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We consider a regular assembly of singly occupied cells with two accessible volumes. Coupled to cell
volumes are interaction energies between nearest neighbors that lead to a phase transition with a critical
point. We find that these compressible cell models can serve as Ising-like prototypes of the one-component
liquid-liquid and isostructural solid-solid phase transitions that originate in the short-range features of the
intermolecular potential. The mean-field solutions provide hints concerning the analytical form of the
equation of state of liquid water.
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The gas-liquid phase transition of pure substances is
caused by the attractive, long-ranged section of the inter-
molecular potential. The details of this potential at shorter
distances can lead to phase transitions between condensed
phases with distinct densities. Stell and Hemmer first
predicted [1] that a pair potential with a “core-softened”
repulsive part can induce a second phase transition in
addition to the usual gas-liquid transition. They also found
that this sort of intermolecular potential underlies isostruc-
tural solid-solid transitions such as that experimentally
observed in cerium [2]. Simulations for the “step” potential
soon confirmed the Stell-Hemmer predictions [3]. Also,
isostructural solid-solid transitions for hard-core square-
well potentials with an extremely short-ranged attractive
region have been reported [4].
Basically the same phenomenon—that is, the coexist-

ence of two condensed phases with distinct densities for a
one-component system—has been found in liquids inter-
acting via a variety of core-softened pair potentials [5,6], as
well as for a number of water force fields used in
simulations [7,8], most of which support the hypothesis
of a liquid-liquid critical point [9] which is also supported
by a variety of experiments (see Ref. [10] and references
therein). As shown by Stell and Hemmer for isostructural
solid-solid transitions, the existence of two length scales
characterizing the short-range section of the intermolecular
potential is essential for the occurrence of a liquid-liquid
phase transition for a one-component system [11].
In recent years, critical behavior in liquid-liquid tran-

sitions has been studied assuming that such transitions
belong to the universality class of the three-dimensional
Ising model [12,13]. In support, a finite-size scaling
analysis of the liquid-liquid phase transition of the Jagla
“ramp” potential [5] reveals Ising-like behavior [14].
Also recently, a “two-structure” molecular thermody-

namic approach has been proposed to describe experimen-
tal data on supercooled water [15] and also simulation

results for a number of water force fields [16,17], thereby
extending mean-field-level work on the equation of
state [18,19].
Here we ask if we can devise Ising-like models to

describe this phenomenology. The compressible cell (CC)
models presented here indicate that we can, and we will
show that they are consistent with the accumulated findings
on one-component liquid-liquid and isostructural solid-
solid phase transitions. Mean-field solutions yield an
analytical equation of state relevant to understanding the
unusual thermodynamics of liquid water at low temper-
atures. We shall also see that these Ising-like CC models
allow an “exact” treatment of criticality.
Model description and nature.—Using the concept

recently introduced by Fisher et al. [20,21] of “fluctuating
cell volumes” in lattice models, we examine a three-
dimensional regular assembly with N sites and a
coordination number c. Associated with each site is a
“cell” inside of which is a moving particle. Akin to the Ising
model, in which spins point either up or down, and the
standard lattice gas (SLG) model [22], in which cells of a
fixed volume are either vacant or contain one particle, each
cell has two accessible volumes, v− ¼ v0 and vþ ¼
v0 þ δv, with δv > 0. Although there are primitive versions
of this with vanishing attractive forces between particles,
we focus on more general models in which ε−− ¼ εþ− ¼ ε0
and εþþ ¼ ε0 − δε, where the sign and magnitude of ε0 are
unrestricted and δε > 0.
A particle moves in a free volume in its cell. When this

volume is sufficiently small, the system is in a condensed
state. Hence we have two characteristic free volumes, 0 <
_vþ < vþ and 0 < _v− < v−, and the ratio λ ¼ _vþ= _v−
quantifies the local entropic effects, being thus an essential
parameter. Note that such geometrical features as cell
volume and shape as well as particle size and shape
strongly affect the free volumes [21]. Figure 1 shows
two examples in which cell volumes and free volumes
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are coupled in distinct ways, illustrating that their values
can be chosen independently.
We assign ni ¼ 1 and ni ¼ 0 to cell iwhen it is in the (þ)

and (−) states, respectively. Thus, for the configuration
fni; i ¼ 1;…; Ng, the system energy and volume are

Efnig ¼ c
2
Nε0 − δε

X

hiji
ninj ð1Þ

and

Vfnig ¼ Nv0 þ δv
XN

i¼1

ni: ð2Þ

We define β̄≡ 1=kBT and p̄≡ β̄p, with T being the
temperature, p the pressure, and kB the Boltzmann con-
stant, and examine the isothermal-isobaric ensemble, sum-
ming the e−β̄E and e−p̄V Boltzmann factors over
microstates. The resulting partition function YðN; p; TÞ
has the mathematical structure of the Ising canonical
partition function. Thus, when using μ ¼ −kBT lnY as
the chemical potential and the standard Ising variables
f̄ ≡ −F=NkBT, K ≡ J=kBT, and h≡H=kBT (with F, J,
and H as the free energy, coupling constant, and magnetic
field, respectively), we find the mapping [23]

f̄ ¼ p̄
!
v0 þ

1

2
δv
"
−
1

2
ln λ − μ̄þ c

2
β̄

!
ε0 −

1

4
δε

"
; ð3Þ

K ¼ 1

4
β̄δε; h ¼ −

1

2
p̄δvþ 1

2
ln λþ c

4
β̄δε; ð4Þ

where μ̄≡ μ=kBT − ln½Λ3
T= _v−&, with ΛT ≡ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=mkBT

p

being the de Broglie thermal wavelength for particles of
mass m.
We will later use known solutions of the Ising model to

exploit Eqs. (3) and (4) and analyze mean-field-approxi-
mation solutions, but first we finish our description of our
models.

Note that CC models differ fundamentally from lattice
gases. In lattice gases, the coupling between cell occupancy
and interaction energy is essential. In CC models, the
analogous mechanism is local energy-volume coupling. On
the other hand, when measured in terms of lattice spacings,
distances are discrete in lattice models, implying that
associated with the two accessible volumes for a cell in
CC models there are two lattice spacings. In the Ising
paradigm, this appears as the two length scales underlying
the phase transitions. In addition, the larger lattice spacings
characteristic of (+) states make (++) interactions longer
range. Because these interactions lower the energy by δε
from the arbitrary value ε0, this is the essential feature of a
pair potential with a softened core [24,25].
Mean-field solutions and the Widom line in a waterlike

model.—The mean-field pvT equation of state, in which v
is the volume per particle, is [23]

p ¼ TgðvÞ þ c
δε
δv

v − v0
δv

; ð5Þ

with

gðvÞ ¼ kB
δv

ln
!
λ
v0 þ δv − v

v − v0

"
: ð6Þ

This has the mathematical structure of the mean-field
standard lattice gas (SLG) equation of state, which is
not surprising because both the CC and SLG models are
equivalent to the Ising model. The coordinates of the
(mean-field) critical point are

vc ¼ v0þ
1

2
δv; Tc ¼

1

4
c
δε
kB

; pc ¼
1

4
cð2þ lnλÞ δε

δv
:

ð7Þ

Figure 2 shows how the phase transition builds up in the
p − v plane. Thus, the TgðvÞ contribution indicates that
system compressibility approaches zero at the edges of the
v range (from v− ¼ v0 to vþ ¼ v0 þ δv). Combining this
with thermodynamic convexity, i.e., ð∂p=∂vÞT < 0, yields

(a) (b)

FIG. 1. Single-cell (þ) and (−) states for two situations, (a) and (b). Pictures are two-dimensional for the sake of simplicity, and the
shaded (blue) areas are the free volumes a particle can explore in its cell. The relative proportions of particle sizes, volumes, and free
volumes are schematic. In (a), we choose—because we have the freedom to do so—to consider that the free volume of particles in (þ)
cells is restricted so that λ < 1. In (b), two particle sizes are used while λ > 1.
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negative TgðvÞ values for large v. When the positive
contribution from interactions between particles in near-
est-neighbor (+) cells is added, a van der Waals loop
appears at temperatures below the critical temperature Tc.
The mean-field equation of state enables a quantitative

study of the Widom line, which has received considerable
attention in connection with one-component liquid-liquid
phase transitions [13,26,27]. This line is an extension of the
coexistence curve in the p-T plane to the one-phase region
(i.e., T > Tc) at which thermodynamic response functions
(e.g., heat capacity) exhibit extrema when evaluated along a
given path (e.g., isobaric). Asymptotically close to the
critical point, all such extrema converge into a single line.
In practice, however, the behavior of response functions
upon “crossing the Widom line” is explored at a greater
distance from Tc. We next ask how CC models behave
when the Widom line is crossed.
To address this question, we use Eqs. (5) and (6) to

measure the isobaric heat capacity Cp, the isothermal (κT)
and isentropic (κS) compressibilities, and the isobaric
thermal expansivity αp of the model described in
Fig. 1(a). This model builds up a geometrical selectivity
in which the free volume in (+) cells is constrained, i.e.,
λ < 1, so that (++) configurations are open, low-density
structures with small local entropy and small energy. This

mimics the structural scheme characteristic of supercooled
water [28]. We choose the values of the model parameters
by matching the critical coordinates to those at which the
liquid-liquid critical point of real water has been hypoth-
esized to exist (Tc ∼ 200 K and pc a few hundred
bars) [12].
Note that according to the Clapeyron equation, the slope

of the coexistence curve in the p-T plane dpσ=dT is
negative in this waterlike model, since the phase with a
higher volume—i.e., the phase with a higher proportion of
(+) cells—has a lower entropy because λ < 1 (see also the
inset in Fig. 2). This negative dpσ=dT is consistent with
what has been found for water force fields [29]. Thus,
because it is a continuation of the coexistence curve, the
Widom line also has a negative slope. Figure 3 illustrates
that this is the case: isobaric CpðTÞ and αpðTÞ plots reveal
that extrema move toward lower T as p increases.
The lower panels in Fig. 3 compare, at constant p, the

model predictions with experimental values of κT and κS.
We use literature values of κT for T down to 239 K [30],
while we calculate κS from data of κT , αp, and Cp [30]
by using the exact thermodynamic relation κS ¼
κT − Tvα2p=Cp. Interestingly, additional κT experimental
data down to even lower temperatures reported recently
[10] reveal a κTðTÞ maximum around 228 K. On the other
hand, the shape of the κSðTÞ experimental curve strongly
suggests that this property should exhibit a maximum at
about 238 K. In this context, it is to be remarked, as is
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FIG. 2. Isotherms in the pressure-volume plane calculated from
Eqs. (5) and (6) for the model in Fig. 1(a) with para-
meters c ¼ 6, δϵ ¼ 1000 Jmol−1, v0 ¼ 2 × 10−5 m3 mol−1,
δv ¼ 0.5 × 10−5 m3 mol−1, and λ ¼ 0.2. According to Eq. (7),
these parameters yield Tc ¼ 184.4 K and pc ¼ 1.17 k bar. The
straight line is the cδεðv − v0Þ=δv2 contribution, while the
dashed lines are the TgðvÞ contributions for T ¼ 150 K (bold
dashed line, red) and T ¼ 200 K (thin dashed line, blue), with the
two remaining solid curves representing, according to Eq. (5), the
resulting pðvÞ values; hence, the bold (red) line corresponds to
T ¼ 150 K and the thin (blue) line to T ¼ 200 K. The inset
shows that the coexistence curve in the pressure-temperature
plane has a negative slope and ends at a critical point.
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FIG. 3. Temperature dependence of the isobaric heat capacityCp
(in J K−1 mol−1), the isobaric thermal expansivity αp (in
10−3 K−1), and the isothermal (κT) and isentropic (κS) compress-
ibilities (in 10−12 Pa−1) for the waterlike model in Fig. 1(a), with
the model parameters and critical coordinates specified in the
caption of Fig. 2, at−500 bar (bold solid line, red), 1 bar (thin solid
line), and 500 bar (thin dashed line, blue). Data for compressibil-
ities correspond to 1 bar,with the literature experimental data in the
lower-right panel obtained from Refs. [10] and [30].
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clearly perceptible from Fig. 3, that the model likewise
predicts that the temperature of the κSðTÞ maximum is
greater than that of the κTðTÞ maximum.
Hence [23], our waterlike CC model reproduces with

significant detail the experimentally observed low-temper-
ature anomalies of the response functions of supercooled
water [31,32]. Because such a model exhibits a phase
transition with a critical point, it supports the experimental
observation that the behavior of supercooled water is con-
sistent with that of a liquid with critical coordinates around
200 K and a few hundred bars. Indeed, the existence of a
second liquid-liquid critical point in water has been hypoth-
esized [7], but experimental constraints make its direct ob-
servation difficult [28]. In any event, Fig. 3 shows that our
CC model offers the possibility of studying this criticality.
Before discussing critical behavior, we note that Fig. 2

reveals, in accord with observations [33], that the model
contemplates the existence of states with a negative pressure
which is large in magnitude. We thus find further support to
the conclusion that, even at a mean-field level, a model with
themicroscopic attributes of low-temperaturewater exhibits
amacroscopicbehavior consistentwith experimental results.
Therefore, we conclude that Eqs. (5) and (6) may allow us to
develop a physically based equation of state for liquid water.
Criticality.—Equations (3) and (4) show that the Ising

“thermal” field K is strongly connected to the temperature,
that the “ordering field” h is affected by contributions from
both the pressure and the temperature, and that the chemical
potential only enters (or “mixes in”) the free energy. Thus
[23], μðp; TÞ is a reasonable choice of the thermodynamic
potential in CC models [34]. This mirrors the situation
found in the SLG, which leads to pðμ; TÞ. Note also that the
scheme in Eqs. (3) and (4) is consistent with that proposed
phenomenologically for one-component liquid-liquid criti-
cality [12,13]. The only difference is the lack of “pressure
mixing” in K, but this pressure mixing occurs in decorated
models with vacant bond cells of variable volume [23].
Focusing on phase boundaries, we set h ¼ 0 in Eq. (4)

and find [23]

pσ ¼ pc þ ðkBTc ln λ=4δvÞtþOðt2Þ and ð8Þ

μσ ¼ μc þ ðvckBTc ln λ=4δv − scÞtþOðjtj2−αÞ; ð9Þ

where α ≃ 0.109, sc is the critical entropy per particle, and
t≡ ðT − TcÞ=Tc. Note that the pressure remains analytical
at the critical point while the second temperature derivative
of the chemical potential diverges as jtj−α. The opposite is
true for the SLG, for which only p is nonanalytical [21].
This has implications for the shape of the coexistence
curve, which displays full symmetry in the v-T plane. In
particular [23], the specific volumes of the coexisting
phases are given by

v' ¼ vc½1' Bjtjβ þOðjtjÞ&; ð10Þ

with B > 0 and β ≃ 0.326. For the number density ρ ¼ v−1,
we find

ρ' ¼ ρc½1 ∓ Bjtjβ þ B2jtj2β þOðjtj3βÞ&: ð11Þ

Hence, the coexistence curve diameter in the density-
temperature plane, ρd ≡ ðρþ þ ρ−Þ=2, curves as the
critical point is approached, showing a jtj2β singularity
which is absent for vd ≡ ðvþ þ v−Þ=2. The coexistence
curve of CC models is, indeed, symmetric in the
volume-temperature plane, and this symmetry property
is related to the analyticity of the pressure, as the
symmetry of the SLG coexistence curve in the ρ-T
plane is related to the analyticity of the chemical
potential [21].
Using Eq. (8), we find that the value of the slope of the

coexistence curve in the p-T plane evaluated at criticality,
ðdpσ=dTÞc, is positive when cell volumes and free volumes
are correlated, i.e., when λ > 1, but that anticorrelation
(λ < 1) yields a negative slope. In addition, ðdpσ=dTÞc ¼ 0
for constant free volumes, i.e., λ ¼ 1.
The waterlike model in Fig. 1(a) is, as noted above,

characterized by a negative value of dpσ=dT. Figure 1(b),
in contrast, shows a connection with the isostructural
solid-solid phase transitions supported by experiments,
simulations, and theoretical analyses [1–3]. For cerium,
this kind of transition has been attributed to the ultrahigh-
pressure promotion of 4f electrons to the conduction band
(5d), which decreases the effective ionic radius and
increases the energy [1,2]. Because ðdpσ=dTÞc > 0 [3],
a CC version with λ > 1 is needed. Thus, we expect that
larger ions explore a larger free volume.
In the borderline case ðdpσ=dTÞc ¼ 0, Jagla model

simulations reveal that significant anomalies are present
only for κT [13,27]. The performance of the model along
the critical isobar is consistent with these results [23].
Final remarks.—We cannot use δε, δv > 0 to describe

the isostructural solid-solid transitions in systems com-
posed of particles interacting via hard-core square-well pair
potentials with an extremely short-ranged attractive section
[4]. Thus, we might use a modified CC model with −v0 <
δv < 0 to approach this problem. On the other hand, we
cannot use CC models to probe the recently discovered
one-component liquid-liquid transitions caused by “net-
work interpenetration” in systems with highly directional
interactions [35].
But because much of our understanding of the gas-liquid

phase transition is based on the standard lattice gas, the
evidence provided here confirms that our compressible cell
models can serve as basic prototypes for the one-compo-
nent liquid-liquid and isostructural solid-solid phase tran-
sitions we have examined in this work.
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