergence leads to a fixed scaling€ngthn. For DFA-l,Zthe squared detrended fluctuation func-
exponenta=1.5, for power-law functions the value of the tion in thekth box, F5(n,k), is
scaling exponeni& depends also on the powgr(Fig. 7).

(A1)

We note that the above arguments can be used to estimate 5 1 [kn gXN+a _ ga 2
the results of the DFA method for other functions. For all Fe(n,k) = HJ N - (bx—=dy | dx,
functions which can be expanded in convergent Taylor ex- (k=Dn
pansion of a polynomial form in each DFA box partitioning (A2)

the function, the DFA method leads to identical scaling re-

sults with the exponent=¢+1, which is a notable inherent where the parametetg andd, are obtained by a linear fit to
limitation of the method. When there is divergent behavior inthe integrated signal using least squares irkthebox. These
some or all of the DFA boxes partitioning a function, the two parameters can be obtained analytically, although their
DFA scaling exhibits crossover behavior to different valuesexpressions are too long. To obtain the squared detrended
of the scaling exponeni which depends on the functional fluctuation function for the entire signal partitioned in non-
form and the specific parameters of the function. overlapping boxes of length, we sum over all boxes and

VI. CONCLUSIONS calculate the average value:

In summary, our study shows that linear transforms do not N/n
change the scaling properties of a signal. However, the cor- F2(n)= — > F2(n,k)
relation properties of a signal change after applying a poly- N/n 5
nomial filter. Moreover, such change depends on the type of NIk N )
correlations(positive or anti-correlationsin the signal, as _ 1 }f Ne° a—ea_(b x—d) | dx
well as on the powefodd or even of the polynomial filter. " NInZin (k=D k k .

For the logarithmic filter we find that the scaling behavior of
the transformed signal remains unchanged only when the (A3)
original signal satisfies certain type of correlatidicharac- Here, the index in the sum ranges from 1 td/n (there
terized by scaling exponent within a given rangéompar-  are N/n boxes of lengtm in the signal of lengtiN). Using

ing the “apparent” scaling behavior of the exponential, logathe analytical expressions fd, and d,, F(n) can be pre-
rithmic, and power-law functions we find that within certain sented analytically in the form

range for the values of the parameters, the DFA fluctuation
function F(n) exhibits an identical slope, and that the DFA

results of a class of other analytic functions can be reduced F2(n) = g(mh(n), (Ad)

to these three cases. We attribute this behavior to specific

limitations of the DFA method. Therefore, careful tests arewhere

necessary to accurately estimate the correlation properties of

signals after nonlinear transforms. g(n) = {- 8NCENA(1 + €N + 2N + c3n3(g2N — 1)
ACKNOWLEDGMENTS + 24N - (°"N - 1)°N - cn+ cn&°"N]} (A5)
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and NIH/National Center for Research Resour¢sant No. and
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(e - 1)N? Finally, for the detrended fluctuation functidi(n) we
h(n) = 5 e 3 (AB)  obtain
2c%(e?°"™N - 1)n
Due to the complexity of(n) andh(n), the expression of F(n) = [c(e?® - l)e_anz (A8)
F2(n) is very complicated. However, as<N (and usually, 1440 N °

<N 2(n) i f i . ) .
n<N), one can expané(n) in powers ofn to obtain Thus the DFA-1 scaling exponent is=2 (in agreement

2 2 with the numerical simulation in Sec. V, Fig).9n general,
F2(n) = ce*-1) 4 (A7) we can obtain in a similar way thai=¢+1, when DFA{
1440N? with an order¢ of polynomial fit is used.
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