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Abstract. Resource diffusion is a ubiquitous phenomenon, but how it impacts 
epidemic spreading has received little study. We propose a model that couples 
epidemic spreading and resource diffusion in multiplex networks. The spread 
of disease in a physical contact layer and the recovery of the infected nodes 
are both strongly dependent upon resources supplied by their counterparts in 
the social layer. The generation and diffusion of resources in the social layer 
are in turn strongly dependent upon the state of the nodes in the physical 
contact layer. Resources diffuse preferentially or randomly in this model. To 
quantify the degree of preferential diffusion, a bias parameter that controls 
the resource diffusion is proposed. We conduct extensive simulations and find 
that the preferential resource diffusion can change phase transition type of the 
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fraction of infected nodes. When the degree of interlayer correlation is below 
a critical value, increasing the bias parameter changes the phase transition 
from double continuous to single continuous. When the degree of interlayer 
correlation is above a critical value, the phase transition changes from multiple 
continuous to first discontinuous and then to hybrid. We find hysteresis loops 
in the phase transition. We also find that there is an optimal resource strategy 
at each fixed degree of interlayer correlation under which the threshold reaches 
a maximum and the disease can be maximally suppressed. In addition, the 
optimal controlling parameter increases as the degree of inter-layer correlation 
increases.

Keywords: agent-based models, epidemic modelling, network dynamics, 
random graphs, networks
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1. Introduction

Epidemic spreading is an important topic in complex systems theory [1] and much 
research on its underlying dynamics has been conducted in recent years. Although a 
strong focus has been on the theoretical analysis of epidemic spreading [2, 3], research 
has also included the control and prediction of disease outbreaks [4, 5], the spread of 
rumors [6, 7], and the propagation of computer viruses [8, 9]. As more and more infec-
tious diseases such as Severe acute respiratory syndrome (SARS) [10], Ebola virus [25] 
have brought disasters to humans, how to constrain the global pandemics has been 
one of most important and pressing challenges. In recent years, many immunization 
strategies have been proposed for containing and limiting epidemics. Traditional immu-
nization strategies fall into two categories. The first category includes topology-based 
strategies, such as random immunization [11, 12], targeted immunization [13–15], 
acquaintance immunization [16], and graph partitioning [17]. Recent successes have 
used a targeted destruction of the potential transmission network before an outbreak 
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occurs. ‘Super-blockers’ are identified and immunized to efficiently break network 
connectivity [18]. The second category includes those that focus on the dynamics of 
the diffusion of information about the disease, such as information-driven vaccination 
patterns [19–21]. Another research topic in epidemic spreading is developing optimal 
strategies of deploying limited resources such that the epidemic outbreak can be most 
efficiently suppressed [22–24].

Most research on immunization strategies and optimal resource deployment assumes 
that available resources are fixed, static, and exist independent of the dynamic epi-
demic process, but in real-world scenarios the amount of such available resources as 
drugs, medical personnel, and financial support are strongly affected by the evolution 
of the disease. For example, a pandemic, e.g. the Ebola virus disease [25], can quickly 
become an enormous economic burden to a region [26], and even after the disease has 
been brought under control the economic recovery of the region is slow [27]. Much 
recent research has examined how dynamic changes in resources affect the dynamics of 
epidemic spreading. Some research has focused on public resources [28–30]. For exam-
ple, [28] describes how resource constraints caused by the outbreak of disease affect the 
dynamics of the epidemic. They assume that healthy individuals in the system provide 
the needed resources, and that the number of these healthy individuals decreases as 
the infection rate increases. [30] finds that there is a critical amount of invested public 
resource needed to constrain the spread of a disease, and when that amount is larger 
than the critical value, the disease can be suppressed. If it is not, the fraction of infected 
individuals can quickly increase. Other researchers assume that real-world infected 
individuals cannot always receive public resources and must seek help from friends in 
their social circles, and that understanding this phenomenon is important in control-
ling an epidemic. [31] examines how social supports affect epidemic spreading in a 
double-layer multiplex network in which one layer is the pattern of resource allocation 
and the other is of epidemic spreading. They find a hybrid transition in the fraction 
of infected nodes that exhibits properties of both continuous and discontinuous phase 
transitions. For the continuous (discontinuous) phase transition, the fraction of infected 
nodes versus the transmission probability is smooth (abrupt) when the network size is 
extremely large.

Although the above literature examines the dynamic evolution of resources and 
their influence on epidemic spreading, it overlooks the phenomenon of resource diffusion 
among individuals. Such resources as economic wealth constantly flow among indi-
viduals. An important topic for research involves the so-called ‘Matthew effect’ [32] 
in which the flow of economic wealth tends to make the rich richer. This is relevant 
because infected individuals with wealth tend to receive better treatment and have a 
higher probability of recovering than those without.

To investigate the properties of resource diffusion and how it impacts disease spread-
ing, we examine its multiplex structure [31, 33, 34]. We form a two-layer multiplex 
network of N nodes. Each node in one layer has a counterpart in the other layer. The 
structure of the two layers can differ. For example, a person may have one group of 
friends with whom they have regular face-to-face contact and another group of friends 
in the on-line world [35].

Here we investigate how resource diffusion affects the dynamics of epidemic spread-
ing in two-layer multiplex networks. We assume that resources diffuse among nodes 
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in the social layer S, and that the disease spreads in the physical contact layer C. 
Because the diffusion of resources among nodes in layer S can be either preferential or 
random, we introduce a bias parameter α that controls the diffusion. When the nodes 
are healthy they can generate new resources. The recovery of infected nodes in layer 
C depends on the resources of their counterparts in layer S. Through simulations we 
find that the preferential diffusion of resources can change the phase transition type of 
the fraction of infected nodes at the steady state ρ(∞). When the degree of interlayer 
correlation r is below a critical value rc, and the initial fraction of infected nodes ρ(0) 
is large, i.e. ρ(0) = 0.99, the phase transition ρ(∞) changes from two continuous phase 
transitions to a single continuous transition as α increases. In addition, there are two 
hysteresis loops accompanying the two phase transitions when α is below a critical 
value αc, and one hysteresis loop when α > αc. When r  >  rc, the phase transition of 
ρ(∞) changes from multiple (when α is too large or too small) to discontinuous, and 
then to hybrid, with a initial continuous transition followed by a discontinuous trans-
ition. There is always a single hysteresis loop. Note that there is an optimal strategy of 
resource diffusion under which the disease can be most effectively suppressed, and the 
threshold reaches a maximum.

2. Model

2.1. The social-contact double layer network

We model the coupling of the dynamics of disease spreading and resource diffusion in a 
double-layer multiplex network. Each individual has links with colleagues or coworkers 
in the physical contact layer and also with friends in the social relation layer. We con-
struct the double-layer multiplex network model using the uncorrelated configuration 
model to independently generate layers S and C [36]. These two subnetworks have 
the same number of nodes N, and there is a one-to-one correspondence between nodes 
in the two layers. Each layer also has its own internal structure. In an uncorrelated 
double-layer network, the node degrees in the first layer are independent of the nodes 
degrees in the second. Thus a high-degree node in the first layer does not necessarily 
have a corresponding high-degree counterpart in the second. In contrast, in a correlated 
double-layer network the node degrees in one layer are somewhat dependent on the 
node degrees in the other layer. Quantitatively, we use the Spearman rank correlation 
coefficient r [37, 38] in which r ∈ [−1, 1] to characterize the degree correlation between 
the two layers. For example, when r  >  0 the two layers are positively correlated. A 
larger r value indicates a higher probability that a high-degree node in the first layer 
matches a high-degree node in the second layer. In contrast, when r  <  0 the two lay-
ers are negatively correlated. A smaller value of r indicates a higher probability that 
a high-degree node in the first layer matches a low-degree node in the second layer. 
The topological structure of the two layers are encoded in the two adjacency matrices 

AS = {aSij} and AC = {aCij}, respectively. If nodes i and j are connected by a link in layer 
S (C), aSij = 1 (aCij = 1), otherwise aSij = 0 (aCij = 0).
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2.2. Coupling disease spreading and resource diffusion

To examine how resource diffusion affects epidemic spreading we propose a resource-
based susceptible-infected-susceptible (rSIS) model to describe the epidemic spreading 
in layer C. In the rSIS model, each node can be either susceptible or infected. The 
recovery process of the infected nodes depends on the resources of their counterparts 
in layer S. We denote ρi(t) to be the probability that node i is infected at time t, and 
ρ(t) to be the fraction of infected nodes at t, which is determined by averaging over the 
infection probability of all nodes

ρ(t) =
1

N

N∑

i=1

ρi(t). (1)

Here ρ(∞) is the fraction of infected nodes when t → ∞.
We first randomly select a fraction of ρ(0) nodes to be seeds (infected nodes) and 

leave the remaining nodes in the susceptible state. At each time step the infected nodes 
transmit the disease to susceptible neighbors at an infection rate β. The recovery of 
infected nodes is dependent upon resources supplied by their counterparts in layer S.

Because resources can promote the recovery of infected nodes, we consider that 
when a node in layer S has greater resources the corresponding node in layer C will 
have a higher recovery rate. We denote µi(t) the recovery rate of node i at time t, which 
is a monotonically increasing function of the resource quantity owned by the counter-
part of i in layer S. Note that µi(t) is a constant value for all nodes in the classical SIS 
model. Specifically, µi(t) can be expressed

µi(t) = 1 − (1 − µ0)
ωi(t), (2)

where µ0 is the basic recovery rate, which we here fix at µ0 = 0.1, and ωi(t) is the accu-
mulated resources of the counterpart of node i in layer S at time t.

The resource diffusion in layer S is dependent upon the state of nodes in layer C. 
At each time step, if node i in layer C remains in the S state, the corresponding node 
in layer S generates a new unit of resource. At the same time, depending on the sign 
of α, it preferentially transfers one unit of resource to one of its neighbors (the target 
neighbor). Note that the target neighbor is chosen independent of its state, but the 
target node does not transmit resources to neighbors if it is not in the S state.

We denote φi→j the resource transfer probability from node i to j and assume that 
this transfer probability is related to the degree of j. Then φi→j is

φi→j =
(aSij + δij)kα

j∑
ℓ a

S
ℓik

α
ℓ + kα

i

, (3)

where δij = 1 if i  =  j, otherwise δij = 0. The parameter α allows us to tune the degree of 
preference. When α > 0, φi→j is positively related to the degree of j and a high-degree 
neighbor has a high probability of being selected, but when α = 0, every neighbor of 
node i has the same probability of being selected. Note that when i  =  j node i retains 
the unit of resource during the current time step. The resources σj(t) that node j 
acquires from healthy neighbors at time t, can be written

https://doi.org/10.1088/1742-5468/aabfcc
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σj(t) =
N∑

i=1

aSijφi→j(1 − ρi(t)). (4)

When node i in layer C is in the I state, the corresponding node in layer S does not gen-
erate a new resource unit nor does it transfer a resource unit to its neighbors. The accu-
mulated resources of the counterpart of node i in layer S are consumed. For simplicity, 
we assume that infected nodes consume the all resources of their counterparts. Thus 
ωi(t) returns to 0 at the current time step. The susceptible nodes store the resources to 
distribute to neighbors or recover when they are infected in the following time.

We use synchronous updating [2] to simulate the coupled dynamic process of dis-
ease spreading and resource diffusion. At each time step with a probability β∆t a 
susceptible node is infected by one of its infected neighbors. Simultaneously, infected 
nodes recover with a probability µi(t)∆t, where i  =  1...N. We set a time step ∆t = 1 
and run each simulation sufficiently long to ensure that the system enters a steady 
state in which either no nodes are infected or the number of infected nodes fluctuates 
within a small range.

3. Simulation results for uncorrelated networks

Here we examine how preferential resource diffusion affects disease spreading in uncor-
related double-layer networks. We focus on networks with a heterogeneous degree distri-
bution because many networked systems in both nature and technological applications 
are complex and have a heterogeneous degree distribution [39, 40]. We use an uncorre-
lated configurational model [36, 41] to build a double-layer network in which the degree 
distribution is P (k) ∼ k−γS for layer S and is P (k) ∼ k−γC for layer C, where γS and γC 
are the power exponents. We fix both values of the power exponential at γS = γC = 2.2, 
and both γS and γC are denoted to γ if there is no other special statement. To avoid 
degree correlations between two layers, each layer is made independent. Because the 
simulations are time consuming, we set the system size to N = NS = NC = 5000. For 
the maximum degree we use the structural cut-off kmax ∼

√
N  [42] and set the mini-

mum degree at kmin = 2 [43]. To determine the epidemic threshold, we use a suscepti-
bility measurement [44, 45]

χ = N
⟨ρ(∞)2⟩ − ⟨ρ(∞)⟩2

⟨ρ(∞)⟩ , (5)

where ⟨· · · ⟩ is the ensemble averaging, and χ exhibits peaks at the transition points if 
they exist.

We first examine the fraction of infected nodes at the steady state ρ(∞) as a 
function of β with a small fraction of seeds ρ(0) = 0.01 and a large fraction of seeds 
ρ(0) = 0.99. Figures 1(a), (d) and (g) show the results for three typical values α = −2.0, 
−1.0, and 1.0, respectively. We find the following:

 (i)  The value of ρ(∞) increases continuously with β for the three values of α when 
ρ(0) = 0.01 and ρ(0) = 0.99.

https://doi.org/10.1088/1742-5468/aabfcc
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 (ii)  When α = −2.0 and α = −1.0, there are two phase transitions [46, 47] of ρ(∞) 
for ρ(0) = 0.99 and a single phase transition for ρ(0) = 0.01 (see figures 1(a) and 
(d)). When α = 1.0 there is a single phase transition for both ρ(0) = 0.01 and 
ρ(0) = 0.99 (see figure 1(g)). Figures 1(b), (e) and (h) show peaks of χ that are 
transition points for ρ(0) = 0.99 (blue squares) and ρ(0) = 0.01 (red line).

 (iii)  As description of the model, we know that the spreading dynamics has strong 
nonlinearity and memory characteristics, the interplay between these two charac-
teristics may induce the emergence of hysteresis loop [48, 49]. Such as is the case 
of magnetic materials in the presence of an external field, when you change the 
orientation of the field. The plot indicates two hysteresis loops when α = −2.0 
and α = −1.0, and a single hysteresis loop when α = 1.0. Following the definitions 
in [50], here we denote by βinv the invasion threshold when ρ(0) = 0.01, and βper 

the persistence threshold when ρ(0) = 0.99. In addition, we denote βI
per and βII

per 
the first and the second invasion (persistence) thresholds.

We next examine the underlying mechanism of the hysteresis loop. Figures 1(c), (f) and 
(i) show the ensemble average recovery rate at the steady state ⟨µ(∞)⟩ = 1/N

∑
µi(∞), 

for α = −2.0, α = −1.0, and α = 1.0, respectively. We find that for these values of α, 
prior to the threshold the average recovery rate is ⟨µ(∞)⟩ = 1.0 and after the threshold 
it decreases continuously with β. When the spreading process begins with a low fraction 
of seeds, i.e. ρ(0) = 0.01, the recovery rate is higher than when there is a larger initial 
fraction of seeds, i.e. ρ(0) = 0.99 (see figures 1(c), (f) and (i)). This is because when ρ(0) 
is small the fraction of susceptible nodes (1− ρ(0)), is sufficiently high to generate a 
large number of resources. A lower recovery rate for ρ(0) = 0.99 delays the recovery 
of infected nodes and increases the infection rate λ = β/⟨µ(∞)⟩ [1]. Thus the disease 
breaks out at a lower threshold when ρ(0) = 0.99, and the value of ρ(∞) is larger than 
when ρ(0) = 0.01. Consequently there is a hysteresis loop. In addition, when α = −2.0 
and α = −1.0 the two curves of ⟨µ(∞)⟩ for ρ(0) = 0.99 and ρ(0) = 0.01 overlap at some 
value of β that separates the parameter space of β into two regions. Thus there are two 
hysteresis loops in the separated regions.

To determine how preferential resource diffusion affects the dynamics of disease 
spreading, we examine ρ(∞) as a function of β and α ∈ [−2.0, 2.0]. Figures 2(a) and (b) 
show the phase diagrams with initial conditions ρ(0) = 0.01 and ρ(0) = 0.99, respec-
tively, and figure 2(c) shows the difference between values of ρ(∞) in figures 2(a) 
and (b). Note that ρ(∞) increases continuously with β at each fixed α. In addition, 
when ρ(0) = 0.01 there is a single phase transition with one threshold βinv (circles in 
figure 2(a)). When ρ(0) = 0.99 there is a critical αc value below which there is a double 

phase transition with two transition points βI
per and βII

per (circles in figure 2(b)). Note 
that the thresholds in figures 2(a) and (b) are the peaks of susceptibility χ. We also find 
that when β is fixed, ρ(∞) first decreases and then increases with α when β is large, 

i.e. β > βinv (β > βI
per, if there are two thresholds). We find that there is an optimal 

value of αopt, at which the invasion and persistence thresholds are maximized, and the 
disease is greatly suppressed. Note also that the invasion threshold βinv and persistence 

threshold βI
per (circles in (a) and (b)) have peak values at αopt = −1.0, which indicates 

https://doi.org/10.1088/1742-5468/aabfcc
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an optimal resource diffusion at α = −1.0. Figure 2(c) shows that there are two bifurca-
tion points βs (triangles) and βm (squares), and when α < αc there are two hysteresis 

loops in regions [βI
per, βs) and [βII

per, βm). When α > αc there is one hysteresis loop in 
region [βI

per, βm).
To further explore these results, we study the resource distribution (green circles) 

in layer S at the steady state when β = (βinv)− for ρ(0) = 0.01, where β = (βinv)− is the 
infection rate immediately below the threshold βinv (see figure 3). When ρ(0) = 0.99 we 
see similar results. Here we denote ω(kS ,∞) the resource quantity of nodes with degree 
kS at the steady state, where kS is the degree of nodes in layer S, and ω(kS ,∞)/N  
the scaled value of ω(kS ,∞). Note that ω(kS ,∞) is shortened to ω(kS). In addition, 
to determine how the resource distribution in layer S influences the recovery of nodes 
in layer C at each value of parameter α, we examine how resources are distributed in 
nodes whose counterparts in layer C have kC degrees, where kC is the degree of nodes in 
layer C. This allows us to observe the change trend of recovery rate with α.

Figure 3(a) shows that when α = −2.0 resources move preferentially to low-degree 
nodes and ω(kS) as expected decays rapidly with kS . In addition, most of the nodes in 
the two subnetworks with highly skewed degree distributions are low-degree and only a 
few are high-degree. Thus the counterparts of the high-degree nodes in layer C have a 
higher probability of being low-degree nodes in layer S because of the random correla-
tion between the two layers. Thus most of the counterparts to the high-degree nodes 
in layer C have large values of ω(kS) in layer S (yellow squares in figure 3(a)), i.e. most 
high-degree nodes in layer C have a high recovery rate that delays outbreaks of the 
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Figure 1. Influence of preferential resource diffusion on disease spreading. Fraction 
of infected nodes ρ(∞) as a function of β for α = −2.0 (a), α = −1.0 (d) and α = 1.0 
(g) respectively. Susceptibility χ as a function of β for α = −2.0 (b), α = −1.0 (e) 
and α = 1.0 (h). Average recovery rate at the steady state ⟨µ(∞)⟩ as a function of 
β for the corresponding α of the previous plots in (c), (f) and (i).
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disease as β increases. When α = 1.0 resources move preferentially toward high-degree 
nodes in layer S and agglomerate on high-degree nodes at the steady state. When there 
is a random correlation between the two layers, most high-degree nodes correspond to 
low-degree nodes in layer C. Thus the resources of k -degree nodes in layer S increase 
with kS (see figure 3(c)). In contrast, the ω(kS) decreases sharply with kC, which indi-
cates that the recovery rate of the high-degree nodes in layer C rapidly declines when 
β increases and resources decrease. This in turn increases the effective infection rate 
λ = β/⟨µ(∞)⟩ in the system. Figure 2 shows that a severely skewed distribution of 
resources lowers the epidemic threshold and a large fraction of nodes when α is large, 
i.e. α = 1.0.

When α = −1.0, the diffusion of resources in layer S is less biased than when 
α = −2.0 or α = 1.0. We analyze equation (4) and find that although low-degree nodes 
still have a small advantage of acquiring resources, high-degree nodes can acquire 
approximately the same quantity of resource at each time step because they have more 
connections than low-degree nodes. Thus resources are distributed evenly for both 
high-degree and low-degree nodes (see figure 3(b)). When resource diffusion is optimal, 
all nodes in layer C have a rapid recovery rate (see figure 1(f)) that reduces the infection 
probability between each pair of susceptible and infected nodes. Here the disease is sup-
pressed to the greatest extent. Figure 2 shows that the highest epidemic threshold βinv 
(βper) and lowest fraction of infected nodes ρ(∞) are obtained when resource diffusion 
is optimal, i.e. when α = −1.0.

Our results play a practical guiding role in disease control. Specifically, when the 
infection rate of the disease is below the threshold, i.e. β < βinv (β < βper if ρ(0) is 
large), the disease can not breakout globally. We find that strategy of resource diffusion 
has no significant effect on the disease spreading (see figure 2). While if β > βinv, the 
disease could breakout globally. Our findings indicate that the resources must be allo-
cated properly to all the individuals in order to best suppress the disease spreading (see 
figures 2 and 3).

Figure 2. Dependence of ρ(∞) on β and α when r  =  0. Color-coded values of 
epidemic size obtained from simulations for ρ(0) = 0.01 (a) and ρ(0) = 0.99 (b). 
(c) The difference between the value of ρ(∞) in (a) and (b). The yellow circles 
are the numerical prediction of the invasion threshold βinv and the persistence 
threshold βper respectively. Red triangles and yellow squares represent the two 
bifurcation points βs and βm respectively. The vertical dotted line in (a) indicates 
the location of the optimal value αopt, and in (b) and (c) indicates the location of 
critical value αc.
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4. Effect of inter-layer degree correlations on spreading dynamics

There are extensive interlayer correlations in real-world multiplex systems [51, 52]. In 
social networks, for example, an individual with many daily face-to-face contacts with 
colleagues tends to also have many social network contacts [35]. In transportation 
networks, hub airports tend to correlate with hub rapid transit stations [53]. We here 
investigate how the degree correlations between the two layers impact the process of 
resource diffusion and the dynamics of disease spreading. To construct a double-layer 
correlated network with an adjustable degree of inter-layer correlation, we first gener-
ate two subnetworks of the same size N  =  5000 and the same power exponent γ = 2.2 
with a maximum positive or maximum negative correlation. We then rematch each 
pair of counterpart nodes with a probability q . Thus the interlayer correlation after 
rematching becomes [37, 38]

r =| 1 − q | . (6)
When the two layers are initially at maximum positive correlation r ! 0, otherwise 
r ! 0.

Figures 4 and 5 show ρ(∞) as a function of β when there is a large negative 
inter-layer correlation, i.e. r  =  −0.8, and large positive correlation, i.e. r  =  0.8. When 
r  =  −0.8, the results of three typical values α = −1.5, 0, and 1.0 for ρ(0) = 0.01 (red 
circles) and ρ(0) = 0.99 (blue squares) are displayed. When α = −1.5, ρ(∞) has two 
phase transitions for ρ(0) = 0.99 and two hysteresis loops (see figures 4(a) and (b)). 
When α = 0 and α = 1.0, ρ(∞) has one phase transition and a single hysteresis loop. 
The peak values of χ in figures 4(b), (d), and (f) are the transition points for ρ(0) = 0.01 
(red lines) and ρ(0) = 0.99 (blue squares).

Figure 5 shows the four typical values α = −2.0, −0.5, 0, and 1.0 when r  =  0.8. 
We find that when α increases, the phase transition of ρ(∞) changes from multiple 
continuous (α = −2.0, see figure 5(a)) to discontinuous (figure 5(c)) to hybrid (inset of 
figure 5(c)). Eventually it returns to being multiple continuous (figure 5(e)). In addition, 
when α = 1.0 the first threshold disappears when ρ(0) = 0.99. Later in the Appendix 
section, we will use a finite-size scaling analysis to demonstrate the discontinuous 
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Figure 3. Scatter plots of resource quantity at β = (βinv)− for α = −2.0 (a), 
α = −1.0 (b) and α = 1.0 (c) when the inter-layer degree correlation r  =  0. The 
green circles represent scaled value of resource quantity ω(kS)/N  versus degree 
of nodes kS , and the yellow squares represent ω(kS)/N  versus the degree of the 
counterpart nodes kC. The initial fraction of infected nodes is set to ρ(0) = 0.01.
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increase of ρ(∞) [54–56]. In addition, qualitative explanations for the hybrid phase 
transition will be made. Note that, unlike when r  =  0 or r  =  −0.8, there is single hys-
teresis loop for all values of α. We can obtain the same explanation for the hysteresis 
loops by analyzing the ensemble average recovery rate ⟨µ(∞)⟩ as a function of β, similar 
to when r  =  0.

To determine how preferential resource diffusion affects the dynamics of epidemic 
spreading when there is interlayer degree correlation, we use two-parameter (α, β) 
phase diagrams for r  =  −0.8 and r  =  0.8 (see figure 6). The colors used in the figures are 
the values of ρ(∞). We set the initial fraction of seeds at ρ(0) = 0.01 in figures 6(a) 
and (d) and at ρ(0) = 0.99 in figures 6(b) and (e) at r  =  −0.8 and r  =  0.8, respectively. 
Figures 6(c) and (f) show the differences between ρ(∞) in figures 6(a) and (b) and 
in figures 6(c) and (d). Note that there are optimal values of α, i.e. αopt ≃ −1.5 for 
r  =  −0.8 (see figures 6(a) and (b)) and αopt ≃ −0.5 for r  =  0.8 (see figures 6(d) and (e)). 
Around αopt the disease is maximally suppressed, the value of βinv (βper) reaches a maxi-
mum, and ρ(∞) a minimum (see figures 6(a)–(d) for r  =  −0.8 and r  =  0.8, respectively). 
Similar to when r  =  0, when r  =  −0.8 and ρ(0) = 0.99 there is an αc critical value. 
When α < αc there are two phase transitions of ρ(∞) with two transition points βI

per 
and βII

per (see figure 6(b)). When α > αc the transition of ρ(∞) becomes single-phase. 
When ρ(0) = 0.01 there is a single phase transition of ρ(∞) (see figure 6(a)).

We obtain thresholds from susceptibility χ. Figure 6(c) shows that when α < αc 
there are two bifurcations, βs (triangles) and βm (squares) where βs < βm. There are 

two hysteresis loops in regions [βI
per, βs) and [βII

per, βm). When α > αc there is one hyster-

esis loop in region [βI
per, βm). We find multiple phase transitions when r  =  0.8 and when 

α is far from αopt, i.e. α = −1.0 or α = 1.0. Note that for simplicity we display only the 

first invasion threshold βI
inv and the first persistence threshold βI

per in figures 6(d) and 
(e) (circles), which we obtain from susceptibility measurement χ. When α approaches 
αopt, i.e. when α = −0.5, the value of ρ(∞) jumps from zero to a high value. In addi-
tion, the difference in ρ(∞) values in figures 6(d) and (e) indicates the single hysteresis 

region (βI
per, βm) (white circles and white squares in figure 6(f)).

To explain the optimization, we examine the resource distribution of nodes in layer 
S and how resources are distributed on those nodes whose counterparts in layer C have 
kC degrees when β = (βI

inv)− (β = (βinv)− if it is a single phase transition). Thus we 
obtain the scatter plots of ω(kS)/N  versus kS (green circles) and ω(kS)/N  versus kC 
(yellow squares). We obtain results similar to those when ρ(0) = 0.99.

Figures 7(a)–(c) show resource distributions for α = −1.5, 0.0, and 1.0, respectively 
for r  =  −0.8. Note that when α = −1.5 the probability that resources move to low-
degree nodes in layer S is high. Figure 7(a) shows that ω(kS)/N  decreases sharply when 
kS in layer S increases (green circles). In addition, when the correlation between the 
two layers is negative, high-degree nodes in layer C correlate with low-degree nodes. 
Because low-degree nodes are more numerous in a heterogeneous network, most low-
degree nodes in layer C still have low-degree counterparts. Thus both high-degree and 
low-degree nodes in layer C can rapidly recover because there are adequate resources 
supplied by their counterparts in layer S (yellow squares in figure 7(a)). When this is 
the case, the disease is effectively constrained (see figure 6(a)).
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While, when α = 0 and α = 1.0, resources move preferentially to the few high-
degree nodes in layer S and low-degree nodes receive little (green circles in figures 7(b) 
and (c)). When β increases, the recovery rate of high-degree nodes in layer C rapidly 
decreases because they cannot receive resources from their counterparts (yellow circles 
in figures 7(b) and (c)) and the disease is not constrained. Thus we see a small threshold 
and a large ρ(∞) when resources move preferentially to high-degree nodes in layer S.
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Figure 4. Influence of preferential resource diffusion on disease spreading when 
degree of inter-layer correlation is r  =  −0.8. ρ(∞) as a function of β for α = −1.5 
(a), α = 0 (c) and α = 1.0 (e) respectively, Initial condition is set to ρ(0) = 0.01 (red 
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When r  =  0.8 the degrees of nodes correlated positively between the two layers, to 
constrain disease spreading the recovery rate of both high and low degree nodes in layer 
C should maintain a high threshold. To achieve this, resources must diffuse properly to 
high-degree nodes in layer S (i.e. α ≃ −0.5) in a positive correlation between the two 
layers. Thus when α = αopt ≃ −0.5 there is a maximum threshold value and a mini-
mum ρ(∞) value when β is fixed.

Figure 7(f) shows that when resources move only to high-degree nodes in layer S, 
i.e. when α = 1.0, there are no resources for the low-degree nodes in layer S. Figure 7(d) 
shows that when resources move only to low-degree nodes, there are none for the high-
degree nodes. In both of these extreme conditions, the node recovery rate in layer 
C declines rapidly as β increases, which causes an earlier outbreak of disease (see 
figures 6(d) and (e)).

The results indicate that the inter-layer correlation of a social system can significantly 
influence the human behavior and the public policy in controlling the disease spreading. 
Specifically, if a social system has negative inter-layer correlation (namely the individu-
als in the system who have large connections in the virtual social networks tend to have 
few connections in the physical contact network), resources should be properly diffuse 
to those individuals who have small connections in the social layer. Thus the people 
they have frequent physical contact can get more resources and better treatment if they 
get infected. In contrary, if a social system has positive inter-layer correlation, then the 

Figure 6. Dependence of ρ(∞) on β and α when r  =  −0.8 (the first row) and r  =  0.8 
(the second row). Color-coded values of epidemic size obtained from simulations 
for ρ(0) = 0.01 (a), (d) and ρ(0) = 0.99 (b), (e). The difference of the value of ρ(∞) 
in (a), (b) and (d), (e). The yellow circles are the numerical prediction of the 
invasion threshold βinv and the persistence threshold βper respectively, which are 
obtained from the peaks of the susceptibility measure χ. Triangles and squares in 
(c), and (f) represent the bifurcation points βs and βm respectively. The vertical 
dashed lines in (a) and (d) indicate the location of the optimal value αopt, and in 
(b), (c) indicate the location of critical value αc.
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resources should diffuse preferentially to the individuals who have large connections in 
the social networks. Since in a network with positive inter-layer correlations, an indi-
vidual has large connections in the social network tends to have large physical contacts 
in the contact networks.

Figure 8(a) plots the value of the first invasion threshold βI
inv as a function of α 

for three typical degree correlations, r  =  −0.8 (gray circles), r  =  0 (green squares), and 
r  =  0.8 (red triangles), with an initial condition ρ(0) = 0.01. When ρ(0) = 0.99 the 
results are similar. Note that the three curves cross at α = −1.0 (point C in figure 8(a)). 
When α < −1, βI

inv decreases with r, but when α > −1, βI
inv increases with r. When 

α < −1, resources move preferentially to low-degree nodes in layer S. To suppress the 
spreading, the nodes in layer S must supply enough resources to high-degree nodes 
in layer C. Thus negative interlayer correlation enhances the disease suppression. In 
contrast, when α > −1 high-degree nodes add resources in layer S. To constrain these 
high-degree nodes we must have high-degree counterparts in layer C. Thus we increase 
βI
inv with r.

Finally we explore the relationship among the optimal values of the bias parameter 
αopt at which the disease is maximally controlled. Figure 8(b) shows αopt as a func-
tion of r. Note that the value of αopt increases monotonically with r because, with the 
increase of the interlayer correlation, the probability that the large degree nodes in 
layer S have counterparts with large degrees also increases. To protect the large degree 
nodes in layer C, resources in layer S must diffuse preferentially to large degree nodes. 
Thus αopt increases with r.
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Figure 7. Scatter plots of resource quantity at β = (βI
inv)− when the inter-layer 

degree correlation r  =  −0.8 (a)–(c), and r  =  0.8 (d)–(f). The green circles represent 
scaled resource quantity ω(kS)/N  versus kS , and the yellow squares represent 
ω(kS)/N  versus kC. The initial fraction of infected nodes is set to ρ(0)  =  0.01.
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5. Discussion and conclusions

We have explored how preferential resource diffusion affects the dynamics of disease 
spreading in correlated multiplex networks. Using extensive simulations we found that 
preferential resource diffusion can change the phase transition in ρ(∞), i.e, when the 
degree of interlayer correlation r is below a critical value, the transition of ρ(∞) with 
ρ(0) = 0.99 changes from two continuous phase transitions to one single phase trans-
ition as the controlling parameter α increases. We found two hysteresis loops accom-
panied by two phase transitions and one single hysteresis loop accompanied by one 
single phase transition of ρ(∞). When r is above the critical value, the phase transition 
of ρ(∞) changes with α from multiple to discontinuous, and then becomes hybrid. 
There is an optimal resource diffusion at each fixed value of r. When the diffusion of 
resources is optimal the threshold reaches a maximum and the disease can be maxi-
mally suppressed.

The results of our model indicate that the diffusion of resources in our daily lives 
could have significant influence in suppressing disease spreading, which can help policy 
makers to make an optimal strategy through properly controlling the flow of resources 
in social systems in order to effectively suppress outbreaks of the disease. Specifically, 
according to the network structure of the social circle, we can adopt distinct resource 
diffusion strategies to best suppress disease spreading. If there is no inter-layer correla-
tion between the social layer and physical contact layer, the resources should diffuse 
uniformly in the social layer of the individuals. Otherwise, if there is a negative cor-
relation between the two layers of the network, we should appropriately control the 
diffusion of resources to the individuals who have small connections in the social net-
work. Last, if there is a positive correlation between the two layers, resources should 
diffuse appropriately to those individuals who have more connections in the social 
networks.
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Figure 8. The value of the first invasion threshold βI
inv as a function of the bias 

parameter α for r  =  −0.8 (gray circles), r  =  0 (green squares) and r  =  0.8 (red 
triangles) (a). Optimal bias parameter αopt as a function of inter-layer correlation 
r (b). Each symbol in (a) is obtained from the susceptibility measure. Red circle 
at α = −1.0 is the cross point of the three lines. Here the initial condition is set to 
ρ(0) = 0.01.
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Because the model is complex we have not yet developed theoretical solutions, 
and thus theoretically obtaining an optimal solution αopt would be an interesting and 
important objective for future research. Previous studies indicated that the degree 
correlation in the layer has great influence on both dynamics of the networks [58] and 
dynamics on the networks [59], thus it may also influence the strategy of the resource 
diffusion. It would be interesting to discuss the coupling of the resource diffusion and 
disease spreading when there is degree correlation in the two layers.
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Appendix

In this section, we use finite-size scaling analysis to examine the discontinuous increase 
of ρ(∞) when α approaches αopt and the two network layers are positively correlated. 
We define ρ(N ,∞) the fraction of infected nodes at the steady state for a network with 
N nodes and ∆ρ(N ,∞) the maximum increase of ρ(N ,∞) during an infinitely small 
increase of β, which is expressed
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Figure A1. Results of finite-size scaling analysis for the discontinuous increase of 
ρ(∞). (a) Increase of infected density at the steady state ∆ρ(N ,∞) as a function of 
network size N for r  =  0.9 (red squares), r  =  0.7 (green circles) and r  =  0.6 (yellow 
triangles). (b) Infected density ρ(∞) as a function of β for r  =  0.9 (red squares), 
r  =  0.7 (green circles) and r  =  0.6 (yellow triangles) respectively. (c) Dependence 
of ρ(∞) on r and β. Color-coded values of ρ(∞) obtained from simulations with 
initial condition ρ(0) = 0.01. Point A is a triple point and the corresponding r is 
the critical value rc. White line represents the first epidemic threshold βI

inv that are 
obtained from the peaks of χ. The bias parameter is set to α = 0.
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∆ρ(N ,∞) = maxβ∈[0,1]{ρ(N ,∞, β +∆β)−ρ(N ,∞, β)}, (A.1)
where ∆β is an infinitesimal increment of β, set at ∆β = 0.001 in our simulations, and 
ρ(N ,∞, β) is the fraction of infected nodes at steady state when infection rate is β. 
When

lim
N→∞

∆ρ(N ,∞) > 0.0, (A.2)
there is a discontinuous increase in ρ(∞) [53, 57]. Note that we use α = 0 for the 
finite-size scaling analysis. Figure A1(a) shows ∆ρ(N ,∞) as a function of N when 
α = 0.6 (orange triangles), α = 0.7 (green circles), and α = 0.9 (red squares). Note that 
when α = 0.6, ∆ρ(N ,∞) converges to 0 asymptotically. When α = 0.7 and α = 0.9, 
∆ρ(N ,∞) asymptotically converges to a positive constant.

Figure A1(b) shows ρ(∞) as a function of β when ρ(0) = 0.01 for three typical values 
of interlayer correlation r  =  0.6, r  =  0.7, and r  =  0.9 in a network of size N  =  10000. 
Note that when r  =  0.6, ρ(∞) increases continuously with β. When r  =  0.7 and r  =  0.9, 
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Figure A2. Analysis of the hybrid phase transition. (a) The left vertical axis 
shows the time evolution of ρ(t) when β is just below the second threshold (βII

inv)− 
(the lower green line) and just over (βII

inv)+ (the upper red line). The right vertical 
axis shows the time evolution of scaled total resources of all nodes Ω(t)/N  for 
(βII

inv)− (the upper green circles) and (βII
inv)+ (the lower red circles). (b) Resource 

distribution in layer S for β = 0.01 (blue squares), (βII
inv)− (green circles) and (βII

inv)+ 
(red stars).
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ρ(∞) first increases slowly and continuously at βI
inv, and then jumps discontinuously at 

βII
inv, all of which are characteristics of a hybrid phase transition.

We next use extensive simulations to obtain the phase diagram of ρ(∞) in the 
two-parameter (r, β) plane with an initial condition ρ(0) = 0.01 when α = 0. When 
ρ(0) = 0.99 the results are similar. Figure A1(c) shows that when the two layers are 
negatively correlated (r  <  0), ρ(∞) increases continuously with β. When r  >  0, there is 
a critical value point rc (point A in figure A1(c)). When r ! rc there is a discontinuous 
change of ρ(∞) at the threshold. Note also that the epidemic threshold increases with 
r (see white line in figure A1(c)).

To explain the hybrid discontinuous phase transition, we plot the time evolution 
of total resources Ω(t) and infected fraction ρ(t) with the initial condition ρ(0) = 0.01 
for r  =  0.9 when α = 0 (see figure A2(a)). When ρ(0) = 0.99 the results are similar. 
Figure A2(b) shows the corresponding resource distribution at the steady state. When 
β is immediately below (βII

inv)−, the scaled value of the total resources Ω(t)/N  abruptly 
increases at the early stage of the diffusion process (green circles in figure A2(a)) because 
almost all nodes in layer C are healthy and resources are constantly generated by the 
corresponding nodes in layer S. After a longer period of time t  >  300 the system enters 
a steady state, and fluctuations stay within a small range (upper green circles). Here 
the resources of high-degree nodes are rapidly consumed, and the resource level for 
low-degree nodes remains high (see figure A2(b)) indicating that the disease is localized 
around the high-degree nodes. We thus learn that before βII

inv the system changes from 
a disease-free absorbing phase to a locally active phase (in which ρ(∞) reaches a finite 
small value) at βI

inv (green line in figure A2(a)). For the sake of comparison, figure A2(b) 
shows a plot of the resource distribution when β = 0.01.

When β = (βII
inv)+, the value of Ω(t)/N  rapidly increases as the disease spreads 

from the local area of the seeds (red circles in figure A2(a)). As t increases ρ(t) slowly 
increases and Ω(t)/N  reaches a peak value at a crossover time t∗. After t∗, Ω(t)/N  drops 
rapidly, indicating that the newly-generated node resources in layer S are not sufficient 
to recover the infected nodes in layer C. The recovery rate of the infected nodes then 
declines as resources decrease, which induces an increase in the infection rate of the 
disease, especially in the hub nodes. Thus as the infection rate increases, the resources 
available in layer S further decrease and the node recovery rate in layer C decreases. 
Then a cascading effect appears that sharply increases ρ(t) from a small finite value 
to a value near 1.0 (red line in figure A2(a)). Figure A2(a) shows ∆ρ(∞), which is the 
increase of ρ(∞) when β increases from (βII

inv)− to (βII
inv)+. This indicates a discontinuous 

jump in ρ(∞). Figure A2(b) shows that all resources of all nodes in the network have 
been consumed, in contrast to when (βII

inv)−.
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