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Spontaneous stratification of granular mixtures has been reported by Makse et al. @Nature ~London! 386, 379
~1997!# when a mixture of grains differing in size and shape is poured in a quasi-two-dimensional heap. We
study this phenomenon using two different approaches. First, we introduce a cellular automaton model that
illustrates clearly the physical mechanism; the model displays stratification whenever the large grains are
rougher than the small grains, in agreement with the experiments. Moreover, the dynamics are close to those
of the experiments, where the layers are built through a ‘‘kink’’ at which the rolling grains are stopped.
Second, we develop a continuum approach, based on a recently introduced set of coupled equations for surface
flows of granular mixtures that allows us to make quantitative predictions for relevant quantities. This approach
includes amplification ~i.e., static grains entering the flow of rolling grains!, a phenomenon neglected in the
cellular automaton model. We study the continuum model in two limit regimes: the large flux or thick flow
regime, where the percolation effect ~i.e., segregation of the rolling grains in the flow! is important, and the
small flux or thin flow regime, where all the rolling grains are in contact with the surface of the sandpile. ~1!

In the thick-flow regime, where most experiments are carried out, the flowing grains are segregated in the
rolling phase; as they are flowing down, the large rolling grains are convected to the top of the rolling layer,
and only the small rolling grains interact with the sandpile. We include this effect in the continuum model and
find results very close to the experiments. ~2! In the thin-flow regime, we find interesting results that are close
to the thick-flow limit. However, due to the presence of cross-amplification processes, we find a small regime
that shows stratification when the small grains are slightly rougher than the large grains, but stratification is
much more pronounced if the large grains are rougher. We study in detail the dynamical process for stratifi-
cation, where the layers are built through a ‘‘kink’’ mechanism, and find the dependence of the size of the
layers on the parameters of the system. We find that the wavelength of the layers behaves linearly with the flux
of grains. We also find a crossover behavior of the wavelength at the transition from the thin-flow to the
thick-flow regime. We obtain analytical predictions for the shape of the kink giving rise to stratification as well
as the profile of the rolling and static species when segregation of the species is observed.
@S1063-651X~99!07104-4#

PACS number~s!: 81.05.Rm, 05.40.2a, 45.05.1x, 64.75.1g

I. INTRODUCTION

Segregation is a prominent example of the peculiar prop-
erties of granular matter @1–9#. For example, shaking a con-
tainer filled with two types of grains of different sizes leads
not to mixing—as in liquids—but to segregation, with the
large grains at the top of the container and the small grains at
the bottom. This striking behavior and the importance of
mixing problems from a technological point of view have led
to a broad interest in granular materials in the physics com-
munity.

Several types of segregation have been investigated,
namely, segregation by vibrating a container ~the ‘‘Brazil nut
effect’’! @10–14#, and segregation in rotating cylinders,
where the segregation occurs through surface flow @15–19#.

Segregation can also be obtained in the absence of any
periodic oscillation by simply pouring a mixture of grains of
different sizes onto a pile. One experimental setup, which
has attracted much recent attention, consists of a quasi-two-
dimensional cell or vertical Hele-Shaw cell where a mixture
of grains is constantly poured next to one end of the cell

@Fig. 1~a!#. When a mixture of small and large grains is
poured into the cell, a pile builds up and the small grains are
observed to segregate near the top of the pile and the large
ones near the bottom of the pile @20–26#. This segregation is
due to the different grain sizes, because large grains roll
down more easily on top of small grains than small grains on
top of large grains.

It has been recently observed @27–31# that if the shapes of
the species are sufficiently different, another type of segre-
gation can take place: when such a mixture of small rounded
grains and large rough grains is poured between two vertical
slabs, a spontaneous stratification of the mixture in alternat-
ing layers of small and large grains parallel to the pile sur-
face is observed. Additionally, there is an overall tendency
for the large and small grains to segregate into different re-
gions of the cell. Spontaneous stratification is also found for
more than two species @27#. The layers are then ordered
forming a sequence parallel to the surface pile ~from bottom
to top, small-medium-large, small-medium-large for three
species!.

This phenomenon could possibly be relevant in different
fields, such as geomorphology @32,33#. For example, stones
coming from sand dune solidification ~sandstone! present
successive alternation of layers of different types of grains.
This regularity cannot be explained by periodic sedimenta-
tion. But one could imagine that the sand dune was built with
sand brought by the wind and flowing down the slipface of
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the dune @1#, where stratification could appear as in the ex-
periments of @27#. This phenomenon may also have impor-
tant consequences in industry where processing and transport
of initially mixed grains could lead to stratification.

Spontaneous stratification has been observed in @27# after
a transient regime and only when the large grains are
rougher than the small grains. When the large grains are the
smoothest stratification does not occur but only the segrega-
tion of the mixture in different regions of the cell occurs,
with the large and rounded being at the bottom of the cell,
and the small and rough at the top. These phenomena can be
qualitatively understood as the growth of an instability due to
the competition of two opposite effects. ~i! On the one hand,
if the grains have the same shape ~spherical, for example! or,
more precisely, the same repose angle, then the large grains
will roll more easily on the top of the small ones than the
reverse. This will lead to segregation, with the small grains
at the top of the pile and the large at the bottom. ~ii! On the
other hand, if the grains have the same size but different
shape, the rougher grains will have a larger friction coeffi-
cient than the other grains, and we expect segregation with
the rougher grains at the top of the sandpile. In the case of
large grains rougher than small grains, those two effects will
compete, giving rise to an instability, and then to spontane-
ous stratification. However, in the case where the smaller
grains are rougher than the large grains, the two effects will
contribute in the same way, and the segregation pattern will

be stable, without the occurrence of stratification @34#.
In this paper, we study granular flow in the spirit of @35–

38#, where one assumes a sharp distinction between the roll-
ing or fluid phase composed of the layer of grains flowing
down and the static phase or bulk composed of grains form-
ing the sandpile. The essential feature to understand sandpile
formation is then to describe how the rolling grains are flow-
ing down and how they interact with the static grains. In this
context, it is important to distinguish between two different
regimes, the thin-flow regime and the thick-flow regime,
where the interaction between rolling grains and static grains
are very different. Moreover, experiments have been done in
both regimes, so that both regimes are important to study.

Here we propose a mechanism to understand spontaneous
stratification and segregation in two-dimensional silos. We
adopt two different approaches. First we introduce a cellular
automaton model to give insight into the proposed mecha-
nism. This model displays stratification as soon as the large
grains are rougher than the small ones, in agreement with
experiments @27#. The dynamics are also very close to the
experiments @27#, where the layers are built through a
‘‘kink’’ going uphill where the rolling grains are stopped.

Second, we study a continuum model that is built on a
phenomenological formalism describing granular flow on
sandpiles. This formalism was introduced by Bouchaud et al.
@35# for the case of a single species, and recently generalized
by Boutreux and de Gennes ~BdG! @37# to the case of a
mixture of two species. The essential feature to understand
sandpile formation is to describe the interaction between the
rolling or fluid phase and the bulk, as well as any segregation
which may occur in the rolling phase itself. In contrast to the
cellular automaton model, this formalism includes amplifica-
tion processes, i.e., the conversion of static grains at the sur-
face of the sandpile into rolling grains by the flow ~this fea-
ture is essential to understand avalanching when one tilts a
sandpile above the maximum angle of repose, or to under-
stand avalanche dynamics in rotating drums!.

In the large flux regime, the rolling grains form a thick
phase and the grains are kinematically segregated in the roll-
ing phase, an effect called kinematic sieving, free surface
segregation, or percolation @Fig. 1~b!# @23,25,28#. Due to this
phenomenon the large grains in the rolling phase are found
to rise to the top of the rolling phase while the small grains
sink downward through the gaps left by the motion of larger
grains in the rolling phase. Thus, small rolling grains form a
sublayer underneath the sublayer of large rolling grains.
Then only the lower grains of this layer interact with the
sandpile. Thus, a segregation effect that we refer to as per-
colation takes place inside the rolling phase where the large
grains are convected along the flow to the top of the layer.
Thus, if small rolling grains are present, they will preferen-
tially be on the bottom of the layer, preventing the large
grains from interacting with the sandpile.

We will develop a continuum formalism that includes the
percolation effect, and show that stratification arises in a way
similar to that of the experiments. When the large grains are
rougher, stratification is made of layers spreading all along
the sandpile; the layers of the two types of grains being of
the same size for an equal volume mixture of grains. When
the small grains are rougher than the large grains, we observe
the complete segregation of the mixture but not stratification,

FIG. 1. ~a! Typical experimental setup to study spontaneous
stratification and segregation in quasi-two-dimensional cells, along
with the different quantities defined in the text. ~b! Schematic rep-
resentation of the percolation effect in the rolling phase. We pour
continuously a mixture of large and small grains in a two-
dimensional cell and observe a steady thick flow of grains. The
percolation effect consists of the size segregation of grains in the
rolling phase: large grains are observed to rise to the top of the
rolling phase, and small grains drift to the bottom of the rolling
phase. Due to the percolation effect, the small grains are the first to
be captured at the pile surface, resulting in the segregation of the
mixture in the bulk.
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with the small and roughest grains being found at the top of
the pile in agreement with the experiments. A thick rolling
phase is a condition for the percolation effect to take place.
However, a large difference in size is also necessary to ob-
serve the percolation effect: we expect d2 /d1*1.5, where d1
and d2 are the typical size of the small and large grains,
respectively.

In the small-flow regime each rolling grain is always in
contact with the sandpile and so interacts with it. In this case
a thin rolling phase is expected—of the order 'd2—and
percolation effects are expected to be irrelevant. However,
strong segregation effects are expected, as in the case of
percolation, since we will consider the case of large size
difference between the grains. The large grains are not being
captured on top of static small grains ~although they interact
with them! because of the large difference in size, while the
small grains are easily captured on top of the large static
grains. Using the theoretical formalism adapted to this case,
we will show that stratification is observed when the large
grains are rougher than the small grains, in agreement with
the experiments.

Cross-amplification processes—the influence of which
was greatly reduced in the case of thick flows due to perco-
lation effects—now plays an important role since all grains
are interacting with the pile and cross interactions of the type
small/large grains are expected to occur at the fluid-bulk in-
terface. Due to cross amplification, the transition from strati-
fication to segregation does not occur sharply when the small
grains become the roughest. We find a regime where the
small grains are slightly rougher than the large grains, which
also gives rise to stratification. When the small grains are
more rounded than the large grains, then we find the segre-
gation of the grains in agreement with experiments.

In general, we find that the thick-flow regime and the
thin-flow regime show similar results regarding the stratifi-
cation and segregation of the species. This is valid provided
that the grains differ appreciably in size ~in term of the size
ratio we expect d2 /d1*1.5 @28,29#!. Then we study analyti-
cally a mechanism for stratification and segregation valid for
both regimes. We study the ‘‘kink’’ mechanism, and we ob-
tain predictions for the wavelength of the layers as a function
of the different parameters of the system. In particular, we
find that the wavelength of the layers is proportional to the
flux of adding grains ~i.e., proportional to the thickness of the
rolling phase!, and we also find a crossover behavior at the
thin-thick flow transition. Finally we discuss our results in
regard to previous approaches to segregation @37# and strati-
fication @34# and to the experiments @27–31#. A short report
of some of the results presented here has been published in
@38#.

II. CELLULAR AUTOMATON MODEL

A. Motivation and Definitions

We first introduce a simplified discrete model to under-
stand the mechanism leading to stratification. Discrete mod-
els have been used before for modeling the complex behav-
ior of granular materials. The role played by the angle of
repose has been used to understand the complex dynamics of
granular flows of mixtures @8,35,39,40#. The concept of
angle of repose normally involves a macroscopic

definition—i.e., the angle of repose is the angle of the pile
surface after the grains are poured onto a heap. Here, we will
define a microscopic angle of repose as the maximum angle
at which a rolling grain is trapped at the surface of the pile.
This definition must be understood in terms of a coarse
grained distance along the surface of the pile—of the order
of a few grain sizes—over which all the quantities involved
in the model are averaged.

In the case of a single-species sandpile, as sand is added
to the sandpile we consider a critical angle of repose ur .
When the local angle of the pile is smaller than ur the rolling
grain is stable and there is no flow. When the local angle of
the pile is larger than ur the rolling grain is unstable and flow
occurs.

We develop a simple discrete model, based on the idea
that grains flow when the local angle of the sandpile is larger
than the angle of repose. We consider that the angle of re-
pose depends on the type of rolling grains and also on the
composition of the surface. Thus, in the case of granular
mixtures of two different species, we consider the existence
of four different generalized angles of repose.

The sandpile is built on a lattice, where the grains have
the same horizontal and vertical size as the lattice spacing.
The two species will be distinguished according to different
generalized angles of repose. In general, we will call species
type 1 to the small grains, and species type 2 to the large
grains. The species can also have rough or smooth surface
properties, which, together with the different size, will define
the different angles of repose of the species. Following @35–
37#, we regard each grain as belonging to one of two phases:
~i! static phase, if the grain is part of the sandpile; ~ii! rolling
phase, if the grain is not part of the sandpile and rolls down-
ward with a constant drift velocity.

We consider the local slope

s i[h i2h i11 ~1!

of the static grains as the variable controlling the dynamics
of the rolling grains. Here, h i denotes the height of the sand-
pile at coordinate i, and we assume the pouring point at i
51.

At each time step a set of N1 small grains and N2 large
grains is deposited at the top of column 1 of the pile @see Fig.
2~a!#. These grains are considered to belong to the rolling
phase. In the case of thin flow we assume that the rolling
phase is homogeneous and both types of species are mixed in
the fluid phase and interact with the surface. Then one rolling
grain of each species interacts with the surface at each time
step, and can be converted from the rolling phase to the static
phase. In the thick-flow regime, the percolation effect is ex-
pected to take place, and the small grains screen the interac-
tion of the large rolling grains with the pile surface. Thus in
the thick-flow regime, we consider that the large grains in-
teract with the pile surface only when the number of small
rolling grains at a given position falls below a given thresh-
old e!N2 .

The remaining rolling grains which do not interact with
the pile surface are convected ‘‘downward’’ with unit ‘‘drift
velocity’’—i.e., they move to the next column at each time
step.

The dynamics of each rolling grain interacting with the
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sandpile surface is governed by its local generalized angle of
repose. We consider that the repose angle depends on the
local composition on the surface, so we define uab as the
generalized repose angle of a rolling grain of type a on a
surface with local grains of type b . We propose that

u21,u12 ~2!

to take into account the fact that large rolling grains roll
more easily on top of small static grains than small grains
roll on top of large static grains @since the surface ‘‘looks’’
smoother for large grains rolling on top of small grains, see
Fig. 2~b!#. The repose angles of pure species uaa lie between
u21 and u12 .

Since a large grain rolls easier than a small rolling grain
on top of a layer of small static grains, we have

u21,u11 . ~3!

Conversely, a large grain rolls easier than a small grain on
top of a layer of large static grains, so that

u22,u12 . ~4!

The stratification experiments @27# use a mixture of
smaller less faceted grains and larger more faceted grains.
Thus, the last inequality between the angles of repose is pro-
vided by the fact that the grains differ in shape of friction
properties. Since the small species are the most rounded,
then the repose angle of the smaller pure species is smaller
than the repose angle of the large pure species—i.e.,

u11,u22 . ~5!

Therefore, to mimic the experimental conditions for stratifi-
cation @27#, we propose

u21,u11,u22,u12 . ~6!

We notice that conditions ~2!–~4! are a consequence of the
different size of the species, while the condition u11Þu22 is
achieved for mixtures of grains with different shapes, and
does not depend on the size of the grains. Thus the model
incorporates the size segregation and shape segregation in
the definition of the angles of repose. In general the grains
with the larger angle of repose will tend to be captured first.
Thus the small grains will tend to be captured at the top of
the pile, and the smoothest grains at the bottom of the pile.
The percolation effects tend to segregate the small grains at
the top of the pile, thus, it acts in the same way as the size
segregation due to different angles of repose, Eqs. ~2!–~4!.

At each time step, the rolling grain interacting with the
sandpile surface at coordinate i either will stop ~by being
converted into a static grain! if the local slope of the surface

h i2h i11<sab[tan uab , ~7!

where sab is the local slope, or will continue to roll ~together
with the remaining rolling grains! to column i11 if

h i2h i11.sab . ~8!

We iterate this algorithm to form a large sandpile of typically
105 grains. We assume that the substrate is made of a layer
of large grains.

The discrete model in the thick-flow and thin-flow re-
gimes gives rise to similar results. Then in the following we
will present results of the discrete model in the thick-flow
regime where most of the experiments are done, and where
the grains are segregated in the rolling phase. Indeed, we will
see when discussing the continuum model that the differ-
ences between the thin-flow regime and the thick-flow re-
gime arise when cross-amplification processes are taken into
account and for small difference between the pure angles of
repose.

B. Kink mechanism

Figure 3~a! shows the resulting morphology predicted by
the discrete model when the large grains are rougher than the
small grains. This fact is quantified by taking into account
that the angle of repose of the pure large species is larger
than the angle of repose of the pure small species, u22
.u11 . The stratification is qualitatively the same as that
found experimentally @27#, both in regard to the statics of the
sandpile @seen in Fig. 3~a!#, and also in regard to the dynam-
ics ~seen in Fig. 4!.

The mechanism for spontaneous stratification involves the
formation of a kink at which the grains are stopped during an
avalanche. After a pair of static layers is formed with a layer
of large grains on top of a layer of small grains, the angle of
the sandpile is close to u22 @Fig. 4~a!#. Since the surface of
the sandpile is made of large grains and u22,u12 , a thin
layer of small grains is trapped on top of the layer of large
grains as more grains are poured onto the cell. These small
grains smooth the surface without changing significantly the
sandpile angle, and allow rolling small grains to go further

FIG. 2. ~a! Description of the discrete model. ~b! The four dy-
namical angles of repose uab depend on the composition of grains
at the surface of the pile, and are chosen according of the four
possible interactions between the two species of grains. As dis-
cussed in the text, the angles of repose satisfy u21,u11,u22

,u12 , when species 1 are small and rounded and species 2 are
large and rough; and u21,u22,u11,u12 , when species 1 are small
and rough and species 2 are large and rounded.
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down ~since u11,u22) @Fig. 4~b!#. The large grains are roll-
ing down on this thin layer of small grains without being
captured (u21,u22), and are the first to reach the bottom of
the sandpile, giving rise to segregation @Fig. 4~b!#. When the
flow reaches the base of the pile, the grains develop a profile
which displays a kink where the grains are stopped: the small
grains are stopped first at the kink since u21,u11 , and a pair
of layers begins to form, with the small grains underneath the
large grains @Fig. 4~c!#. The kink moves upward ~in the op-
posite direction to the flow of grains! until it reaches the top
of the pile and a complete pair of layers has been formed
@Fig. 4~d!#.

If, on the other hand, we consider u22,u11 in the
model—corresponding to a mixture of smaller ‘‘more fac-
eted’’ grains, and larger ‘‘less faceted’’ grains—we find the
complete segregation of the mixture but no stratification
@Fig. 3~b!#. In this case, the small and faceted grains are to be
found near the top of the pile, while the large and rounded
grains are found near the bottom of the pile. Thus, the con-
trol parameter for spontaneous stratification appears to be the

difference in the repose angle of the pure species, which
quantifies the difference in shape of the grains.

As seen in Fig. 3~a!, before the layers appear there is an
initial regime where only segregation is found. At the onset
of the instability leading to stratification, a few large grains
are captured on top of the region of small grains near the
center of the pile where the angle of the pile is u.u11 . The
repose angle for large rolling grains is now u22 . Thus, if u
.u11,u22 , more large grains can be trapped ~since the
angle of the surface is smaller than the repose angle!, leading
to the first sublayer of large grains and then to stratification.
On the other hand, if u.u11.u22 , no more large grains can
get captured, the fluctuation disappears, and the segregation
profile remains stable. Thus this picture suggests that, in
agreement with @27#, the segregation profile observed in the
initial regime is ‘‘stable’’ so long as u22,u11 , and unstable
~evolving to stratification for large enough systems! when
u11,u22 . This explains qualitatively why the control param-
eter for the stratification-segregation transition is the angle of
repose of the pure species.

III. CONTINUUM THEORY FOR GRANULAR FLOW

A theoretical approach to segregation in granular flow is
not a simple task. On one hand, extensive numerical simula-
tions ~such as molecular dynamics @3,5,41–44#, or lattice gas
models @45–48#! have been able to reproduce several segre-
gation phenomena observed experimentally. On the other
hand, an analytical approach of segregation, considering
granular medium as continuum, would be instructive, since it
would allow to reduce the problem to a small set of param-
eters that control the system, and then to get a clear phenom-
enological understanding of the problem. However, an im-
portant question is whether the grains can be treated as a
continuum medium. A continuum approach means that we
will be able to replace the grains belonging to a same region
of space by some average quantities, for example, the den-
sity, or the averaged speed. But specific grains can play a
peculiar role, i.e., in the case of arching effects, where an
arrangement of several grains in a special way ~an arch! sup-
ports the above grains, prevents the flow by gravity, and
creates large discontinuities for the local density or the force
@49,50#.

In this section, we study spontaneous stratification using a
continuum formalism. We will show that the results obtained
are very close to the experiment, and then we extract the
important parameters of the problem. Our results shows that
a continuum formalism is able to reproduce a complex phe-
nomenon in granular matter such as spontaneous stratifica-
tion.

The continuum theory of granular flow for a single-
species sandpile was proposed by Mehta @51# and Bouchaud
et al. @35#. Bouchaud et al. recognized the necessity of treat-
ing differently the rolling grains ~rolling on the surface of the
pile!, and the static grains that form the sandpile. The rolling
grains are in a ‘‘liquid’’ state, flowing down by gravity and
interacting with the static grains in the ‘‘solid’’ state. The
dynamics of the sandpile is then given by how the rolling
grains move on the surface and how they interact with the
sandpile. The equations for those two quantities for the case
of single-species sandpiles are

FIG. 3. ~a! Spontaneous stratification: results obtained with the
discrete model for N1510, N2510, e51, s1154, s1257, s2152,
s2255. Note the kink profile at which grains are stopped during an
avalanche. The large rough grains are black and the small rounded
grains are gray. ~b! Segregation: results obtained with the discrete
model when the angle of repose of the large rounded grains is
smaller than the angle of repose of the small rough grains for N1

510, and N2510, e51, s1155, s1257, s2152, s2254.

FIG. 4. Dynamics obtained with the discrete model, showing the
formation of a pair of layers at the kink. Notice the kink moving
uphill at constant velocity v↑ .
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d

dt
R@x~ t !#5G~R ,h !, ~9a!

]h~x ,t !

]t
52G~R ,h !. ~9b!

Here R@x(t)# is the height of the layer of rolling grains in the
Lagrange representation ~following the rolling grains!, and
h(x ,t) the height of the sandpile @Fig. 1~a!#. The rolling
grains interact with the sandpile through G(R ,h). Equations
~9! conserve the number of grains.

We need to define how the rolling grains move on the
surface, and how they interact with the sandpile. Two forces
are acting on the rolling grain: ~i! gravity and ~ii! friction
coming from the collisions of the rolling grain with the
grains of the sandpile. The number of collisions at the scale
of interest for continuum equations ~several times the size of
a grain! is large enough so that at this scale, the speed is
always at its limit value where the two forces balance ex-
actly, and the motion of a grain is overdamped. Equations
~9a! and ~9b! can be rewritten in Euler representation

]R~x ,t !

]t
52v

]R~x ,t !

]x
1G~R ,h !, ~10a!

]h~x ,t !

]t
52G~R ,h !. ~10b!

Here R(x ,t) is now a function of the time and the position x,
and we assume the pouring point at x50. The rolling grains
are moving down at a speed v(x ,t) in the positive x direc-
tion, where v(x ,t) could depend on the local slope of the
sandpile. However, in the spirit of capturing only the essen-
tial physical mechanisms to recover the observed phenom-
ena, we will consider the speed v to be constant all over the
sandpile.

Bouchaud et al. @35# proposed a form for G(R ,h) in the
general case, that has been simplified by de Gennes @36# for
the simpler case of a continuous flow of rolling grains. In
this case, there is no discrete avalanching and only the repose
angle must be included in the formalism @52#. The interac-
tion term G(R ,h) is

G~R ,h !5g@u~x ,t !2ur#R , ~11!

where

u~x ,t ![
2]h~x ,t !

]x
~12!

is the local angle of the surface ~we will make no distinction
between the angle of the surface and the tangent of the
angle!.

Equation ~11! states that the rate of the interaction is pro-
portional to the number of grains interacting with the sand-
pile. Rolling grains will become part of the sandpile if the
angle of the surface u(x ,t) is smaller than the repose angle
ur ~‘‘capture’’!, while static grains will become rolling
grains if u(x ,t) is larger than ur ~‘‘amplification’’!. The con-
stant g is the inverse of the time on which this interaction is

effective because the distance on which a rolling grain is
stopped when u(x ,t) is smaller than ur is v/g . This distance
must scale with the size of the grain d. Thus @36#

v/g;d . ~13!

The linear dependence of G(R ,h) on the quantity
@u(x ,t)2ur# can be understood as a first-order development
of a more complicated function of u(x ,t). As soon as the
angle of the sandpile is far from the repose angle, nonlinear
terms must be added ~avoiding the nonphysical divergences
that could be found with the linear development!. Finally the
proportionality of G(R ,h) to R(x ,t) is meaningful in the
case where all the grains interact at each time with the sur-
face ~thin-flow limit!. This imposes the height of the rolling
layer to be of the order of the grain size R(x ,t).d . How-
ever, we will argue that this approximation might be still
valid in the case of thick flows as well, since the interaction
might be proportional to the pressure exerted by the fluid
phase, which in turn is proportional to R(x ,t) for a fluid @16#.
For very large fluxes ~thicker rolling phase! we expect this
linear approximation to break down, and we discuss this
point at the end of Sec. V C.

To treat the problem of segregation in granular flow com-
posed of binary mixtures, Boutreux and de Gennes ~BdG!
@37# have extended this formalism to the case of flows made
of two types of grains, identifying three variables: the two
heights of rolling grains Ra(x ,t) ~i.e., the total thickness of
the rolling phase multiplied by the local volume fraction of
the a grains in the rolling phase at position x), and the
height of the sandpile h(x ,t). BdG generalized Eqs. ~10! to

]Ra

]t
52va

]Ra

]x
1Ga , a51,2, ~14a!

]h

]t
52G12G2 , ~14b!

where the interaction term Ga takes into account the conver-
sion of the rolling grains into static grains, and is defined
through the collision matrix M ab ,

Ga[ (
b51

2

M abRb . ~15!

The collision matrix, governing capture and amplification,
depends on the local angle of the pile u(x ,t) and on the local
composition of the surface of the sandpile fa(x ,h), which is
a function of x and h. However, writing an equation of evo-
lution for fa(x ,h) is not easy. When both rolling species are
captured, the height of the sandpile increases, and fa(x ,h) is
given by

fa~x ,h !52

Ga

]h/]t
, ~16!

and

f11f251. ~17!
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As soon as amplification dominates for one or both species,
Eq. ~16! is no longer valid. When Ga.0 for both species,
the height of the sandpile decreases, and fa(x ,h) does not
have to be updated. Finally, when grains of type a are cap-
tured and grains of type b are amplified, the composition
will be fa(x ,h)51.

The general form of the collision matrix is defined by
taking into account a set of binary collisions between a roll-
ing and a static grain @37#,

M̂[S a1~u !f12b1~u ! x2~u !f1

x1~u !f2 a2~u !f22b2~u !
D . ~18!

This definition involves a set of a priori unknown collision
functions contributing to the rate processes: aa(u) is the con-
tribution due to an amplification process ~when a static grain
of type a is converted into a rolling grain due to a collision
by a rolling grain of type a),ba(u) is the contribution due to
capture of a rolling grain of type a ~when a rolling grain of
type a is converted into a static grain!, and xa(u) is the
contribution due to a cross-amplification process, ~the ampli-
fication of a static grain of type b due to a collision by a
rolling grain of type a).

BdG @37# proposed an analytically tractable form for the
collision matrix that includes capture and amplification, in
the case where the two species have the same size but differ
in respect to their repose angle. BdG found the steady state
solution in the geometry of the silo, in the case where the
repose angle does not depend on the composition of the sur-
face. The BdG model explains the segregation of the two
type of grains in different regions of the sandpile, but not the
phenomenon of spontaneous stratification. A generalization
of the model to include also the different sizes of the grains
@53# shows a smooth segregation of the species with the con-
centrations of static grains behaving as a power law of the
position along the surface pile; results valid only when the
species do not differ too much ~a fact that allows to perform
linear approximations of the collision functions around the
angles of repose @53#!. In the following we propose a form of
the collision functions valid when there is a large difference
in size and shape between the species and we treat the thin-
and thick-flow regimes, in order to understand stratification
and segregation as seen in the experiments.

IV. CONTINUUM MODEL FOR STRATIFICATION
OF GRANULAR MIXTURES

A. Collision matrix and generalized angle of repose

We present the collision matrix M ab that includes the
effects of capture and amplification, and the dependence of
the repose angle on the composition of the surface as dis-
cussed in @38#. Considering one type of rolling grain a , we
define capture and amplification as follows: if the local angle
of the surface u(x ,t)52]h(x ,t)/]x is smaller than the gen-
eralized angle of repose of the rolling specie a, ua , the a
rolling grains will be captured. In the reverse case u(x ,t)
.ua , the static grains at position x will be amplified. Am-
plification will cause locally a small hole, i.e., the two types
of static grains will be amplified the same way according to
their local concentration fa .

The generalized repose angle ua of each type of rolling
grain is now a continuous function of the composition of the
surface ua5ua(fb) ~see Fig. 5!,

u1~f2!5mf21u11 , u2~f2!5mf21u2152mf11u22 ,
~19!

where m[u122u115u222u21 . We have assumed the differ-
ence

c[u1~f2!2u2~f2! ~20!

to be independent of the concentration f2 . For simplicity,
we choose a linear interpolation between the extreme values
ua(fb50) and ua(fb51). If we label the small grains
with a51 and the large grains with a52 and denote the
extreme values of the repose angle by ua(fb51)5uab as in
Sec. II, the difference in size implies @see Fig. 2~b!#

u12,u21 . ~21!

If species 1 are the smallest then u1(f2).u2(f2) for any
composition of the surface f2—i.e., the small grains are al-
ways the first to be captured. Thus, the angular difference c
is determined mainly by the difference in size between the
species, and the value of c determines the degree of segre-
gation; the larger c , the stronger the segregation. The repose
angles of the pure species u11 and u22 will be intermediate
between u12 and u22 , and their relative values will depend on
the shape of the two species as discussed in Sec. II A.

For mixtures of grains with different shapes or friction
coefficients we have u11Þu22 , and u125u21 if the species
have the same size. If u11 is the repose angle of the pure
round species and u22 is the repose angle of the pure rough
species, then u11,u22 . If the species have the same shape or
friction coefficients then u115u22 .

FIG. 5. Dependence of the repose angle for the two types of
rolling grains on the concentration of the surface of large grains f2 .
~a! An essential ingredient to obtain stratification is that u22.u11 ,
~b! while for segregation we require u11.u22 . For the numerical
integration, we use the linear interpolation between f250 and f2

51 as plotted here.
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When the size ratio is close to one (d2 /d1&1.5), the
angle c is expected to be small and then it is plausible to
linearize the collision functions around the angles of repose
as done in @53#. When there is a larger difference in size
(d2 /d1*1.5), we expect c to be large, and we approximate
the collision functions and define the following collision ma-
trix as follows:

M̂5S g11 du1 Qself@du1 ,f1# g12 du2 Qcross@du2 ,f1#

g21 du1 Qcross@du1 ,f2# g22 du2 Qself@du2 ,f2#
D ,

~22!

where

dua[u~x ,t !2ua . ~23!

Here, gaa.0 has dimension of inverse time, and v/gaa rep-
resents the length scale at which a rolling grain will interact
significantly with a surface at an angle above or below the
angle of repose.

The functions Q(dua ,fa) distinguish capture from am-
plification. Qself treats the case of self amplification, i.e., am-
plification of static grains a by rolling grains a , and Qcross
the case of cross-amplification, i.e., amplification of static
grains a by rolling grains b . More specifically, we consider

Qself~u2ua ,fa!5H 1, if u2ua,0,

fa , if u2ua.0.
~24!

These equations mean that in the case of capture, the amount
of rolling grains of type a converted to static grains is pro-
portional to the number of grains interacting with the sur-
face, i.e., Ra ; in the case of amplification, the amount of
static grains converted to rolling grains is proportional to Ra

again and to the number of static grains a on the surface, i.e.,
fa . Accordingly, we obtain

Qcross~u2ua ,fb!5H 0, if u2ua,0,

fb, if u2ua.0.
~25!

In terms of the collision functions defined in Eq. ~18! we
have

aa~u ![gaaP@u~x ,t !2ua~fb!# ,

ba~u ![gaaP@ua~fb!2u~x ,t !# ,

xb~u ![gbaP@u~x ,t !2ub~fb!# ,

~26a!

where

P@x#[H 0, if x,0,

x , if x>0.
~26b!

This form for the matrix M ab supposes that amplification
~capture! occurs only when the local angle is larger ~smaller!
than the repose angle. Thus, for a given angle only capture or
amplification can occur at a given time; an assumption which
is expected to be valid when the grains differ appreciable (c
large!. This fact gives rise to strong segregation effects with
exponential behavior of the concentrations as we will cor-
roborate when calculating the steady state solution of the
problem in Sec. V A. In contrast, the form of the collision

functions proposed in @37,53# assumes that amplification and
capture are linear functions of the local angle. For a given
angle both amplification and capture act simultaneously, and
the repose angle corresponds to the angle where amplifica-
tion and capture are equal. This linear approximation is valid
when the species do not differ much ~for small c), and gives
rise to a weaker segregation of the species—with a power
law behavior of the concentrations as a function of the posi-
tion along the pile surface—than the segregation found in
this study which is valid when the species differ appreciable
in size and shape.

We focus here on the dependence of the repose angles on
the composition of the surface. We will consider that the
other parameters—i.e., gaa and va—do not depend on the
composition of the surface and on the species considered

g115g225g , v15v25v . ~27!

In the conditions of the experiment @27#, where an equal
volume of the two species is poured at the left side of the
cell, the boundary conditions are

Ra~0,t !5Ra
0
5

R0

2
. ~28!

These equations are meaningful if all the rolling grains
interact each time with the surface, and do not interact di-
rectly with each other. Then, when there is percolation in the
rolling phase, the interaction terms have to be modified ac-
cordingly. In the next section we will show how to introduce
the percolation effect characteristic of the thick-flow regime.
However, we will show that the above equations—although
strictly valid in the thin-flow limit, i.e., Ra.da—will be also
needed to describe completely the thick-flow regime.

B. Thick-flow regime and the percolation effect

An important consideration of the model proposed above
is that the two types of rolling grains do not interact signifi-
cantly each other when the flow of grains is small, i.e.,
Ra(x ,t),e , where e is a cutoff of the order of the grain size
da . This hypothesis may not be valid in experiments where
the input flux is large, where the layer of rolling grains could
be larger than one grain size.

In the case of a thick layer of rolling grains, the phenom-
enon of percolation occurs; during the flow of grains down
an inclined plane, the small rolling grains percolate down-
ward through the gaps left by the motion of larger rolling
grains @23,25,28# @Fig. 1~b!#. Therefore, as they are con-
vected down, the rolling grains segregate, the concentration
of small grains being large at the bottom of the rolling layer,
and the concentration of large grains large at the top of the
rolling layer. As only the lowest grains of the rolling layer
interact with the sandpile, the above effect imposes that
small grains will preferentially interact with the static grains.
We include the percolation effect in the continuum model
and see how the results related to spontaneous stratification
are affected.

To model this effect, we consider the extreme situation
where the segregation is present as soon as the grains start to
roll, i.e., up to the top of the sandpile, and that only the small
grains will interact with the sandpile as soon as R1(x ,t)
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.e, with e!R0. e is thus the height of small grains below
which the percolation stops to be effective, and for which the
large rolling grains start to interact with the surface. The
interaction terms discussed in Sec. IV A have to be modified
accordingly.

This model implies that except for a small region where
R1,e , the surface of the sandpile is always divided into two
regions. The upper region corresponds to the part of the sur-
face where small rolling grains are present. As they are the
only one to interact with the sandpile, the sandpile will be
made only of small grains. In the lower part, only large
grains are present ~except for the e part of small grains!. The
division point between the two regions is able to move with
time.

For the upper part of the sandpile, defined by R1(x ,t)
.e , only small grains are captured, with R2(x ,t)5R2

0

5R0/2 and f1(x ,t)51. The equations become

]R1

]t
52v

]R1

]x
1g~u2u11!~R11R2!, ~29a!

]h

]t
52g~u2u11!~R11R2!. ~29b!

When R1(x ,t),e , the percolation effect disappears and
the equations of evolution of Ra and h can be considered to
be the same as the one defined by the collision matrix ~22!
valid for the thin-flow limit.

The effectiveness of the interaction ~given by g before!
must be multiplied now by the vertical pressure acting on the
lowest rolling grain interacting with the surface, i.e., the
weight of the column of rolling grains above the interacting
grain @16#. This explains the presence of the R2(x ,t) terms in
the interaction term G1 in Eq. ~29!.

We numerically solve Eqs. ~14! with the interaction terms
given by ~22! when R1(x ,t),e and by Eq. ~29! when
R1(x ,t).e as discussed above. We find qualitatively the
same results as in the experiments @27#, with stratification
appearing when the large grains are rougher than the small
grains @u22.u11 , Fig. 6~a!#. The dynamics of stratification
show also the formation of the kink as observed in the ex-
periments and in the discrete model shown in Fig. 4. When
the small grains are rougher than the large grains (u11
.u22), then we obtain the strong segregation of the mixture
with the small rough grains found at the top of the heap @Fig.
6~b!# and a small region of mixing in the center of the pile
@54#.

C. Thin-flow regime

In the absence of the percolation effect, Eq. ~22! remains
valid along all the pile since in the small flow limit a thin
rolling phase is expected with Ra(x ,t),e . However, we as-
sume a large difference in size, so that strong segregation
effects are expected anyway, and the collision functions are
expected to behave as in Eq. ~22!. We then solve Eqs. ~14!–
~22! numerically. Defining the ‘‘control parameter’’

d[u222u11 , ~30!

we obtain stratification when d.0, i.e., when the large
grains are rougher than the small grains as in the experiments
and in the thick-flow regime above. However, we find that
the transition to segregation does not occur sharply at d50
but occurs at a small negative value dc,0, which depends
on the value of the cross-amplification rates gab . When the
cross rates are zero, then the transition occurs at d50 as we
found for the thick-flow regime above. For smaller values of
d,dc,0 we find the complete segregation pattern found in
the experiments. Thus, the presence of cross-amplification
processes—which appear only in the low-flux limit—shifts
the transition from stratification to segregation to a value dc
different from zero @55#. However, the stratification we find
for dc,d,0 is less pronounced than in the case d.0: the
layers do not go to the top of the sandpile, and the layer of
small grains is very thin. Similar results at the neighborhood
of the stratification-segregation transition have been found
with a microscopic model of grains dynamics @56#. We also
find a kink, corresponding to the growth of the new pair of
static layers, with a well-defined steady-state profile and up-
ward velocity for d.0.

FIG. 6. Thick-flow regime: morphology resulting from the nu-
merical integration of the continuum equations when the percola-
tion effect is present. ~a! Stratification of a mixture of large rough
grains and small smooth grains. The parameters used are R1

0
5R2

0

51, e50.25, tan(u11)50.5, tan(u22) 5 0.6, tan(u12)50.9, tan(u21)
50.2, g115g2251, g215g1250.1, and v15v251. The dynamics
obtained by the numerical integration of the equation of motion
proposed in the text show the formation of a pair of layers through
the kink mechanism. We also see that the rolling grains are stopped
at the kink in similar fashion as was observed in the stratification
experiment @27# and in the discrete model in Fig. 4. ~b! Complete
segregation of a mixture of small rough grains and large smooth
grains obtained with the same parameters as in ~a! except for the
angle of repose of the pure species tan(u11)50.7, tan(u22)50.5.
Notice the total segregation of the mixture. The region of mixing is
concentrated in a small region in the center of the pile.
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This model, valid for thin flows, is qualitatively close the
preceding one valid for thick flows, where we also found a
regime of complete segregation separating the surface of the
sandpile in two regions. This can be understood noting that
the dependence of the repose angle on the composition of the
surface in the thin-flow model is comparable to the effect of
percolation in the rolling layer in the thick-flow regime.
Since for a given composition fb , the repose angle of the
small grains is always larger than the repose angle of the
large grains ~Fig. 5!, the small grains are also the first to be
trapped before the large ones. The composition of small
grains on the surface increases, amplifying the effect, up to
the point where the surface is made of only small grains.

A difference between the models for the thick rolling
phase and the thin rolling phase is in the role played by
amplification processes. When neglecting amplification we
find identical results in both regimes, as we found with the
discrete model. Moreover, the influence of amplification pro-
cesses seems to be confined to the case when the angles of
repose of the pure species are very close, and only to the
thin-flow regime. The fact that we have obtained similar re-
sults in the thin-flow regime and the thick-flow regime with
the discrete model is due to the fact that the discrete model
neglects amplification processes.

V. ANALYTICAL RESULTS

The thick-flow and the thin-flow regimes show similar
results as long as there is a large difference in size between
the grains. We will now show analytical results valid for
both regimes.

A. Steady-state solution

We next study the stationary solution of Eqs. ~14! and
then we study how a perturbation to this solution can be
amplified giving rise to stratification. For simplicity, we con-
sider the geometry of a silo of lateral size L, i.e., all the
rolling grains are stopped when they reach a wall at position
x5L @Fig. 1~a!#. Moreover, we assume the difference

c[u2~f2!2u1~f2! ~31!

to be independent of the concentration f2 . We seek for a
solution where the profiles of the sandpile and of the rolling
grains are conserved in time. Thus, stratification that corre-
sponds to periodic variations in time of the different vari-
ables of interest cannot be observed for this solution. The
conservation of the grains gives @57#

]h

]t
5

vR0

L
, ~32!

and we impose

]Ra

]t
~x !50. ~33!

We assume that, as in the experiment, an equal volume mix-
ture is used, so

R1
0
5R2

0
5R0/2, ~34!

and the boundary conditions are

Ra~L !50, Ra~0 !5R0/2. ~35!

The steady-state solution of ~14!–~22! shows total segre-
gation: except in a region of size of v/g at the center of the
sandpile where the grains are mixed, the sandpile is exclu-
sively made of small grains in the upper part of the pile, and
of large grains in the lower part of the pile. The details of the
calculations can be found in @34#. Here we present a simpli-
fied results for the case of v/g!L , since we expect Eq. ~13!.

At the upper part of the pile, for 0<x<xm , with xm
[L/22v/(gc), only small grains are present (f1(x)51
and f2(x)50), and the profiles are

R1~x !5R0S 1

2
2

x

L D , ~36a!

R2~x !5R0/2, ~36b!

u~x !2u1152

v/g1cg21L/~2g !

L~11g21 /g !/22x
. ~36c!

At the lower part of the pile (xm<x<L), we find that after a
small region of size of the order of v/(gc) ~or equivalently,
of the order of the size of the grain!, mainly large grains are
present. The profiles are

f1~x !5expF2

gc

v

~x2xm!G , ~37a!

R1~x !5

2v

gcL
f1~x !R~x !, ~37b!

u~x !2u2252mf1~x !2

v

g~L2x !
. ~37c!

Here

R~x ![R1~x !1R2~x !5R0~12x/L !, ~38!

and m[u222u215u122u11 .
When the system is in this stationary state, the angle of

the upper part of the sandpile ~where only small grains exist!
is almost u11 ; without cross amplification (g2150), the
sandpile would be at its repose angle u11 , and because of
cross amplification, the angle is significantly reduced. The
divergence around x5L/2 insures that all the small grains
are captured despite cross amplification. Moreover, the angle
for the low part of the sandpile is almost u22 . If we now
suppose a fluctuation in R1 such that few small rolling grains
enter the low part of the sandpile, capture will be of the order
of g„u222u1(f2)…R1 , and amplification will be of the order
of g„u222u2(f2)…R2 . As R1!R2 , amplification will domi-
nate capture, and the small rolling grains will go downhill up
to the point when capture starts to exceed amplification. As
soon as this small layer of rolling grains exist, the large
grains are convected down without being capture. This ex-
cess of large grain creates a kink at the bottom of the pile
going uphill where large grains are now stopped; the first
layers are formed and the same process starts again. This
may explain why when cross-amplification terms are present
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the transition stratification-segregation is shifted from d50
to d5dc,0. When percolation is present this shift disap-
pears since cross interactions are greatly reduced by the
screening effect of the small rolling grains at the bottom of
the rolling phase.

To analyze the stability of the steady-state solution for the
different phenomenologic parameters, we impose the steady-
state solution as the initial condition, and then we look nu-
merically for the stability of the profile under perturbations
~Fig. 7!. For u11.u22 , the steady state solution is stable, so
that Eqs. ~36! and ~37! are the physical solution for this case.
In this case, only segregation is observed, and the sandpile
conserves in time the profiles ~36! and ~37!. For u11,u22 ,
the steady-state solution is unstable ~evolving to stratifica-
tion!, just as in @27#. The onset of the instability is clearly
seen, where the kink first start at the center of the pile where
some large grains are captured on top of small grains as seen
in Fig. 7 for u22.u11 .

Our model predicts the complete segregation of the spe-
cies when u22,u11 . The concentration of small grains drops
very fast near the center of the pile in a characteristic region
of the order of v/(gc);cm according to experiments @28#.
As discussed in Sec. IV A this is a consequence of our as-
sumption of large difference in properties of the species.

B. Analytical shape of the kink

We saw in a preceding section that the layers were con-
structed through a kink where all the grains are stopped. A
precise analysis of this kink would allow us to understand
the dynamic of the process and the characteristic size of the
layers.

From the simulations we observe that the kink has a well-
defined uphill speed and that its shape is preserved in time.
To obtain an analytically tractable set of equations, we then
look for a possible steady-state solution for the shape of the
kink, and thus for R(x ,t) and h(x ,t). We also must make the
assumptions that far below and above the kink, the sandpile
has a constant angle u0 and is only made of large grains.

These assumptions are verified by comparing the obtained
result for the shape of the kink with the numerical results.

The existence of a stationary solution for the kink implies
that Ra(x ,t) and f (x ,t)[h(x ,t)1u0x are functions only of

u[x1v↑t , ~39!

where v↑ is the uphill speed of the kink. For the lowest layer
of the kink composed of small grains ~the upper part of the
pile!, as only small grains are captured @f1(u)51,R2(u)
5R0/2# , Eqs. ~14! reduce to equations for R1(u) and f (u)
~we assume g215g),

~v↑1v !
]R1~u !

]u
5gS 2

] f

]u
2d11DR1

1gS 2

] f

]u
2d21DR2

0

v↑

] f ~u !

]u
5gS ] f

]u
1d11DR11gS ] f

]u
1d21DR2

0 , ~40!

with

d11[u112u0 , d21[u212u0. ~41!

We obtain the shape of the low part of the kink. For u
<0,f (u)50 and for u.0,f (u) and R1(u) obey the follow-
ing equations:

] f

]u
5

~d111d21!R0/22wd11f ~u !

v↑ /g1w f ~u !2R0
,

~42!
R1~u !52w f ~u !1R0/2

where w[v↑ /(v1v↑). Then the lower part of the kink is
characterized by a linear dependence

f ~u !}
~d111d21!/2

v↑ /~gR0!21
u . ~43!

Finally, this solution is valid up to the point where the large
grains start to be captured, i.e., ] f /]u52d21 . From Eqs.
~42! and ~43! we obtain the following inequalities:

u0.

u111u21

2
, v↑,gR0. ~44!

The solution of the equations for the upper layer of the kink
~the lowest part of the pile! where only large grains are
present can be obtained in the same way and is

f ~u !5S R0

w D expS wgd22u

v↑
D , ~45!

where

d22[u02u22 . ~46!

We then find that the shape of the upper part of the kink is
exponential, and that the stationary solution exists only for
d22,0.

FIG. 7. Stability analysis of the steady state solution of the
equations of motion for granular flow of mixtures in the geometry
of the silo. When d,0 we find that the steady-state solution is
stable, so that this solution is the physical solution when d,0. On
the other hand, when d.0 the steady state solution is unstable and
it evolves into stratification as in the experiment.
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Thus we see that the existence of the stationary solution
for the kink implies that

u111u21

2
,u22 , ~47!

and that the sandpile is built on an intermediate angle u0
between those two extreme values.

C. Wavelength of the layers

The layer thickness l is defined by the width of the kink,
l[limu→` f (u). From Eq. ~45!, we obtain l5R0/w , which
is a consequence of the conservation law stating that all the
rolling grains are stopped at the kink. This relation is ob-
tained assuming that the density of the fluid phase is the
same as the density of the bulk. However, in general we have
mfluid,mbulk , where mfluid and mbulk are the number of rolling
grains per unit volume of the fluid phase and bulk, respec-
tively. Then we obtain

l5

mfluid

mbulk

~v1v↑!

v↑

R0. ~48!

Furthermore, Eq. ~43! implies that

v↑5C↑gR0, ~49!

where C↑ is a numerical constant that does not depend on
v ,g , or R0. Then we obtain

l thin5
mfluid

mbulk
S v

C↑g
1R0D ~ thin-flow regime!. ~50!

This relation is relevant to the thin flow regime where
v/g;d and R0;d are both of the order of the size of the
grains, and the velocity of the rolling grains is constant since
the rolling phase is homogeneous. However, in the thick-
flow regime the mean value of the velocity of the grains
scale with the thickness of the rolling phase as found re-
cently experimentally @28#,

v5CgR0, ~51!

where C is a numerical constant that does not depend on g or
R0, but may depend on the angles of repose and other fea-
tures of the grains. In this case Eq. ~48! becomes

l thick5
mfluid

mbulk
S 11

C

C↑
D R0 ~ thick-flow regime!.

~52!

Thus we see that we expect a linear dependence of the
wavelength of the layers as a function of the thickness of the
rolling phase, i.e., as a function of the flux of grains ~if the
plate separation is maintained constant @28#!, but the propor-
tionality constant is different in the thin-flow regime and the
thick-flow regime. From Eqs. ~50! and ~52! we can obtain an
approximate estimation of the value of the crossover from
the thin-flow regime to the thick-flow regime Rc

0 assuming
that l thin(Rc

0)'l thick(Rc
0), then Rc

0'v thin /(Cg), where v thin

is the velocity of the rolling grains in the thin flow regime.

Typical experimental values of the phenomenological
constants of the problem for a system of L530 cm, d1

50.27 mm, d250.8 mm, are @28# v'10 cm/sec, g
'20/sec, tan c 5 tan u112tan u21'0.1, mfluid /mbulk50.85,
and C/C↑'1. Therefore, v/(g tan c).2.5–5 cm. We also
obtain an estimation of Rc

0'0.25 cm as the value of the
crossover flux from the thin flow regime to the percolation
regime.

Thus we expect a linear behavior of the wavelength of the
layers as a function of the thickness of the rolling phase ~or
as a function of the incoming flux of grains when keeping the
separation between the plates of the cell constant! in the
thin-flow regime as well as in the thick-flow regime, al-
though the slope of l versus R0 differs in both regimes. This
prediction regarding the linearity of l has been confirmed in
recent experiments @28,29# for rolling phases in the range
below 1 cm thick and fluxes of the order of 1 g/sec and
separation between plates of the cell '0.5 cm @28#. When
the rolling phase becomes thicker than 1 cm, we expect de-
viations from the linear behavior, and our model must be
modified. As discussed in @28# nonlinearities may be present
in the behavior of the uphill velocity Eq. ~49! or in the ve-
locity ~51! of the rolling grains. Moreover, the linearity be-
tween the interaction term and the total flux of rolling grains
R11R2 proposed in Eq. ~29! for the thick-flow regime is not
expected to be valid for very large flux. In fact, it has been
recently proposed in a study of thick avalanches in single-
species sandpiles @58# that for a rolling phase thicker than
10d , the interaction term should saturate to a constant value
v↑ /g . It would be interesting to explore the consequences of
such interaction term for the dynamics of stratification and
segregation in mixtures.

VI. DISCUSSION

In summary, we develop a mechanism to explain the
spontaneous stratification reported in @27#. This mechanism
is related to the dependence of the local repose angle on the
local surface composition. When we consider only capture
~corresponding to the cellular automaton model!, we find that
spontaneous stratification occurs only when the repose angle
of the large grains is larger than the repose angle of the small
grains (u22.u11 , corresponding to large grains rougher than
small grains!. This result is in agreement with the experi-
ments. Stratification is also obtained when u22 is slightly
smaller than u11 as soon as we include cross-amplification
process, as we find in the thin flow regime with the con-
tinuum model. When u22,u11 , the model predicts almost
complete segregation, but not stratification. These results are
in agreement with experiments @27#.

It is interesting to compare these results with a previous
study @27# where a continuum model was used neglecting
cross amplification ~i.e., amplification of a static grains by b
rolling grains!. In this case, it was shown that amplification
never occurs during the formation of the sandpile, and strati-
fication is obtained in the same conditions as in the experi-
ments.

We discuss the possible importance of percolation effects
in the rolling layer, that takes place when the input flux of
grains is large. Although the continuum model must be
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deeply modified, the results are surprisingly close to the thin-
flow model.

The model describes well the static picture of the sandpile
of @27# with alternating layers made of small and large
grains, and also reproduces the dynamics, where the layers
are built through a kink mechanism. The numerical simula-
tions suggest that the motion of the kink is stationary. It
allows us to make quantitative predictions for the depen-
dence of the size of the layers on the different parameters of
the problem.

From the theoretical point of view, it is the first time that
this continuum formalism for granular flow is directly com-

pared to experiments. The quality of the results suggests that
this formalism includes the essential features of the physics
of granular flow. Using this formalism, it may be possible to
have theoretically access to 3D problems, such as periodic
segregation in rotating cylinders @16#, that are out of reach
with present-day computer simulations.
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