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Detrended fluctuation analysis ~DFA! is a scaling analysis method used to quantify long-range power-law
correlations in signals. Many physical and biological signals are ‘‘noisy,’’ heterogeneous, and exhibit different
types of nonstationarities, which can affect the correlation properties of these signals. We systematically study
the effects of three types of nonstationarities often encountered in real data. Specifically, we consider nonsta-
tionary sequences formed in three ways: ~i! stitching together segments of data obtained from discontinuous
experimental recordings, or removing some noisy and unreliable parts from continuous recordings and stitch-
ing together the remaining parts—a ‘‘cutting’’ procedure commonly used in preparing data prior to signal
analysis; ~ii! adding to a signal with known correlations a tunable concentration of random outliers or spikes
with different amplitudes; and ~iii! generating a signal comprised of segments with different properties—e.g.,
different standard deviations or different correlation exponents. We compare the difference between the scaling
results obtained for stationary correlated signals and correlated signals with these three types of nonstationari-
ties. We find that introducing nonstationarities to stationary correlated signals leads to the appearance of
crossovers in the scaling behavior and we study how the characteristics of these crossovers depend on ~a! the
fraction and size of the parts cut out from the signal, ~b! the concentration of spikes and their amplitudes ~c! the
proportion between segments with different standard deviations or different correlations and ~d! the correlation
properties of the stationary signal. We show how to develop strategies for preprocessing ‘‘raw’’ data prior to
analysis, which will minimize the effects of nonstationarities on the scaling properties of the data, and how to
interpret the results of DFA for complex signals with different local characteristics.
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I. INTRODUCTION

In recent years, there has been growing evidence indicat-
ing that many physical and biological systems have no char-
acteristic length scale and exhibit long-range power-law cor-
relations. Traditional approaches such as the power-spectrum
and correlation analysis are suited to quantify correlations in
stationary signals @1,2#. However, many signals that are out-
puts of complex physical and biological systems are
nonstationary—the mean, standard deviation, and higher mo-
ments, or the correlation functions are not invariant under
time translation @1,2#. Nonstationarity, an important aspect of
complex variability, can often be associated with different
trends in the signal or heterogeneous segments ~patches!
with different local statistical properties. To address this
problem, detrended fluctuation analysis ~DFA! was devel-
oped to accurately quantify long-range power-law correla-
tions embedded in a nonstationary time series @3,4#. This
method provides a single quantitative parameter—the scaling
exponent a—to quantify the correlation properties of a sig-
nal. One advantage of the DFA method is that it allows the
detection of long-range power-law correlations in noisy sig-
nals with embedded polynomial trends that can mask the true
correlations in the fluctuations of a signal. The DFA method
has been successfully applied to research fields such as DNA
@3,5–16#, cardiac dynamics @17–37#, human gait @38#, me-
teorology @39#, climate temperature fluctuations @40–42#,
river flow and discharge @43,44#, neural receptors in biologi-
cal systems @45#, and economics @46–58#. The DFA method
may also help identify different states of the same system
with different scaling behavior—e.g., the scaling exponent a

for heartbeat intervals is different for healthy and sick indi-
viduals @17,28# as well as for waking and sleeping states
@23,33#.

To understand the intrinsic dynamics of a given system, it
is important to analyze and correctly interpret its output sig-
nals. One of the common challenges is that the scaling ex-
ponent is not always constant ~independent of scale! and
crossovers often exist—i.e., the value of the scaling exponent
a differs for different ranges of scales @17,18,23,59,60#. A
crossover is usually due to a change in the correlation prop-
erties of the signal at different time or space scales, though it
can also be a result of nonstationarities in the signal. A recent
work considered different types of nonstationarities associ-
ated with different trends ~e.g., polynomial, sinusoidal, and
power-law trends! and systematically studied their effect on
the scaling behavior of long-range correlated signals @61#.
Here we consider the effects of three other types of nonsta-
tionarities, which are often encountered in real data or result
from ‘‘standard’’ data preprocessing approaches.

(a) Signals with segments removed. First we consider a
type of nonstationarity caused by discontinuities in signals.
Discontinuities may arise from the nature of experimental
recordings, e.g., stock exchange data are not recorded during
the nights, weekends, and holidays @46–53#. Alternatively,
discontinuities may be caused by the fact that some noisy
and unreliable portions of continuous recordings must be dis-
carded, as often occurs when analyzing physiological signals
@17–37#. In this case, a common preprocessing procedure is
to cut out the noisy, unreliable parts of the recording and
stitch together the remaining informative segments before
any statistical analysis is performed. One immediate problem
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is how such cutting procedure will affect the scaling proper-
ties of long-range correlated signals. A careful consideration
should be made when interpreting results obtained from scal-
ing analysis, so that an accurate estimate of the true correla-
tion properties of the original signal may be obtained.

(b) Signals with random spikes. A second type of nonsta-
tionarity is due to the existence of spikes in data, which is
very common in real life signals @17–38#. Spikes may arise
from external conditions that have little to do with the intrin-
sic dynamics of the system. In this case, we must distinguish
the spikes from normal intrinsic fluctuations in the system’s
output and filter them out when we attempt to quantify cor-
relations. Alternatively, spikes may arise from the intrinsic
dynamics of the system, rather than being an epiphenomenon
of external conditions. In this second case, careful consider-
ations should be made as to whether the spikes should be
filtered out when estimating correlations in the signal, since
such ‘‘intrinsic’’ spikes may be related to the properties of
the noisy fluctuations. Here, we consider only the simpler
case, namely, when the spikes are independent of the fluc-
tuations in the signal. The problem is how spikes affect the
scaling behavior of correlated signals, e.g., what kind of
crossovers they may possibly cause. We also demonstrate to
what extent features of the crossovers depend on the statis-
tical properties of the spikes. Furthermore, we show how to
recognize if a crossover indeed indicates a transition from
one type of underlying correlations to a different type, or if
the crossover is due to spikes without any transition in the
dynamical properties of the fluctuations.

(c) Signals with different local behavior. A third type of
nonstationarity is associated with the presence of segments
in a signal that exhibit different local statistical properties,
e.g., different local standard deviations or different local cor-
relations. Some examples include the following: ~a! 24-h
records of heart rate fluctuations are characterized by seg-
ments with larger standard deviation during stress and physi-
cal activity and segments with smaller standard deviation
during rest @19#; ~b! studies of DNA show that coding and
noncoding regions are characterized by different types of
correlations @5,8#; ~c! brain wave analysis of different sleep
stages ~rapid eye movement sleep, light sleep, and deep
sleep! indicates that the signal during each stage may have
different correlation properties @62#; ~d! heartbeat signals
during different sleep stages exhibit different scaling proper-
ties @33#. For such complex signals, results from scaling
analysis often reveal a very complicated structure. It is a
challenge to quantify the correlation properties of these sig-
nals. Here, we take a first step toward understanding the
scaling behavior of such signals.

We study these three types of nonstationarities embedded
in correlated signals. We apply the DFA method to stationary
correlated signals and identical signals with artificially im-
posed nonstationarities, and compare the difference in the
scaling results. ~i! We find that cutting segments from a sig-
nal and stitching together the remaining parts does not affect
the scaling for positively correlated signals. However, this
cutting procedure strongly affects anticorrelated signals,
leading to a crossover from an anticorrelated regime ~at
small scales! to an uncorrelated regime ~at large scales!. ~ii!

For the correlated signals with superposed random spikes,
we find that the scaling behavior is a superposition of the
scaling of the signal and the apparent scaling of the spikes.
We analytically prove this superposition relation by introduc-
ing a superposition rule. ~iii! For the case of complex signals
comprised of segments with different local properties, we
find that their scaling behavior is a superposition of the scal-
ing of the different components—each component containing
only the segments exhibiting identical statistical properties.
Thus, to obtain the scaling properties of the signal, we need
only to examine the properties of each component—a much
simpler task than analyzing the original signal.

The layout of the paper is as follows: In Sec. II, we de-
scribe how we generate signals with desired long-range cor-
relation properties and introduce the DFA method to quantify
these correlations. In Sec. III, we compare the scaling prop-
erties of correlated signals before and after removing some
segments from the signals. In Sec. IV, we consider the effect
of random spikes on correlated signals. We show that the
superposition of spikes and signals can be explained by a
superposition rule derived in Appendix A. In Sec. V, we
study signals comprised of segments with different local be-
havior. We systematically examine all resulting crossovers,
their conditions of existence, and their typical characteristics
associated with the different types of nonstationarities. We
summarize our findings in Sec. VI.

II. METHOD

Using a modified Fourier filtering method @63#, we gen-
erate stationary uncorrelated, correlated, and anticorrelated
signals u(i) (i51,2,3, . . . ,Nmax) with a standard deviation
s51. This method consists of the following steps.

~a! First, we generate an uncorrelated and Gaussian dis-
tributed sequence h(i) and calculate the Fourier transform
coefficients h(q).

~b! The desired signal u(i) must exhibit correlations that
are defined by the form of the power spectrum

S~q !5^u~q !u~2q !&;q2(12g), ~1!

where u(q) are the Fourier transform coefficients of u(i)
and g is the correlation exponent. Thus, we generate u(q)
using the following transformation:

u~q !5@S~q !#1/2h~q !, ~2!

where S(q) is the desired power spectrum in Eq. ~1!.
~c! We calculate the inverse Fourier transform of u(q) to

obtain u(i).
We use the stationary correlated signal u(i) to generate

signals with different types of nonstationarities and apply the
DFA method @3# to quantify correlations in these nonstation-
ary signals.

Next, we briefly introduce the DFA method, which in-
volves the following steps @3#.

~i! Starting with a correlated signal u(i), where i
51, . . . ,Nmax , and Nmax is the length of the signal, we first
integrate the signal u(i) and obtain y(k)[( i51

k @u(i)2^u&# ,
where ^u& is the mean.
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~ii! The integrated signal y(k) is divided into boxes of
equal length n.

~iii! In each box of length n, we fit y(k), using a polyno-
mial function of order l, which represents the trend in that
box. The y coordinate of the fit line in each box is denoted by
yn(k) ~see Fig. 1, where linear fit is used!. Since we use a
polynomial fit of order l, we denote the algorithm as DFA-l .

~iv! The integrated signal y(k) is detrended by subtracting
the local trend yn(k) in each box of length n.

~v! For a given box size n, the root-mean-square ~rms!
fluctuation for this integrated and detrended signal is calcu-
lated:

F~n ![A 1

Nmax
(
k51

Nmax

@y~k !2yn~k !#2. ~3!

~vi! The above computation is repeated for a broad range
of scales ~box sizes n) to provide a relationship between
F(n) and the box size n.

A power-law relation between the average root-mean-
square fluctuation function F(n) and the box size n indicates
the presence of scaling: F(n);na. The fluctuations can be
characterized by a scaling exponent a , a self-similarity pa-
rameter that represents the long-range power-law correlation
properties of the signal. If a50.5, there is no correlation and
the signal is uncorrelated ~white noise!; if a,0.5, the signal
is anticorrelated; if a.0.5, the signal is correlated @64#.

We note that for anticorrelated signals, the scaling expo-
nent obtained from the DFA method overestimates the true
correlations at small scales @61#. To avoid this problem, one
needs first to integrate the original anticorrelated signal and
then apply the DFA method @61#. The correct scaling expo-
nent can thus be obtained from the relation between n and
F(n)/n @instead of F(n)#. In the following sections, we first
integrate the signals under consideration, then apply DFA-2
to remove linear trends in these integrated signals. In order to
provide a more accurate estimate of F(n), the largest box
size n we use is Nmax/10, where Nmax is the total number of
points in the signal.

We compare the results of the DFA method obtained from
the nonstationary signals with those obtained from the sta-
tionary signal u(i) and examine how the scaling properties
of a detrended fluctuation function F(n) change when intro-
ducing different types of nonstationarities.

III. SIGNALS WITH SEGMENTS REMOVED

In this section, we study the effect of nonstationarity
caused by removing segments of a given length from a signal
and stitching together the remaining parts—a ‘‘cutting’’ pro-
cedure often used in preprocessing data prior to analysis. To
address this question, we first generate a stationary correlated
signal u(i) ~see Sec. II! of length Nmax and a scaling expo-
nent a , using the modified Fourier filtering method @63#.
Next, we divide this signal into Nmax /W nonoverlapping
segments of size W and randomly remove some of these
segments. Finally, we stitch together the remaining segments
in the signal u(i) @Fig. 2~a!#, thus obtaining a surrogate non-
stationary signal, which is characterized by three parameters:
the scaling exponent a , the segment size W, and the fraction
of the signal u(i), which is removed.

We find that the scaling behavior of such a nonstationary
signal strongly depends on the scaling exponent a of the
original stationary correlated signal u(i). As illustrated in
Fig. 2~b!, for a stationary anticorrelated signal with a50.1,
the cutting procedure causes a crossover in the scaling be-
havior of the resultant nonstationary signal. This crossover
appears even when only 1% of the segments are cut out. At
scales larger than the crossover scale n3 , the rms fluctuation
function behaves as F(n);n0.5, which means an uncorre-
lated randomness, i.e., the anticorrelation has been com-
pletely destroyed in this regime. For all anticorrelated signals
with exponent a,0.5, we observe a similar crossover behav-
ior. This result is surprising, since researchers often take for
granted that a cutting procedure before analysis does not
change the scaling properties of the original signal. Our
simulation shows that this assumption is not true, at least for
anticorrelated signals.

Next, we investigate how the two parameters—the seg-
ment size W and the fraction of points cut out from the
signal—control the effect of the cutting procedure on the
scaling behavior of anticorrelated signals. For a fixed size of
the segments (W520), we find that the crossover scale n3

decreases with the increasing fraction of the cut out seg-
ments @Fig. 2~c!#. Furthermore, for anticorrelated signals
with small values of the scaling exponent a , e.g., a50.1 and
a50.2, we find that n3 and the fraction of the cut out seg-
ments display an approximate power-law relationship. For a
fixed fraction of the removed segments, we find that the
crossover scale n3 increases with increasing segment size W
@Fig. 2~d!#. To minimize the effect of the cutting procedure
on the correlation properties, it is advantageous to cut
smaller number of segments of larger size W. Moreover, if
the segments that need to be removed are too close ~e.g., at a
distance shorter than the size of the segments!, it may be
advantageous to cut out both the segments and a part of the
signal between them. This will effectively increase the size
of the segment W without substantially changing the fraction

FIG. 1. ~a! The correlated signal u(i). ~b! The integrated signal
y(k)5( i51

k @u(i)2^u&# . The vertical dotted lines indicate a box of
size n5100, the solid straight line segments are the estimated linear
‘‘trend’’ in each box by least-squares fit.
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of the signal that is cut out, leading to an increase in the
crossover scale n3 . Such a strategy would minimize the
effect of this type of nonstationarity on the scaling properties
of the data. For small values of the scaling exponent a (a
,0.25), we find that n3 and W follow power-law relation-
ships @Fig. 2~d!#. The reason we do not observe a power-law
relationship between n3 and W and between n3 and the
fraction of cut out segments, for the values of the scaling
exponent a close to 0.5, may be due to the fact that the
crossover regime becomes broader when it separates scaling
regions with similar exponents, thus leading to an uncer-
tainty in defining n3 . For a fixed W and a fixed fraction of

the removed segments @see Figs. 2~c! and 2~d!#, we observe
that n3 increases with the increasing value of the scaling
exponent a , i.e., the effect of the cutting procedure on the
scaling behavior decreases when the anticorrelations in the
signal are weaker (a closer to 0.5).

Finally, we consider the case of correlated signals u(i)
with 1.5.a.0.5. Surprisingly, we find that the scaling of
correlated signals is not affected by the cutting procedure.
This observation remains true independently of the segment
size W—from very small W(55) up to very large W
(55000) segments—even when up to 50% of the segments
are removed from a signal with Nmax;106 points @Fig. 2~e!#.

FIG. 2. Effects of the ‘‘cutting’’ procedure on the scaling behavior of stationary correlated signals. Nmax5220 is the number of points in
the signals ~standard deviation s51) and W is the size of the cut out segments. ~a! A stationary signal with 10% of the points removed. The
removed parts are presented by shaded segments of size W520 and the remaining parts are stitched together. ~b! Scaling behavior of
nonstationary signals obtained from an anticorrelated stationary signal ~scaling exponent a,0.5) after the cutting procedure. A crossover
from anticorrelated to uncorrelated (a50.5) behavior appears at scale n3 . The crossover scale n3 decreases by increasing the fraction of
points removed from the signal. We determine n3 based on the difference D between the logarithm of F(n)/n for the original stationary
anticorrelated signal (a50.1) and the nonstationary signal with cut out segments: n3 is the scale at which D>0.04. Dependence of the
crossover scale n3 on the fraction ~c! and on the size W ~d! of the cutout segments for anticorrelated signals with different scaling exponents
a . ~e! Cutting procedure applied to correlated signals (a.0.5). In contrast to ~b!, no discernible effect on the scaling behavior is observed
for different values of the scaling exponent a , even when up to 50% of the points in the signals are removed.
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IV. SIGNALS WITH RANDOM SPIKES

In this section, we consider nonstationarity related to the
presence of random spikes in the data and we study the effect
of this type of nonstationarity on the scaling properties of
correlated signals. First, we generate surrogate nonstationary
signals by adding random spikes to a stationary correlated
signal u(i) @see Sec. II and Figs. 3~a!–3~c!#.

We find that the correlation properties of the nonstation-
ary signal with spikes depend on the scaling exponent a of
the stationary signal and the scaling exponent asp of the
spikes. When uncorrelated spikes (asp50.5) are added to a
correlated or anticorrelated stationary signal @Figs. 3~d! and
3~e!#, we observe a change in the scaling behavior with a
crossover at a characteristic scale n3 . For anticorrelated sig-
nals (a,0.5) with random spikes, we find that at scales
smaller than n3 , the scaling behavior is close to that ob-
served for the stationary anticorrelated signal without spikes,
while for scales larger than n3 , there is a crossover to ran-
dom behavior. In the case of correlated signals (a.0.5) with
random spikes, we find a different crossover from uncorre-
lated behavior at small scales, to correlated behavior at large
scales with an exponent close to the exponent of the original
stationary correlated signal. Moreover, we find that spikes
with a very small amplitude can cause strong crossovers in
the case of anticorrelated signals, while for correlated sig-
nals, identical concentrations of spikes with a much larger
amplitude do not affect the scaling. Based on these findings,
we conclude that uncorrelated spikes with a sufficiently large
amplitude can affect the DFA results at large scales for sig-
nals with a,0.5 and at small scales for signals with a
.0.5.

To better understand the origin of this crossover behavior,
we first study the scaling of the spikes only @see Fig. 3~b!#.
By varying the concentration p(0<p<1) and the amplitude
Asp of the spikes in the signal, we find that for the general
case when the spikes may be correlated, the rms fluctuation
function behaves as

Fsp~n !/n5k0ApAspnasp, ~4!

where k0 is a constant and asp is the scaling exponent of the
spikes.

Next, we investigate the analytical relation between the
DFA results obtained from the original correlated signal, the
spikes, and the superposition of signal and spikes. Since the
original signal and the spikes are not correlated, we can use
a superposition rule ~see @61# and Appendix A! to derive the
rms fluctuation function F(n)/n for the correlated signal
with spikes,

@F~n !/n#2
5@Fh~n !/n#2

1@Fsp~n !/n#2, ~5!

where Fh(n)/n and Fsp(n)/n are the rms fluctuation
functions for the signal and the spikes, respectively.
To confirm this theoretical result, we calculate
A@Fh(n)/n#2

1@Fsp(n)/n#2 @see Figs. 3~d! and 3~e!# and
find that Eq. ~5! is remarkably consistent with our experi-
mental observations.

FIG. 3. Effects of random spikes on the scaling behavior of
stationary correlated signals. ~a! An example of an anticorrelated
signal u(i) with scaling exponent a50.2, Nmax5220, and stan-
dard deviation s51. ~b! A series of uncorrelated spikes (asp

50.5) at 5% randomly chosen positions ~concentration p50.05)
and with uniformly distributed amplitudes Asp in the interval
@24,4#. ~c! Superposition of the signals in ~a! and ~b!. ~d!

Scaling behavior of an anticorrelated signal u(i) (a50.2) with
spikes (Asp51, p50.05, asp50.5). For n,n3 , F(n)/n
'Fh(n)/n;na, where Fh(n)/n is the scaling function of the sig-
nal u(i). For n.n3 , F(n)/n'Fsp(n)/n;nasp. ~e! Scaling be-
havior of a correlated signal u(i)(a50.8) with spikes (Asp

510, p50.05, asp50.5). For n,n3 , F(n)/n'Fsp(n)/n
;nasp. For n.n3 , F(n)/n'Fh(n)/n;na. Note that when a
5asp50.5, there is no crossover.
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Using the superposition rule, we can also theoretically
predict the crossover scale n3 as the intercept between
Fh(n)/n and Fsp(n)/n , i.e., where Fh(n3)5Fsp(n3). We
find that

n35SApAsp

k0

b0
D 1/(a2asp)

, ~6!

since the rms fluctuation functions for the signal and
the spikes are Fh(n)/n5b0na @61# and Fsp(n)/n
5k0ApAspnasp @Eq. ~4!#, respectively. This result predicts
the position of the crossover depending on the parameters
defining the signal and the spikes.

Our result derived from the superposition rule can be use-
ful to distinguish two cases: ~i! the correlated stationary sig-
nal and the spikes are independent ~e.g., the case when a
correlated signal results from the intrinsic dynamics of the
system while the spikes are due to external perturbations!
and ~ii! the correlated stationary signal and the spikes are
dependent ~e.g., both the signal and the spikes arise from the
intrinsic dynamics of the system!. In the latter case, the iden-
tity in the superposition rule is not correct ~see Appendix A!.

V. SIGNALS WITH DIFFERENT LOCAL BEHAVIOR

Next, we study the effect of nonstationarities on complex
patchy signals where different segments show different local
behavior. This type of nonstationarity is very common in real
world data @5,8,19,33,62#. Our discussion of signals com-
posed of only two types of segments is limited to two simple
cases: ~a! different standard deviations and ~b! different cor-
relations.

A. Signals with different local standard deviations

Here we consider nonstationary signals comprised of seg-
ments with the same local scaling exponent, but different
local standard deviations. We first generate a stationary cor-
related signal u(i) ~see Sec. II! with fixed standard deviation
s151. Next, we divide the signal u(i) into nonoverlapping
segments of size W. We then randomly choose a fraction p of
the segments and amplify the standard deviation of the signal
in these segments, s254 @Fig. 4~a!#. Finally, we normalize
the entire signal to global standard deviation s51 by
dividing the value of each point of the signal by
A(12p)s1

2
1ps2

2.
For nonstationary anticorrelated signals (a,0.5) with

segments characterized by two different values of the stan-
dard deviation, we observe a crossover at scale n3 @Fig.
4~b!#. For small scales n,n3 , the behavior is anticorrelated
with an exponent equal to the scaling exponent a of the
original stationary anticorrelated signal u(i). For large scales
n.n3 , we find a transition to random behavior with expo-
nent 0.5, indicating that the anticorrelations have been de-
stroyed. The dependence of crossover scale n3 on the frac-
tion p of segments with larger standard deviation is shown in
Fig. 4~c!. The dependence is not monotonic because for p
50 and p51, the local standard deviation is constant
throughout the signal, i.e., the signal becomes stationary and

FIG. 4. Scaling behavior of nonstationary correlated signals
with different local standard deviations. ~a! Anticorrelated signal
(a50.1) with standard deviation s151 and amplified segments
with standard deviation s254. The size of each segment is W
520 and the fraction of the amplified segments is p50.1 from the
total length of the signal (Nmax5220). ~b! Scaling behavior of the
signal in ~a! for a different fraction p of the amplified segments
~after normalization of the globe standard deviation to unity!. A
crossover from anticorrelated behavior (a50.1) at small scales to
random behavior (a50.5) at large scales is observed. ~c! Depen-
dence of the crossover scale n3 on the fraction p of amplified
segments for the signal in ~a!. n3 is determined from the difference
D of log10@F(n)/n# between the nonstationary signal with ampli-
fied segments and the original stationary signal. Here we choose
D50.04. ~d! Scaling behavior of nonstationary signals obtained
from correlated stationary signals (1.a.0.5) with standard devia-
tion s151 for a different fraction of the amplified segments with
s254. No difference in the scaling is observed, compared to the
original stationary signal.
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thus there is no crossover. Note the asymmetry in the value
of n3—a much smaller value of n3 for p50.05 compared to
p50.95 @see Figs. 4~b! and 4~c!#. This result indicates that
very few segments with a large standard deviation ~compared
to the rest of the signal! can have a strong effect on the
anticorrelations in the signal. Surprisingly, the same fraction
of segments with a small standard deviation ~compared to the
rest of the signal! does not affect the anticorrelations up to
relatively large scales.

For nonstationary correlated signals (a.0.5) with seg-
ments characterized by two different values of the standard
deviation, we surprisingly find no difference in the scaling of
F(n)/n , compared to the stationary correlated signals with
constant standard deviation @Fig. 4~d!#. Moreover, this obser-
vation remains valid for different sizes of the segments W
and for different values of the fraction p of segments with
larger standard deviation. We note that in the limiting case of
very large values of s2 /s1, when the values of the signal in
the segments with standard deviation s1 could be considered
close to ‘‘zero,’’ the results in Fig. 4~d! do not hold and we
observe a scaling behavior similar to that of the signal in Fig.
5~c! ~see following section!.

B. Signals with different local correlations

Next we consider nonstationary signals that consist of
segments with identical standard deviations (s51) but dif-
ferent correlations. We obtain such signals using the follow-
ing procedure: ~1! generate two stationary signals u1(i) and
u2(i) ~see Sec. II! of identical length Nmax and with different
correlations, characterized by scaling exponents a1 and a2;
~2! divide the signals u1(i) and u2(i) into nonoverlapping
segments of size W; ~3! randomly replace a fraction p of the
segments in signal u1(i) with the corresponding segments of
u2(i). In Fig. 5~a!, we show an example of such a complex
nonstationary signal with different local correlations. In this
section, we study the behavior of the rms fluctuation function
F(n)/n . We also investigate F(n)/n separately for each
component of the nonstationary signal ~which consists only
of the segments with identical local correlations! and suggest
an approach, based on the DFA results, to recognize such
complex structures in real data.

In Fig. 5~d!, we present the DFA result on such a nonsta-
tionary signal, composed of segments with two different
types of local correlations characterized by exponents a1
50.1 and a250.9. We find that at small scales the slope of
F(n)/n is close to a1 and at large scales the slope ap-
proaches a2 with a bump in the intermediate scale regime.
This is not surprising since a1,a2 and thus F(n)/n is
bound to have a small slope (a1) at small scales and a large
slope (a2) at large scales. However, it is surprising that al-
though 90% of the signal consists of segments with scaling
exponent a1 , F(n)/n deviates at small scales (n'10)
from the behavior expected for an anticorrelated signal u(i)
with exponent a1 @see, e.g., the solid line in Fig. 2~b!#. This
suggests that the behavior of F(n)/n for a nonstationary sig-
nal comprised of mixed segments with different correlations
is dominated by segments exhibiting higher positive correla-
tions even in the case when their relative fraction in the

signal is small. This observation is pertinent to real data such
as ~i! heart rate recordings during sleep where different seg-
ments corresponding to different sleep stages exhibit differ-
ent types of correlations @33#, ~ii! DNA sequences including
coding and noncoding regions characterized by different cor-
relations @5,8,16#, and ~iii! brain wave signals during differ-
ent sleep stages @62#.

To better understand the complex behavior of F(n)/n for
such nonstationary signals, we study their components sepa-
rately. Each component is composed only of those segments
in the original signal that are characterized by identical cor-
relations, while the segments with different correlations are
substituted with zeros @see Figs. 5~b! and 5~c!#. Since the two
components of the nonstationary signal in Fig. 5~a! are inde-
pendent, based on the superposition rule @Eq. ~5!#, we expect
that the rms fluctuation function F(n)/n will behave as
A@F1(n)/n#2

1@F2(n)/n#2, where F1(n)/n and F2(n)/n are
the rms fluctuation functions of the components in Figs. 5~b!

FIG. 5. Scaling behavior of a nonstationary signal with two
different scaling exponents. ~a! Nonstationary signal ~length Nmax

5220, standard deviation s51), which is a mixture of correlated
segments with exponent a150.1 ~90% of the signal! and segments
with exponent a250.9 ~10% of the signal!. The segment size is
W520, ~b! the 90% component containing all segments with a1

50.1 and the remaining segments ~with a250.9) are replaced by
zero, ~c! the 10% component containing all segments with a2

50.9 and the remaining segments ~with a150.1) are replaced by
zero, ~d! DFA results for the mixed signal in ~a!, for the individual
components in ~b! and ~c!, and our prediction obtained from the
superposition rule.
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and 5~c!, respectively. We find a remarkable agreement be-
tween the superposition rule prediction and the result of the
DFA method obtained directly from the mixed signal @Fig.
5~d!#. This finding helps us understand the relation between
the scaling behavior of the mixed nonstationary signal and its
components.

Information on the effect of such parameters as the scal-
ing exponents a1 and a2, the size of the segments W, and
their relative fraction p on the scaling behavior of the com-
ponents provides insight into the scaling behavior of the
original mixed signal. When the original signal comes from
real data, its composition is a priori unknown. A first step is
to ‘‘guess’’ the type of correlations ~exponents a1 and a2)
present in the signal, based on the scaling behavior of
F(n)/n at small and large scales @Fig. 5~d!#. A second step is
to determine the parameters W and p for each component by
matching the scaling result from the superposition rule with
the original signal. Hence in the following sections, we focus
on the scaling properties of the components and how they
change with p, a , and W.

1. Dependence on the fraction of segments

First, we study how the correlation properties of the com-
ponents depend on the fraction p of the segments with iden-
tical local correlations. For components containing segments
with anticorrelations (0,a,0.5) and fixed size W @Fig.
5~b!#, we find a crossover to random behavior (a50.5) at
large scales, which becomes more pronounced ~shift to
smaller scales! when the fraction p decreases @Fig. 6~a!#. At
small scales (n<W), the slope of F(n)/n is identical to that
expected for a stationary signal u(i) ~i.e., p51) with the
same anticorrelations @solid line in Fig. 6~a!#. Moreover, we
observe a vertical shift in F(n)/n to lower values when the
fraction p of nonzero anticorrelated segments decreases. We
find that at small scales, after rescaling F(n)/n by Ap , all
curves collapse on the curve for the stationary anticorrelated
signal u(i) @Fig. 6~a!#. Since at small scales (n<W) the
behavior of F(n)/n does not depend on the segment size W,
this collapse indicates that the vertical shift in F(n)/n is due
only to the fraction p. Thus, to determine the fraction p of
anticorrelated segments in a nonstationary signal @mixture of
anticorrelated and correlated segments, Fig. 5~a!# we only
need to estimate at small scales the vertical shift in F(n)/n
between the mixed signal @Fig. 5~d!# and a stationary signal
u(i) with identical anticorrelations. This approach is valid
for nonstationary signals where the fraction p of the anticor-
related segments is much larger than the fraction of the cor-
related segments in the mixed signal @Fig. 5~a!#, since only
under this condition the anticorrelated segments can domi-
nate F(n)/n of the mixed signal at small scales @Fig. 5~d!#.

For components containing segments with positive corre-
lations (0.5,a,1) and fixed size W @Fig. 5~c!#, we observe
a similar behavior for F(n)/n , with collapse at small scales
(n<W) after rescaling by Ap @Fig. 6~b!# ~for a.1, there are
exceptions with different rescaling factors, see Appendix B!.
At small scales the values of F(n)/n for components con-
taining segments with positive correlations are much larger
compared to the values of F(n)/n for components containing

an identical fraction p of anticorrelated segments @Fig. 6~a!#.
Thus, for a mixed signal where the fraction of correlated
segments is not too small ~e.g., p>0.2), the contribution at
small scales of the anticorrelated segments to F(n)/n of the
mixed signal @Fig. 5~d!# may not be observed, and the be-
havior ~values and slope! of F(n)/n will be dominated by
the correlated segments. In this case, we must consider the
behavior of F(n)/n of the mixed signal at large scales only,
since the contribution of the anticorrelated segments at large
scales is negligible. Hence, we next study the scaling behav-
ior of components with correlated segments at large scales.

For components containing segments with positive corre-
lations and fixed size W @Fig. 5~c!#, we find that at large
scales the slope of F(n)/n is identical to that expected for a
stationary signal u(i) ~i.e., p51) with the same correlations
@solid line in Fig. 7~a!#. We also observe a vertical shift in
F(n)/n to lower values when the fraction p of nonzero cor-

FIG. 6. Dependence of the scaling behavior of components on
the fraction p of the segments with identical local correlations, em-
phasizing data collapse at small scales. The segment size is W
520 and the length of the components is Nmax5220. ~a! Compo-
nents containing anticorrelated segments (a50.1) at small scales
(n<W). The slope of F(n)/n is identical to that expected for a
stationary (p51) signal with the same anticorrelations. After res-
caling F(n)/n by Ap , at small scales all curves collapse on the
curve for the stationary anticorrelated signal. ~b! Components con-
taining correlated segments (a50.9) at small scales (n<W). The
slope of F(n)/n is identical to that expected for a stationary (p
51) signal with the same correlations. After rescaling F(n)/n by
Ap , at small scales all curves collapse on the curve for the station-
ary correlated signal.
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related segments in the component decreases. We find that
after rescaling F(n)/n by p, at large scales all curves col-
lapse on the curve representing the stationary correlated sig-
nal u(i) @Fig. 7~a!#. Since at large scales (n@W), the effect
of the zero segments of size W on the rms fluctuation func-
tion F(n)/n for components with correlated segments is neg-
ligible, even when the zero segments are 50% of the compo-
nent @see Fig. 7~a!#, the finding of a collapse at large scales
indicates that the vertical shift in F(n)/n is only due to the
fraction p of the correlated segments. Thus, to determine the
fraction p of correlated segments in a nonstationary signal
~which is a mixture of anticorrelated and correlated segments
@Fig. 5~a!#!, we only need to estimate at large scales the
vertical shift in F(n)/n between the mixed signal @Fig. 5~d!#
and a stationary signal u(i) with identical correlations.

For components containing segments with anticorrela-
tions and fixed size W @Fig. 5~b!#, we find that at large scales
in order to collapse the F(n)/n curves (n@W) @Fig. 6~a!# we

need to rescale F(n)/n by Ap(12p) @see Fig. 7~b!#. Note
that there is a difference between the rescaling factors for
components with anticorrelated and correlated segments at
small @Figs. 6~a!–6~b!# and large @Figs. 7~a!–7~b!# scales.
We also note that for components with correlated segments
(a.0.5) and sufficiently small p, there is a different rescal-
ing factor of Ap(12p) in the intermediate scale regime ~see
Appendix B, Fig. 10!.

For components containing segments of white noise (a
50.5), we find no change in the scaling exponent as a func-
tion of the fraction p of the segments, i.e., a50.5 for the
components at both small and large scales. However, we ob-
serve at all scales a vertical shift in F(n)/n to lower values
with decreasing p: F(n)/n;Ap .

2. Dependence on the size of segments

Next, we study how the scaling behavior of the compo-
nents depends on the size of the segments W. First, we con-
sider components containing segments with anticorrelations.
For a fixed value of the fraction p of the segments, we study
how F(n)/n changes with W. At small scales, we observe a
behavior with a slope similar to that for a stationary signal
u(i) with identical anticorrelations @Fig. 8~a!#. At large
scales, we observe a crossover to random behavior ~exponent
a50.5) with an increasing crossover scale when W in-
creases. At large scales, we also find a vertical shift with
increasing values of F(n)/n when W decreases @Fig. 8~a!#.
Moreover, we find that there is an equidistant vertical shift in
F(n)/n when W decreases by a factor of 10, suggesting a
power-law relation between F(n)/n and W at large scales.

For components containing correlated segments with a
fixed value of the fraction p we find that in the intermediate
scale regime, the segment size W plays an important role in
the scaling behavior of F(n)/n @Fig. 8~b!#. We first focus on
the intermediate scale regime when both p50.1 and W
520 are fixed @middle curve in Fig. 8~b!#. We find that for a
small fraction p of the correlated segments, F(n)/n has slope
a50.5, indicating random behavior @Fig. 8~b!#, which
shrinks when p increases ~see Appendix B, Fig. 10!. Thus,
for components containing correlated segments, F(n)/n ap-
proximates at large and small scales the behavior of a sta-
tionary signal with identical correlations (a50.9), while in
the intermediate scale regime there is a plateau of random
behavior due to the random ‘‘jumps’’ at the borders between
the nonzero and zero segments @Fig. 5~c!#. Next, we consider
the case when the fraction of correlated segments p is fixed
while the segment size W changes. We find a vertical shift
with increasing values for F(n)/n when W increases @Fig.
8~b!#, as opposed to what we observe for components with
anticorrelated segments @Fig. 8~a!#. Since the vertical shift in
F(n)/n is equidistant when W increases by a factor of 10,
our finding indicates a power-law relationship between
F(n)/n and W.

3. Scaling expressions

To better understand the complexity in the scaling behav-
ior of components with correlated and anticorrelated seg-

FIG. 7. Dependence of scaling behavior of components on the
fraction p of the segments with identical local correlations, empha-
sizing data collapse at large scales. The segment size is W520 and
the length of the components is Nmax5220. ~a! Components con-
taining correlated segments (a50.9) at large scales (n@W). The
slope of F(n)/n is identical to that expected for a stationary (p
51) signal with the same correlations. After rescaling F(n)/n by p,
at large scales all curves collapse on the curve for the stationary
correlated signal. ~b! Components containing anticorrelated seg-
ments (a50.1) at large scales (n@W). There is a crossover to
random behavior (a50.5). After rescaling F(n)/n by Ap(12p),
all curves collapse at large scales.
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ments at different scales, we employ the superposition rule
~see @61# and Appendix A!. For each component we have

F~n !/n5A@Fcorr~n !/n#2
1@F rand~n !/n#2, ~7!

where Fcorr(n)/n accounts for the contribution of the corre-
lated or anticorrelated nonzero segments and F rand(n)/n ac-
counts for the randomness due to ‘‘jumps’’ at the borders
between nonzero and zero segments in the component.

Components with correlated segments (a.0.5). At small
scales n,W , our findings presented in Fig. 6~b! suggest that
there is no substantial contribution from F rand(n)/n . Thus
from Eq. ~7!,

F~n !/n'Fcorr~n !/n;b0Apna, ~8!

where b0na is the rms fluctuation function for stationary
(p51) correlated signals @Eq. ~6! and @61##.

Similarly, at large scales n@W , we find that the contribu-
tion of F rand(n)/n is negligible @see Fig. 7~a!#, thus from Eq.
~7! we have

F~n !/n'Fcorr~n !/n;b0pna. ~9!

However, in the intermediate scale regime, the contribution
of F rand(n)/n to F(n)/n is substantial. To confirm this we
use the superposition rule @Eq. ~7!# and our estimates for
Fcorr(n)/n at small @Eq. ~8!# and large @Eq. ~9!# scales @65#.
The result we obtain from

F rand~n !/n5A@F~n !/n#2
2@b0Apna#2

2@b0pna#2

~10!

overlaps with F(n)/n in the intermediate scale regime, ex-
hibiting a slope of '0.5: F rand(n)/n;n0.5 @Fig. 9~a!#.
Thus, F rand(n)/n is indeed a contribution due to the random
jumps between the nonzero correlated segments and the zero
segments in the component @see Fig. 5~c!#.

Further, our results in Fig. 8~b! suggest that in the inter-
mediate scale regime, F(n)/n;Wgc(a) for fixed fraction p
~see Sec. VB 2!, where the power-law exponent gc(a) may
be a function of the scaling exponent a characterizing the
correlations in the nonzero segments. Since at intermediate
scales F rand(n)/n dominates the scaling @Eq. ~10! and Fig.
9~a!#, from Eq. ~7! we find F rand(n)/n'F(n)/n;Wgc(a). We
also find that at intermediate scales, F(n)/n;Ap(12p) for
fixed segment size W ~see Appendix B, Fig. 10!. Thus from
Eq. ~7! we find F rand(n)/n'F(n)/n;Ap(12p). Hence we
obtain the following general expression:

F rand~n !/n;h~a !Ap~12p !Wgc(a)n0.5. ~11!

Here we assume that F rand(n)/n also depends directly on the
type of correlations in the segments through some function
h(a).

To determine the form of gc(a) in Eq. ~11!, we perform
the following steps.

~a! We fix the values of p and a , and from Eq. ~10! we
calculate the value of F rand(n)/n for two different values of
the segment size W, e.g., we choose W15400 and W2520.

~b! From the expression in Eq. ~11!, at the same scale n in
the intermediate scale regime, we determine the ratio

F rand~W1!/F rand~W2!5~W1 /W2!gc(a). ~12!

~c! We plot F rand(W1)/F rand(W2) vs a on a linear-log
scale @Fig. 9~b!#. From the graph and Eq. ~12! we obtain the
dependence

gc~a !5

ln@F rand~W1!/F rand~W2!#

ln~W1 /W2!

5H Ca2C/2, 0.5<a<1

0.50 for a.1,
~13!

where C50.8760.06. Note that gc(0.5)50.
To determine if F rand(n)/n depends on h(a) in Eq. ~11!,

we perform the following steps.

FIG. 8. Dependence of the scaling behavior of components on
the segment size W. The fraction p50.1 of the nonzero segments is
fixed and the length of the components is Nmax5220. ~a! Compo-
nents containing anticorrelated segments (a50.1). At large scales
(n@W), there is a crossover to random behavior (a50.5). An
equidistant vertical shift in F(n)/n when W decreases by a factor of
10 suggests a power-law relation between F(n)/n and W. ~b! Com-
ponents containing correlated segments (a50.9). At intermediate
scales, F(n)/n has slope a50.5, indicating random behavior. An
equidistant vertical shift in F(n)/n suggests a power-law relation
between F(n)/n and W.
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~a! We fix the values of p and W and calculate the value of
F rand(n)/n for two different values of the scaling exponent
a , e.g., 0.5 and any other value of a from Eq. ~10!.

~b! From the expression in Eq. ~11!, at the same scale n in
the intermediate scale regime, we determine the ratio

F rand~a !

F rand~0.5!
5

h~a !

h~0.5!
Wgc(a)2gc(0.5)

5

h~a !

h~0.5!
Wgc(a),

~14!

since gc(0.5)50 from Eq. ~13!.
~c! We plot F rand(a)/F rand(0.5) vs a on a linear-log scale

@Fig. 9~b!# and find that when W[W1 /W2 @in Eqs. ~12! and
~14!# this curve overlaps with F rand(W1)/F rand(W2) vs a

@Fig. 9~b!# for all values of the scaling exponent 0.5<a
<1.5. From this overlap and from Eqs. ~12! and ~14!, we
obtain

Wgc(a)
5

h~a !

h~0.5!
Wgc(a) ~15!

for every value of a , suggesting that h(a)5const and thus
F rand(n)/n can finally be expressed as

F rand~n !/n;Ap~12p !Wgc(a)n0.5. ~16!

Components with anticorrelated segments (a,0.5). Our
results in Fig. 6~a! suggest that at small scales n,W there is
no substantial contribution of F rand(n)/n and that

F~n !/n'Fcorr~n !/n;b0Apna, ~17!

a behavior similar to the one we find for components with
correlated segments @Eq. ~8!#.

In the intermediate and large scale regimes (n>W), from
the plots in Figs. 7~b! and 8~a! we find that the scaling be-
havior of F(n)/n is controlled by F rand(n)/n and thus

F~n !/n'F rand~n !/n;Ap~12p !Wga(a)n0.5, ~18!

where ga(a)5Ca2C/2 for 0,a,0.5 @see Fig. 9~b!#, and
the relation for F rand(n)/n is obtained using the same proce-
dure we followed for Eq. ~16!.

VI. CONCLUSIONS

In this paper we studied the effects of three different types
of nonstationarities using the DFA correlation analysis
method. Specifically, we consider sequences formed in three
ways: ~i! stitching together segments of signals obtained
from discontinuous experimental recordings, or removing
some noisy and unreliable segments from continuous record-
ings and stitching together the remaining parts; ~ii! adding
random outliers or spikes to a signal with known correla-
tions, and ~iii! generating a signal composed of segments
with different properties, e.g., different standard deviations
or different correlations. We compare the difference between
the scaling results obtained for stationary correlated signals
and for correlated signals with artificially imposed nonsta-
tionarities.

~i! We find that removing segments from a signal and
stitching together the remaining parts does not affect the
scaling behavior of positively correlated signals (1.5>a
.0.5); even when up to 50% of the points in these signals
are removed. However, such a cutting procedure strongly
affects anticorrelated signals, leading to a crossover from an
anticorrelated regime ~at small scales! to an uncorrelated re-
gime ~at large scales!. The crossover scale n3 increases with
increasing value of the scaling exponent a for the original
stationary anticorrelated signal. It also depends both on the
segment size and the fraction of the points cut out from the
signal: ~1! n3 decreases with the increasing fraction of cut
out segments and ~2! n3 increases with increasing segment
size. Based on our findings, we propose an approach to mini-

FIG. 9. ~a! Scaling behavior of components containing corre-
lated segments (a.0.5). F(n)/n exhibits two crossovers and three
scaling regimes at small, intermediate, and large scales. From the
superposition rule @Eq. ~7!# we find that the small and large scale
regimes are controlled by the correlations (a50.9) in the segments
@Fcorr(n)/n from Eqs. ~8! and ~9!# while the intermediate regime
@F rand(n)/n;n0.5 from Eq. ~10!# is dominated by the random jumps
at the borders between nonzero and zero segments. ~b! The ratio
F rand(W15400)/F rand(W2520) in the intermediate scale regime for
fixed p and different values of a , and the ratio F rand(a)/F rand(a
50.5) for fixed p and W5W1 /W2 . F rand(n)/n is obtained from Eq.
~10! and the ratios are estimated for all scales n in the intermediate
regime. The two curves overlap for a broad range of values for the
exponent a , suggesting that F rand(n)/n does not depend on h(a)
@see Eqs. ~11! and ~16!#.
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mize the effect of the cutting procedure on the correlation
properties of a signal: When two segments that need to be
removed are on distances shorter than the size of the seg-
ment, it is advantageous to cut out both the segments and the
part of the signal between them.

~ii! Signals with superposed random spikes. We find that
for an anticorrelated signal with superposed spikes at small
scales, the scaling behavior is close to that of the stationary
anticorrelated signal without spikes. At large scales, there is
a crossover to random behavior. For a correlated signal with
spikes, we find a different crossover from uncorrelated be-
havior at small scales to correlated behavior at large scales
with an exponent close to the exponent of the original sta-
tionary signal. We also find that the spikes with identical
density and amplitude may have a strong effect on the scal-
ing of an anticorrelated signal while they have a much
smaller or no effect on the scaling of a correlated signal—
when the two signals have the same standard deviations. We
investigate the characteristics of the scaling of the spikes
only and find that the scaling behavior of the signal with
random spikes is a superposition of the scaling of the signal
and the scaling of the spikes. We analytically prove this su-
perposition relation by introducing a superposition rule.

~iii! Signals composed of segments with different local
properties. We find the following.

~a! For nonstationary correlated signals comprised of seg-
ments that are characterized by two different values of the
standard deviation, there is no difference in the scaling be-
havior compared to stationary correlated signals with con-
stant standard deviation. For nonstationary anticorrelated sig-
nals, we find a crossover at scale n3 . For small scales n
,n3 , the scaling behavior is similar to that of the stationary
anticorrelated signals with constant standard deviation. For
large scales n.n3 , there is a transition to random behavior.
We also find that very few segments with large standard
deviation can strongly affect the anticorrelations in the sig-
nal. In contrast, the same fraction of segments with standard
deviation smaller than the standard deviation of the rest of
the anticorrelated signal has much weaker effect on the scal-
ing behavior—n3 is shifted to larger scales.

~b! For nonstationary signals consisting of segments with
different correlations, the scaling behavior is a superposition
of the scaling of the different components—where each com-
ponent contains only the segments exhibiting identical corre-
lations and the remaining segments are replaced by zero.
Based on our findings, we propose an approach to identify
the composition of such complex signals: A first step is to
‘‘guess’’ the type of correlations from the DFA results at
small and large scales. A second step is to determine the
parameters defining the components, such as the segment
size and the fraction of nonzero segments. We studied how
the scaling characteristics of the components depend on
these parameters and provide analytic scaling expressions.
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APPENDIX A: SUPERPOSITION RULE

Here we show how the DFA results for any two signals f
and g @denoted as F f(n) and Fg(n)# relate with the DFA
result for the sum of these two signals f 1g @denoted as
F f 1g(n), where n is the box length ~scale of analysis!#. In
the general cases, we find uF f2Fgu<F f 1g<F f1Fg . When
the two signals are not correlated, we find that the following
superposition rule is valid: F f 1g

2
5F f

2
1Fg

2 . Here we derive
these relations.

First we summarize again the procedure of the DFA
method @3#. It includes the following steps: starting with an
original signal u(i) of length Nmax , we integrate and obtain
y(k)5( j51

k @u( j)2^u&# , where ^u& is the mean of u(i).
Next, we divide y(k) into nonoverlapping boxes of equal
length n. In each box we fit the signal y(k) using a polyno-
mial function yn(k)5a01a1x(k)1a2x2(k)1•••1asx

s(k),
where x(k) is the x coordinate corresponding to the kth sig-
nal point. We calculate the rms fluctuation function F(n)
5A(1/Nmax)(k51

Nmax@y(k)2yn(k)#2.
To prove the superposition rule, we first focus on one

particular box along the signal. In order to find the analytic
expression of best fit in this box, we write

I~a0 , . . . ,as!5 (
k51

n

$y~k !2@a01•••1asx
s~k !#%2,

~A1!

where am ,m50, . . . ,s , are the same for all points in this
box. The ‘‘best fit’’ requires that am ,m50, . . . ,s satisfy

]I

]am
50, m50, . . . ,s . ~A2!

Combining Eq. ~A1! with Eq. ~A2! we obtain s11 equations

ym5a0tm01a1tm11•••1astms , m50, . . . ,s ,
~A3!

where

ym5 (
k51

n

y~k !xm~k !, tm j5 (
k51

n

xm1 j~k !, j50, . . . ,s .

~A4!

From Eqs. ~A3! we determine a0 ,a1 , . . . ,as .
For the signals f, g, and f 1g , after the integration in each

box we have

f m5a0tm01a1tm11•••1astms , m50, . . . ,s ,

gm5a08tm01a18tm11•••1as8tms , m50, . . . ,s ,

~ f 1g !m5a09tm01a19tm11•••1as9tms , m50, . . . ,s ,

~A5!
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where f m , gm , and ( f 1g)m correspond to ym in Eqs. ~A3!.
Comparing the three groups of equations in Eqs. ~A5!, we

find that when we add the first two groups together, the left
side becomes f m1gm5( f 1g)m , which is precisely the left
side of the third group of equations. Thus we find

am9 5am1am8 , m50, . . . ,s ~A6!

and for each point k in every box, the polynomial fits for the
signals f, g, and f 1g satisfy

~ f 1g !n~k !5 f n~k !1gn~k !. ~A7!

This result can be extended to all boxes in the signals. For
the signal f 1g we obtain

F f 1g
2

5

1

Nmax
(
k51

Nmax

@ f ~k !2 f n~k !#2
1@g~k !2gn~k !#2

12@ f ~k !2 f n~k !#@g~k !2gn~k !# . ~A8!

After the substitutions f (k)2 f n(k)5Y f(k) and g(k)
2gn(k)5Y g(k), we rewrite the above equation as

F f 1g
2

5

1

Nmax
F (

k51

Nmax

@Y f~k !#2
1 (

k51

Nmax

@Y g~k !#2

12 (
k51

Nmax

Y f~k !Y g~k !G5F f
2
1Fg

2

1

2

Nmax
(
k51

Nmax

Y f~k !Y g~k !. ~A9!

In the general case, we can utilize the Cauchy inequality

U (
k51

Nmax

Y f~k !Y g~k !U<S (
k51

Nmax

@Y f~k !#2D 1/2S (
k51

Nmax

@Y g~k !#2D 1/2

~A10!

and we find

~F f2Fg!2<F f 1g
2 <~F f1Fg!2

⇒uF f2Fgu<F f 1g<F f1Fg .

~A11!

From Eqs. ~A3! for m50, in every box we have
(k51

n y(k)5(k51
n yn(k). Thus we obtain (k51

NmaxY f(k)

5(k51
NmaxY g(k)50, where Y f(k) and Y g(k) fluctuate around

zero. When Y f(k) and Y g(k) are not correlated, the value of

the third term in Eq. ~A9! is close to zero and we obtain the
following superposition rule:

F f 1g
2

5F f
2
1Fg

2 . ~A12!

APPENDIX B: STRONGLY CORRELATED SEGMENTS

For components containing segments with stronger posi-
tive correlations (a.1) and fixed W520, we find that at
small scales (n,W), the slope of F(n)/n does not depend
on the fraction p and is close to that expected for a stationary
signal u(i) with identical correlations ~Fig. 10!. Surprisingly
we find that in order to collapse the F(n)/n curves obtained
for different values of the fraction p, we need to rescale
F(n)/n by Ap(12p) instead of Ap , which is the rescaling
factor at small scales for components containing segments
with correlations a,1. Thus a51 is a threshold indicating
when the rescaling factor changes. Our simulations show that
this threshold increases when the segment size W increases.

For components containing a sufficiently small fraction p
of correlated segments (a.0.5), we find that in the interme-
diate scale regime there is a crossover to random behavior
with slope 0.5. The F(n)/n curves obtained for different
values of p collapse in the intermediate scale regime if we
rescale F(n)/n by Ap(12p) ~Fig. 10!. We note that this
random behavior regime at intermediate scales shrinks with
the increasing fraction p of correlated segments and, as ex-
pected, for p close to 1 this regime disappears ~see the p
50.9 curve in Fig. 10!.
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