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Abstract

Although suppressing the spread of a disease is usually achieved by investing in public resources, in the
real world only a small percentage of the population have access to government assistance when there
is an outbreak, and most must rely on resources from family or friends. We study the dynamics of
disease spreading in social-contact multiplex networks when the recovery of infected nodes depends
on resources from healthy neighbors in the social layer. We investigate how degree heterogeneity
affects the spreading dynamics. Using theoretical analysis and simulations we find that degree
heterogeneity promotes disease spreading. The phase transition of the infected density is hybrid and
increases smoothly from zero to a finite small value at the first invasion threshold and then suddenly
jumps at the second invasion threshold. We also find a hysteresis loop in the transition of the infected
density. We further investigate how an overlap in the edges between two layers affects the spreading
dynamics. We find that when the amount of overlap is smaller than a critical value the phase transition
is hybrid and there is a hysteresis loop, otherwise the phase transition is continuous and the hysteresis
loop vanishes. In addition, the edge overlap allows an epidemic outbreak when the transmission rate is
below the first invasion threshold, but suppresses any explosive transition when the transmission rate
is above the first invasion threshold.

1. Introduction

An outbreak of such diseases as SARS [1] and H5N1 [2, 3] puts at risk the lives of countless people. During the
first nine months of the recent Ebola epidemic there were 4507 confirmed or probable cases of infection and
2296 deaths [4]. Increasing the investment of public resources to control a disease pandemic can be a serious
economic burden, especially in developing countries [5, 6]. Many researches have been done on how to optimize
scarce public health care and immunization resources when attempting to control an epidemic [7—10], the goal
being to minimize the number of infected individuals by determining that optimal allocation [11].

A complex network science approach is now being widely used to determine the impact of resource
investment on spreading dynamics. Bottcher et al[12] studied the impact of resource constraints on epidemic
outbreaks and found that when the resources generated by the healthy population cannot cover the costs of
healing the infected population the epidemics go out of control and discontinuous transitions [13—17] occur.
Chen et al [18] explored the critical influence of resource expenditure on constraining epidemic spreading in
networks and found that public resources can affect the stability of the disease outbreak. Ata certain disease
transmission rate there is a critical resource level above which a discontinuous phase transition in the infected
population occurs. Bottcher et al [19] assumed that only the central nodes in a network can provide the necessary
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Figure 1. Schematic diagram of resource allocation in a multiplex network. The upper layer represents the social relationship network
where the healthy individuals (purple nodes) would equally allocate their personal resource to the immediate infected neighbors (red
nodes), as denoted by the arrows. The lower layer represents the physical contact network where the epidemic spreading takes place.

careresource, and they found that a discontinuous transition in infected nodes occurs when the central nodes
are surrounded by infected nodes. All of these researches focus on how public resource investment affects the
spread of disease.

In real-world scenarios only a small percentage of patients are assisted by public resources. The majority
depend on help from family and friends who provide economic [20-22] and emotional support [23, 24]. We
thus study how social support from family and friends affects the dynamics of disease spreading. In a social
network, a node has different connections in different settings. We can thus regard friendship ties (virtual
contacts) and co-worker ties (physical contacts) as two different network layers. Although economic and
medical resources and sources of information usually propagate through social relationships, diseases usually
propagate through physical contacts. Thus we use a multiplex network of two-layers [25-28] to study how
resource allocation in the social layer affects the spreading dynamics in the contact layer.

We use the susceptible-infected-susceptible (SIS) model in a multiplex network of two-layers to mimic the
coupling dynamics between disease spreading and resource support. The disease propagates through the layer of
physical contacts, but infected nodes seek help from their neighbors through the layer of social relations.
Infected nodes receive resources from healthy neighbors and do not generate resources. We analyze the process
using a dynamic message passing (DMP) approach [29-32]. We examine how degree heterogeneity affects the
dynamical process and find that the infected density in the steady state (p) increases continuously at the first
epidemic threshold and then jumps suddenly at the second threshold. Hysteresis loops exist in the phase
transition of the infected density, and the size of the hysteresis region and the value of the invasion threshold
decrease with the degree heterogeneity. Examining how edge overlap between the two layers affects the dynamics
of spreading we find that the overlap has a critical value. When the overlap is below the critical value, the infected
density first increases continuously and then discontinuously with disease transmission rate, and there are
hysteresis loops. When the overlap is above the critical value, the phase transition of p is continuous and there is
no hysteresis loop. We also find that when the transmission rate is below the first invasion threshold the disease
outbreaks more easily for a large edge overlap, but when the transmission rate is above the first invasion
threshold the edge overlap suppresses the disease spreading and the second invasion threshold increases as the
overlap increases.

2. Epidemic model with social-support

In a multiplex network of two-layers, each layer has N nodes and each node in the first layer has a counterpart in
the second layer. Here the upper layer is the social relationship network (e.g., Facebook friends and family
members) from which healthy nodes allocate resources to infected neighbors (see layer S in figure 1). The lower
layer is the physical contact network through which the disease spreads (see layer Cin figure 1). Variables A and B
are the adjacency matrices of layer S and C with elements a;;and b;;. If nodes i and jare connected by one edge in
layer S, a;; = 1, otherwise a;; = 0. The sameis true in layer C. We denote by s, the node state variable of node v,
and ifitis in the susceptible state s, = 0, otherwise s, = 1. We assume that each healthy individual has a certain
resource level r per unit time, which for simplicity we setat = 1. Resources are distributed equally to infected
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neighbors. Figure 1 shows that node X distributes one resource unit to three infected neighbors in layer S, and
that node Y distributes one resource unit to one infected neighbor. For the sake of analytical tractability, we
assume that the total resources are not cumulative in the system, and if healthy nodes do not allocate their
resources to neighbors they consume these resources themselves. In addition, infected nodes consume all of the
received resources at the current time step, and each healthy individual generates a new one-unit resource at the
next time step. Using this definition, the resources that node j gives to node i in layer Sis

1
2 Ajuse

Without resource support a node recovers spontaneously at a rate 11, [35], and for simplicity we assume 11, = 0.
The recovery rate of i at time ¢ is

Ri_; = (1)

Ri(t)
kS’

where £1,(f) = p(R;(t)), and R(#) is the expected resources that node i receives from healthy neighbors. The 1,
value is the coefficient that represents the efficiency of resource support from neighbors, 4, € [0, 1],and K is
the degree of iin layer S. The recovery rate of infected nodes is assumed to be positively related to the resource
received from healthy neighbors in layer S. In real-world setting the cost of repairing a vital node in a complex
system is much higher than the cost of repairing a common node. For example, because hub airports in airline
networks play a vital role in connecting a large number of countries and regions, the repairing cost when they fail
is much higher than that for lower-degree airports [33]. Similarly, the cost of repairing hub nodes in brain
networks is much higher than the cost of repairing common nodes [34]. The same is true in epidemic spreading.
Individuals exposed to viruses over a long period of time, e.g., medical staff members who are in constant contact
with infected individuals, have large degrees in physical contact networks. Community leaders are also hub
nodes in high-degree physical contact networks. In both cases the cost of curing these hub nodes being infected
is much higher than other infected nodes in the contact networks. Thus we assume that the recovery rate of an
infected node is negatively related to its degree.

We use the classical SIS model to investigate the spreading process in multiplex networks. Each individual
can be either infected or susceptible. Susceptible individuals are healthy and are then infected by an infected
neighbor at a rate 3. Infected individuals recover at a rate y.(¢), which is assumed to be independent of the
availability of social resources in previous researches [36, 37].

i) = p, ®)

3. Dynamic message-passing method

We use dynamic message-passing method to analyze the spreading dynamics. In this method a variable
‘message’ passes through the directed edges of the network and does not backtrack to the source node. Our
message is 0;_.;, the probability that node j is infected by its neighbors other than i. In addition, p,(t) is the
probability that node i is in the infected state at time ¢. The probability that an infected node i will connect to a
healthy node jinlayer Sis a;;(1 — 6;_,;(t)), and the expected number of infected neighbors of node jis

> s=iftjeOpj(t) + 1, where the plus one takes into account that node i is infected. Thus the resource Ry(t) that
node i receives from healthy neighbors is

1
zfilﬂjfefﬁj(t) +1
Using this definition, the discrete-time version of evolution of p;(t) [38] is

pi(t + At) = (1 — p()(A — q;@®) + (1 — p; () pi (1), (4)

where At is the time increment, which we set at At = 1, and g,(¢) is the probability that i is not infected by any
neighbor in layer C, which is given by

Ri(t) =Y aj(1 — 0;-;(1)) (3)
j

Qi(t) = H (1 - ﬂej—d(t))’ (5)
jewe

where V¢ is the neighbor set of i in layer C. Note that to exclude any contribution of node i to the infection of j,
weadopt 6;_,;(¢) instead of p; (t) in equation (5). Similarly, the discrete-time version of evolution of 6;_,;(¢) is

Oj—i(t+ 1) = (1 = 0-i()) (A = ¢_;®) + (1 — ;)i (). (6)
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Here (1 — ¢,_,;(1)) is the probability that j is infected by at least one neighbor other thani. Thus ¢,_,;(t) is
o= [ Q= pB—;@). )
£eNG\i
Here N ]C\z is the neighbor set of j excluding 7, and the fraction of infected nodes at time ¢is
| N
P =2 o), ®)
Nio
where p,(00) = p;and p,(t) = p; atthe steady state t — 0. Solving equations (4) and (6) at the stationary state
pr=0 =) = q)+ 1 = pp, ©)
and
Ojni =1 = 00 — &) + (1 — pbi—i, (10)

we obtain the phase diagram of the model. We use iteration to numerically compute the evolution of the state of
network nodes.

Due to nonlinearities in equations (3)—(7) they do not have a closed analytic form, and this disallows
obtaining the epidemic threshold 3,.If 3 > (3., p > 0, otherwise p = 0 in the steady state. When 8 — [,
p; — 0, 0;_; — 0,and the number of infected neighbors of each healthy node in layer S is approximately zero in
the thermodynamic limit, prior to reaching the epidemic threshold (1 — 6;_,;) — 1.Ifweadd these
assumptions to equation (3) resource R;becomes R; — k., we will obtain the recovery rate p; — . inthe
steady state (see figures 4(a) and 7(a)).

To compute the threshold, we linearize equations (6) and (7) around 6;_,; = 0 and obtain

g ~1- ﬂi bji0;_.i (11)
i=1
and
¢~ 1 — B Biiimbim (12)
where B is the non-backtracking matrix [39] of layer Cand
Biiin = on(1 — &), (13)
where ¢ is a Dirac delta function. Inserting equation (12) into (10) and neglecting second-order terms we obtain
> (=656mpu, + BBjiin)0p = 0. (14)
To solve equation (14) we definea 2E x 2E matrix J, where E is the number of edges and the elements of J are
Jiziton = —0650mp, + BBj i1 p (15)

The system enters a global epidemic region in which the epidemic grows exponentially when the largest
eigenvalue of J is greater than zero [31, 32, 37]. Thus we can obtain the epidemic threshold as

B = -

—_—— 16
A (16)

where A; is the largest eigenvalue of J.

4. Numerical and simulation results

To examine how resource support affects epidemic dynamics, we perform numerical computations and
stochastic simulations in the networks. Because many real-world complex networks have a highly skewed degree
distribution, e.g., Facebook [40] and the World Wide Web [41], we focus on networks with a heterogenous
degree distribution. We assume that the two layers of the network have the same degree sequences (k; = k).
Thus for simplicity we denote k; to be the degree of node iin both layers S and C.

To build our multiplex network we use an uncorrelated configuration model (UCM) [42] with a given degree
distribution P (k) ~ k~7 in which yis the degree exponent. Here a smaller yimplies a more heterogeneous
degree distribution. The maximum degree is determined by the structural cut-off k. ~ VN [43]and we set
the minimum degree at k,;, = 3. In addition we disallow multiple and self-connections and set the network size
as N = 10000. When studying resource support from neighbors, we eliminate any possibility of spontaneous
recovery, i.e., (1, = 0, and assume that node recovery is solely dependent on the amount of resources received.
Here we set the efficiency parameter at 41, = 0.6 and the 1, value does not affect the result [37, 44].
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Figure 2. Influence of degree heterogeneity on the spreading dynamics. The infected density p as a function of disease transmission
rate for v = 2.4 (a)and v = 3.2 (c). Symbols and lines represent the simulation and analytical results respectively, arrows indicate
the direction of the hysteresis loops. Quantities 3, B represent the first and second invasion thresholds respectively, By are
persistence thresholds. The susceptibility measure x as a function of Sfor v = 2.4 (b) and 7 = 3.2 (d). The dotted lines and solid lines
correspond to the cases for the initial infected density p(0) = 0.01and p(0) = 0.9. Each data is averaged over 500 independent
realizations.

To determine the epidemic threshold, we use a susceptibility measure [45, 46]

17)

where (...) is the ensemble averaging, and x exhibits peaks at the transition points.
We now examine how degree heterogeneity and edge overlap between the two layers of the network affect its
dynamic features.

4.1. Effects of degree heterogeneity

To investigate how degree heterogeneity affects spreading dynamics, we disallow any edge overlap between the
two layers, i.e., nodes are randomly connected by edges in layer S and layer C, and the amount of edge overlap m,
is approximately 0 in the thermodynamic limit.

To examine p as a function of 3, we randomly select one percent of the nodes to be seeds (p (0) = 0.01).
Figures 2(a) and (b) show the epidemic spreading for v = 2.4 and -y = 3.2. Note the hybrid phase transition in p
that exhibits properties of both continuous and discontinuous phase transitions. As 3increases p grows
continuously at 3%,,. Then an infinitely small increase in 3induces an sudden jump of pat B3I where 31, and

I are the first and second invasion thresholds. The p transition type indicates that there are three possible
system states, (i) completely healthy, (ii) partially infected, and (iii) completely infected. This differs significantly
from the classical SIS model. Note that when p(0) = 0.9, there is a discontinuous jump from O to 1 at Sy,
which is in contrast to the case of p(0) = 0.01. In addition, we find hysteresis loops in the phase transition of p
when v = 2.4 and v = 3.2 (see figures 2(a) and (c)). When the seed density is initially low, e.g., p(0) = 0.01, the
disease breaks out at the invasion threshold 3/, but when it s initially high, e.g., p(0) = 0.9, the disease breaks

out at the persistence threshold 3,.,. The arrows in figures 2(a) and (b) indicate the direction of the hysteresis

loops. We determine critical points 3., and 8/ and persistence threshold Bper using the susceptibility x shown

in figures 2(b) and (d). The theoretical results obtained from the numerical iterations agree with the simulation
results (see the lines in figures 2(a) and (b)).
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Figure 3. Effect of degree heterogeneity on spreading dynamics. (a) Phase diagram in the two-parameter (3, 7) space. Three regions
of the stable state are obtained. The high epidemic region with large value of p (denoted by red color) in steady state, the no epidemic
region with zero value of p (denoted by green color), and the low epidemic region with small value of p (part of the purple region
bounded by the two critical lines). The hysteresis region (denoted by purple color) is bounded within 3/, and Bper (denoted by red
squares). The two invasion thresholds 3/, (denoted by lower blue circles), 3i1 (denoted by upper blue circles) and persistence
thresholds By, are determined by the susceptibility measure x. Theoretical results obtained from the DMP method are denoted by
dotted lines in the figure. (b) The thresholds interval || 3%, — 81 ||is plotted as a function of system size N for three different values of
v:7 = 2.0 (red triangles), v = 2.2 (blue circles), and y = 2.8 (dark gray squares). Error bars are smaller than the symbols used for
the data points.

We next determine how degree heterogeneity (i.e., parameter ) influences the spreading dynamics.
Figure 3(a) shows the two-parameter (3, 7) phase diagram. The parameter space is partitioned into three
regions according to p value. When 3 < (1., the system falls into the no-epidemic regime, i.e.,the green and
part of the purple area below 3/, ,. When 3], < 3 < BI it falls into the low-epidemic regime (bounded by
two critical lines) in which p increases slowly with 3. Finally, above (L., psuddenly jumps to the high epidemic
regime (red) in which approximately all nodes are infected. The regime between invasion threshold 3i. and
persistence threshold (3, is the hysteresis region (purple). The values of Bl and B both increase with .
Although we can obtain the theoretical value of 3L, from equation (16), we cannot obtain the theoretical value
of B, and Bper by linearizing the equations around p; — 0 and ¢;_,; — 0 and thus we must apply numerical
methods using equations (4) and (6). We first define a judgment value € that is linear with system size N. Without
loss of generality we set € = 0.3. We then define the jump size Ap to be

Ap=pB) — p(B - AB), (18)

where A( is an infinitesimal increment in 3, which we setat A3 = 0.001, and p(0) is the infected density in the
steady state when the transmission rate is 5. We obtain the threshold when Ap > ¢ isata certain (value in the
thermodynamic limit [16, 47]. Using the numerical method, we obtain the second invasion threshold 3/%, and

the persistence threshold 3,,,. Figure 3 shows that the theoretical values marked by dotted lines agree with the
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Figure 4. Analysis of the hybrid transitions in heterogeneous multiplex networks. (a) Plot of fraction of healthy (S) neighbors around
infected nodes (1, /k) (red circles) and average recovery rate (1) (black squares) as functions of 3 in the steady state for v = 2.8, where
initial intected den51ty is p(0) = 0.01. (b) Time evolution of average resource of all infected nodes (R (¢)) and hub nodes (R, (¢)) (left
ordinate) for 8 > 3 inv ~ 0.023 (red circles)and 3 < 1 (black triangles), and the time evolutions of infected density p(t) (left
ordinate) for § < ﬂmv (lower black line)and 3 > 3L, (upper red line). Ap is the jump of p in the steady state for 3is just below 3L,
andjust above B3I . *is the moment when all the neighbors of the infected nodes are in healthy state. (c) The time evolution of
infected density p(t) for Bclose to B~ 0.033. (d) The average resource of (R(¢)) and (Ry,(¢)) as functions of £, " is the critical time

when the received resource of the hub nodes drops abruptly, which corresponds to the moment when p(¢) increases sharply in (¢).

simulation results. The change in the system state among the three regions indicates that the phase transitions of
pare hybrid. Figure 3(a) shows that the low epidemic and hysteresis regions expand as yincreases.

To demonstrate that there are two invasion thresholds in networks with heterogeneous degree distribution,
we use a ﬁnlte size scaling analysis [48]. Figure 3(b) shows the interval in 3}, < ﬁ < B which we denote
1B — Bl |I,asafunction of Nfor v = 2.0,y = 2.2,and y =
shows the values of || Bmv e v | converging asymptotically to posmve constant values in the thermodynamic
limit, i.e., hrnNHOO || I — Bl = 0.006 for v = 2.0, limy . || 32, — Bl || =~ 0.008 for v = 2.2,and
limy o0 || B, — BE, || =2 0.026 for v = 2.8, which implies the two invasion thresholds do not merge when
v < 2.2 and the two are always present in networks with a heterogeneous degree distribution.

To analyze the sudden jump of p and the hysteresis loops, we examine the transmission process analytically
using mean-field approximation in random regular networks (RRNs), which corresponds to the limit v — oc.
Through a bifurcation analysis we account for the existence of the sudden jump of p and the hysteresis loops (see
appendix information). Note that the first threshold 37, disappears in the RRN's and the transition of pis
discontinuous when it is not hybrid (see figure A2(a)).

To explain the hybrid transition when -y is finite, i.e., when < 3.2, we investigate the number of susceptible
neighbors around each infected node in layer S and their recovery rates as a function of 3. In the steady state the
number of each infected node’s susceptible neighbors in layer Sis 7, and their fraction n;, /k;. Here the recovery
rate is f1;. To evaluate the collective state, we examine the average quantity (r, /k) of n, /k; and the average
quantity (p) of the recovery rate. Figure 4(a) shows values of (n, /k) and (1) as functions of G for v = 2.8. We
find that both (n, /k) and (1) are constant when 3 < (31, which implies zero values for p. They then slowly
decrease until they reach the 371, at which point an inﬁnitesimal increase in 3 causes ajump in (1, /k) and ().
Figures 4(b)—(d) show the time dependence near 3%, and 3/L, . Figure 4(b) shows the time evolution of the
infected density p(t) around 31, ~ 0.023 for v = 2.8. The difference in p(co) for §just below and above
threshold 31, is Ap (see equation (18)). Note that p(co) increases slowly at 31, i.e., a small increment
Ap =~ 0.022. We next examine the time evolutions of the average resources of the infected nodes (R (¢)) and the
hub nodes (Ry,(¢)). Note that without loss of generality we can assign hub node status to nodes with a degree
larger than k = 30. Note also that when (s just below 3% both (R (¢)) and (R;,(t)) increase until t = t*, which
implies that all infected nodes have acquired sufficient resources to recover and p(t) evolves to zero. In contrast,
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when 3is just above 3 ., as the promotion effect of the hub nodes, the disease will spread on a finite scale
centered by these nodes. The processes of infection and recovery take place repeatedly among these nodes when
t — ts. Thus infection and recovery processes are balanced, and the values of (R(¢)) and (R;,(¢)) fluctuate
around a finite value when t — t.. (see figure 4(b)). As Ssmoothly increases at 3 = (1., the level of available
resources decreases continuously as the number of infected nodes increases (see figures 4(a)). Thus the density of
infection increases continuously at 3 - Figures 4(c) and (d) show a critical time t* ~ 220 at which 3is
approximately B~ 0.033. At the early stage of the propagation process, i.e., when t < t*, the disease spreads
through the local seed nodes. Because most of neighbors of the infected nodes in layer S remain healthy, they
have a sufficient resource level to recover. Here the infection and recovery processes are balanced. As the p(t)
value increases slowly the available resources levels (R;,(¢)) and (R(t)) for 8 ~ B, slowly decrease (see

figures 4(c) and (d)). When 3 < B3I the infection and recovery processes remain balanced when t — oo, thus
the density of infection fluctuates around a small finite value when t — ¢, (p(0c0) =~ 0.18) (see figure 4(c)).

Note that as hub nodes disappear in the RRNs the disease is suppressed until G reaches a threshold at which point
itjumps discontinuously, the balance disappears (see appendix), and only one threshold remains. When

B> B the transmission rate is relatively large and the balance between infection and recovery is broken.
Infecting the healthy nodes in layer C decreases the resources available to the nodes in layer S and delays the
recovery of infected nodes. This recovery delay increases the effective transmission probability in layer C, more
healthy nodes are infected, and both the available resources and the recovery rate decrease. This causes a
cascading infection in system nodes that is accelerated when hub nodes are surrounded by infected nodes, and
this can cause total system failure. Figure 4(d) shows an abrupt drop of (Ry,(t)) and (R(t)) at t* when 3 > Bi...
Figure 4(c) shows a rapid increase in the density of infection from a small value p (t*) =~ 0.18 to a high value
p(00) = 1.0. Note that in the steady state the large difference Ap between 8 < B2 and 3 > B causes
explosive transitions. This explains the hybrid transition in networks with a heterogeneous degree distribution.

Atlast, we give a qualitative explanation to the jump of p from 0 to 1 with p(0) = 0.9. When 3 < By, there
is a small transmission rate. Thus only a small amount of resources (p(0) is large) can provide a relatively large
recovery rate. Then the basic reproduction number is less than 1, and more infected nodes get recovery as time
goes on. Consequently, a larger amount of resources will be generated and the recovery rate is further improved.
Thus, when t — ¢, p(t) decreases to 0 gradually. However, when 8 > (3,er, there is a larger transmission rate,
and the limit initial resources of the healthy nodes can not meet the recovery of a large number of nodes. As time
goes on, the recovery rate of infected decreases with the reduction of resources gradually. The recovery delay
enhances the effective transmission rate, and resources further decrease. Then a cascading process forms and at
last the disease evolves rapidly to the entire network (p = 1.0). Thus when the initial fraction of infected nodes is
large, i.e., p(0) = 0.9, pjumps from 0 to 1, which is in contrast to the case of p(0) = 0.01.

Figure 4(d) shows the evolution of the resource level in the hub nodes. This explains the decrease in the two
invasion thresholds and the gap that appears between the two thresholds with the increase of degree
heterogeneity. A more heterogeneous network has more hub nodes and is more sensitive to increases in 3. Thus
increasing the degree heterogeneity reduces the gap between the two thresholds (see figure 3).

These numerical and simulation results differ greatly from the classical SIS model. In the multiplex networks
with a heterogeneous degree distribution, degree heterogeneity enhances disease spreading and the phase
transition is hybrid. Besides, there are hysteresis loops in the phase transition of p, and the interval between the
two invasion thresholds and the hysteresis region decreases as degree heterogeneity increases. When v — oo the

network is approximately a RRN, 3/ disappears as hub nodes disappear, and the transition is discontinuous.

4.2. Effects of edge overlap
In social networks two individuals can be friends in the social relation layer and coworkers in the physical
contact layer. In transportation networks two cities can be connected by both an expressway and a railway. Thus
edge overlap is essential in the science of complex networks, especially when studying percolation in multiplex
networks [49]. Here we examine how the amount of edge overlap m, between the two layers affects the spreading
dynamics. To eliminate the effect of structure, we fix the values v = 2.2 and (k) = 9. We then use UCM to build
amultiplex network with two identical layers m, = 1.0. To generate a variety of m, values, with a probability
q = 1 — m, werewire pairs of links in layer S.

Figures 5(a) and (c) show the infected density p as a function of 5 with two typical values m,=0.2 (a) and m,
= 1.0 (c). Note that when the edges between the two layers overlap completely (1, = 1.0) the infected density p
smoothly increases from 0 to 1 and there is no hysteresis loop (see figure 5(c)). When the rate of edge overlap
between two layers is lowered, i.e., when m, = 0.2, a hybrid phase transition appears (see figure 5(a)). The
infected density p smoothly increases at 3 = 3% and then the system acquires a low epidemic region
Bl < B < BI yinwhich pslowly increases. Subsequentlyat 3 = 31 an infinitesimally small increase in 3
causes an abrupt jump in p and the disease suddenly spreads throughout the entire system. Hysteresis loops

appear in the transition process and the arrows indicate their direction. Figures 5(b) and (d) show that the
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Figure 5. Influence of edge overlap on the spreading dynamics. The infectd density p as a function of transmission rate and hysteresis
study for m, = 0.2 (a), m, = 1.0(c). The symbols and lines represent simulation and analytical results respectively. Arrows indicate
the direction of the hysteresis loop. Quantities 31, and 37, respectively represent the first and second invasion thresholds, Bpe, are
the persistence thresholds, 3, for m, = 1.0 represent the inflection point. Susceptibility measure y as a function of 3 for m, = 0.2 (b)
and m, = 1.0 (d). The dotted lines and solid lines in (b) correspond to the cases for the initial infected density p(0) = 0.01 and

p(0) = 0.9 respectively. Each data is averaged over 500 independent realizations.

invasion thresholds (i.e., 41,,) and B, and the persistence threshold Bper are determined by the susceptibility x.
Note that the hysteresis loop disappears when m, = 1.0 (see figure 5(c)), and it no longer satisfies the definition
of ¢ > 0.3 at ;. Thus F; is an inflection point at which the increase in p accelerates. The theoretical results from
the DMP method agree with the simulation results.

To determine how the amount of edge overlap between the two layers affects the spreading dynamics, we
perform simulations for values of 11, from 0 to 1 and obtain the space in the plane (3, m,) shown in figure 6. The
parameter space is separated into phase regions I and I1 by a critical value of edge overlap m,; ~ 0.8. When
m, < m, the system falls into phase I in which the phase transition of pis hybrid and the space is again separated
into three regions by two invasion thresholds 3%, (lower blue circles) and (upper blue circles). When
B < Bl the system has a no-epidemic region (green) in which all nodes are healthy and in a steady state. When

an

Bl < B < BI the system has alow-epidemic region (orange) in which the infected density p increases
continuously from 0 to a finite value until it reaches the second invasion threshold 3{,. Figure 3(b) shows a
small low-epidemic region when m, < 0.2 such that when v = 2.2 and m, = 0.0 the value of || 32 — Bi, ||
converges to a non-zero constant value when N — co. When 3 > B{L the system jumps abruptly to a high
epidemic region (red) in which the disease spreads throughout the entire system. The hysteresis loops (purple)
appear in phase I. In contrast, when m, > m, the system falls into phase II in which the phase transition of pis
continuous. The value of p smoothly increases from 0 to 1 and the hysteresis loops disappear. Figure 6 shows that
when 3 < 35, thevalue of 81, decreases as the amount of edge overlap increases. Here edge overlap promotes
disease spreading. When 3 > 1, the value of increases as the amount of edge overlap increases. Here edge
overlap suppresses disease spreading. We obtain the theoretical value of 31, using equation (16)and 3/ and
Bper using the method in section 4.1. Figure 6 shows that the theoretical values marked by the dotted lines agree
with simulation results.

To clarify these results, figures 7(a) and (b) show a plot of the average recovery rate (1) and the number of
susceptible neighbors around each infected individual (n, /k) as functions of . Note that when the two layers
overlap completely (m, = 1.0), (1, /k) and (1) decrease at the first threshold 3}, to a certain value and then
decrease continuously to zero, indicating that the infected density in the steady state increases continuously up

ll’lV
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Figure 6. Phase diagram in the (11,, 3) space. The space is separated into two phase regions by the critical values m." ~ 0.8: phase
and II. In phase region three stable regions are obtained: the high epidemic region denoted by red color, the no epidemic region
denoted by green color, and the low epidemic region denoted by yellow color. The hysteresis region (denoted by purple color) is
bounded with the line of 3% and the line of B, (denoted by red squares). The invasion thresholds 31, 51, (denoted by blue
circles) and the inflection point (3, the persistence thresholds 3, are determined by the susceptibility measure x. While in phase
region II, the phase transition of p becomes continuous. The green region represents no epidemic and the pink region represents
disease outbreaks. Theoretical results obtained from the DMP method are denoted by dotted lines.
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Figure 7. Analysis of the phase transition with edge overlap between the two layers. The fraction of healthy (S) neighbors around
infected nodes (n, /k) (red circles) and average recovery rate (1) (black squares) as a function of 3in the steady state for v = 2.2 when
m,= 1.0 (a) and m, = 0.5 (b). Time evolution of average resource of all infected nodes (R (r)), hub nodes (Rp, (#)), and infected
density p(t) for Bis close below 3% (3 )and closeabove gL, (81, )when m, = 1.0 (c) [m, = 0.5(d)]. " in (c) is the moment
when all the neighbors of the infected nodes are in healthy state, above which there is no definition of (Ry,, (#)) and (R(¢)). Ap in (c)
and (d) is the increase of p when (3 changes from close below the threshold to close above the threshold. Initial infected density is set to

p(0) = 0.01 in the simulations.
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to 1 as Bincreases. In contrast, when 11, = 0.5 there are two abrupt jumps of (1, /k) and (1) at 31, and B,
respectively. Here (1) jumps sharply to zero at 31 (see figure 7(b)) indicating an explosive jump in p.

Figures 7(c) and (d) show the time dependence of the infected density and the resource value. Figure 7(c)
shows the average resource of all infected nodes (R (¢)) and the average resource of hub nodes (R, (¢)) asa
function of ¢ for m, = 1.0. Note that when 3is immediately below (5,, both (Ry,(¢)) and (R(t)) increase
continuously until = #*. When ¢ > ¢* there is no definition of resource because all infected nodes recover (see
p(t)for B < Bl att = t*). When 3 > 1, the infection and recovery rates are balanced, and both (R;,(t)) and
(R(1)) fluctuate around a finite value when t — #,. Thus all the infected nodes recover with a certain probability
and p(t) also fluctuates around a finite value when t — ., (see p(t) for 8 > B ). With an increase in 3,
resource availability decreases continuously as the number infected nodes increases until the disease spreads
throughout the system and no available resources remain (see figures 7(a) and (c)). This accounts for the
continuous increase in p when m, = 1.0.

Figure 7(d) shows the time evolution of the infected density and available resource level for m, = 0.5. Note
that when 3is immediately below ({1, at the early stage the disease propagates within the local range of seed
nodes, and there are sufficient healthy neighbors in layer S to temporarily suppress the spread. This causes a brief
increase in available resources at the beginning of the propagation process and a slight decline in the density of
infection. Subsequently the disease rapidly spreads along the edges in layer C. When edges in layer S link out (1,
=0.5), with a high probability that infected nodes in layer S infect their neighbors, (R;,(¢)) and (R(¢)) rapidly
decline, and p(#) rapidly increases. Eventually infection and recovery become balanced, and p(¢), (R, (#)), and
(R(t)) converge to finite values. When 3 > BI there is also a temporary increase in both the available resources
and the density of infection. However, when the propagation begins, unlike when m, = 1.0 (see figures 4(c) and
(d)) there is no balanced period at the beginning of the process. The infection of the S-state nodes reduces the
resource available to a large number of infected nodes in layer S and delays their recovery. This recovery delay
further increases the transmission probability in layer C. Thus (R, (¢)) and (R (¢)) decline sharply to zero, the
density of infection rapidly increases to 1, and cascading infection occurs.

An increase in the overlap between two layers indicates an increase in the local social circle of an individual.
When an individual’s colleagues (those frequently in contact, defined as the contact layer) and friends (the social
relations, defined as the social layer) are the same group of people, the links in these two layers largely overlap.
When 3 < 3}, seed nodes initially transmit the disease only to immediate neighbors with whom they are in
frequent contact. This high-value local effect causes infected nodes to have a higher probability of linking with
other infected nodes in layer S and lowers the level of resources available from neighbors. Thus the overlap
between two layers increases network fragility against the invasion of the disease, and increases the probability of
an epidemic breakout, and thus lowers the epidemic threshold 3% . In contrast, alower value of overlap rate
between the two layers indicates a more global social circle, neighbors of nodes in the social layer differ from
neighbors in the contact layer. The infected nodes in the contact layer can acquire resources from healthy
neighbors in the social layer. Thus the network is more robust against the invasion of the disease, and thereis a
relatively high epidemic threshold f31,. This is the reason 31, decreases as m, increases, as shown in figure 6.
When 3L < 8 < BE hubnodes promote disease transmission, the disease breaks out in a finite range, a
sufficient number of healthy neighbors are present in layer S to help infected nodes to recover, and infection and
recovery remain balanced. Figure 7(d) shows that the value of resource availability fluctuates around a finite
value when t — t,,, and the density of infection converges continuously to a finite value (p ~ 0.28). Thus in this
region the global connections in a social layer have an advantage over the local connections (see figures 5 (a) and
(). When 3 > B the disease breaks out rapidly and globally, and the balance between infection and recovery
isbroken. When m, < m, (arelatively low overlap rate), the connections in layer S are more global. The
infection of a small number of S-state nodes in layer Cinfluences the recovery of alarge number of I-state nodes
inlayer S. Thus there is a delay in the recovery of infected nodes that further increases the transmission
probability, promotes the disease spreading in layer C, and causes global cascading failure. This explains the
increasein 3! with m,and the explosive jump of p (see figure 7(c)) when m, < m¢.In contrast, when
m, > my,, the connections of layer Sis more localized, and the infection of nodes in layer C delays the recovery of
the infected nodes within only a small range in layer S. This small range in recovery delay does not globally
increase the effective transmission probability. Thus as the effective transmission probability gradually increases

the value of p smoothly increases with 3 (see figures 7(a) and (¢)).

5. Conclusions

We have investigated how the level of social support affects spreading dynamics using the SIS model in social-
contact coupled networks. Links in the social layer represent relationships between friends or families through
which healthy nodes allocate recovery resources to infected neighbors. Links in the contact layer represent daily
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physical contacts through which the disease can spread. Infected nodes do not have resources, and their recovery
depends on obtaining resources in layer S from healthy neighbors. We assume the recovery rate of an infected
node to be a function of the resources received from healthy neighbors. We use the DMP method to analyze the
spreading dynamics. We first examine how degree heterogeneity impacts disease spreading. We find that degree
heterogeneity enhances disease spreading, and due to the existence of hub nodes there is a balanced interval

v < B < BlL, in which the infection and recovery processes remain balanced. The value of p increases

continuously from 0 to a finite value at the first invasion threshold 31, ,, increases slowlyin 3%, < 3 < B |
then suddenly jumpsat 3% . Thus the transition of p is hybrid. In addition, increasing the degree exponent «yin
the network increases the gap between the two thresholds and the hysteresis region. To analyze the sudden jump
of p and the hysteresis loops, we examine the spreading process analytically using mean-field approximation in
RRNs. Through a bifurcation analysis we account for the existence of the sudden jump of p and the hysteresis
loops. In addition, in the RRN’s the balanced interval disappears when there is alack of hub nodes. The first
invasion threshold 3/, thus disappears.

We next fix the degree heterogeneity and investigate the effect of edge overlap between the two layers. We
find that there is a critical value mS. When m, < m there is a second invasion threshold 3/, that increases with
m,. The value of p smoothly increases at 31, and then suddenly jumps at 3% | revealing the transition of p to be
hybrid with the presence of hysteresis loops in this region (see figure 6). In contrast, when m, > m, the phase
transition of p is continuous and the hysteresis loops disappear. In addition, when 3 < f31, seed nodes can only
transmit the disease locally at the early stage. Here an increase in global connectivity with alower rate of overlap
in the social layer (layer S) increases the probability of linking to healthy neighbors and increases the probability
that infected nodes will recover. Thus the first invasion threshold 31, decreases as the overlap rate m, increases.
When 3 > B, increasing the transmission rate increases the fraction of infected nodes, and an increase in
global connectivity in layer S increases the probability of linking to infected neighbors and lowers the recovery
rate. Thus the second invasion threshold (L, increases with m, when m, < m.

Although researchers in different scientific fields have focused on ways of constraining disease epidemics in
human populations, most scientific literatures have been devoted to questions concerning the optimum
allocation of public resources or the impact of government investment on spreading dynamics. There has been
little examination of how social supports affect spreading dynamics, and our novel model fills this gap. Whereas,
there are still some limits of our model. For example, for the sake of analytical tractability, we assume that the
resources of each node in layer S are not cumulative. This kind of phenomenon has certain rationality in the real
world. For example, the healthy individuals will generate a certain amount of resources in their daily life. To
maintain their lives, resources will also be consumed. Basically, the generation and consumption of resources
remain balance during a period, and there will not be many resources to accumulate for most individuals. Thus,
we make the assumption that the resources generated in current step will be consumed out. Although the
assumption is reasonable to a certain extend, a more prevalent phenomenon is that resources such as economic
wealth and human resources are cumulative over time. It will be interesting to consider the following questions.
(a) How it would affect the dynamics of disease spreading if resources are accumulative over time? (b) Is the
accumulation of resources an efficient way to prevent epidemic outbreaks or is just delaying the infection?
Moreover, in real world, the Matthew effect [51] such as the the phenomenon that the rich tend to get richer is
ubiquitous. Thus it will be interesting to consider the effect of preference-driven resource allocation on
spreading dynamics. These are some open questions and possible directions after this work that will definitely
motivate future works.
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Appendix

When v — oo the system is approximately a RRN. To analyze the hysteresis loop and the sudden jump of p, we
solve equations (4) and (6) analytically for RRN using mean-field approximation. In the mean-field
approximation for a RRN, the degree of each node has the same value and the same probability of being infected.
Because we have only considered the case k¥ = k, for simplicity we denote the degree to be k. Each edge in the
network also has the same probability of connecting with infected neighbors. Thus we define p(¢) and 6 (¢) such
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Figure A1. Illustration of graphical solution of equation (24) for RRNs with k = 10. The red line corresponding to 5 = 0.066 is
tangent to the horizontal axis at = 0. The purple line correspionding to 5 = 0.0067 is tangent to the horizontal axisat § = 1.

that p(t) = p,(t) = pj(t) and 0(t) = 0,_;(t) = 0)_(t). Consequently the resource that each infected node
can receive from healthy neighbors is
Ry = KL= 0@ (19)
k—1DO0@) +1

and the recovery rate of each node is
1, (1 — 0(1)
(k—DO@®) +1

When we approximate 1 — (1 — 30(t))*as kB0 (t)and 1 — (1 — B0(t))* Vas (k — 1)30(t) for small Fwe
obtain

w(t) = (20)

dp®) _ _ Q)
20 — kb1~ pe) - L0 1)
and
0O _ 5 — nowa - o) — LD 44 22)

dt (k—10@) +1

The steady state of the spreading process corresponds to conditions dp(t) /dt = 0and df(¢) /d¢t = 0. We
denote 0 (c0) as # and obtain

1
01 — 0 k-1)———————1]=0. 23
( )[@( ) (k—1)9+1] (23)
We also define g (0) as the function of 6 in the steady state, which is
7
0 =601-20 k—-1)—- ————————|. 24
g(0) ( )[/3( ) (k—1)9+1] (24)

Here g () is tangent to the horizontal axis at 6, (c0), which is the critical value in the limit + — oco. The critical
condition is

dg ()
do

Solving equation (25) we also obtain the critical transmission rate.

In order to analyze clearly the bifurcation phenomenon in RRNs, we give an example that illustrates the
relationship between pand Swhen k = 10 in figure A1. We can observe that the number of solutions for
equation (24) is dependent on 3. Besides, g () is tangent to the horizontal axisat § = 1.0 and 6 = 0.0 when
08 ~ 0.0067 and B ~ 0.066 respectively, which implies the existence of two critical values of 5. From the whole
parameter space of 6, we can observe that the transcritical bifurcations [50] occur at § =~ 0.0067 and 3 ~ 0.066
respectively. Specifically, there are three solutions (one unstable and two stable) passing to two solutions (one
stable and one saddle point) and then, passing to three solutions (two stable and one unstable that goes into the

|9€ =0. (25)
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Figure A2. Phase transition of infected density in steady state and susceptibility measure x on random regular networks. (a) Infected
density p versus 3 for p(0) = 0.01 (blue circles) and p(0) = 0.9 (orange triangles). (b) Susceptibility measure x versus 3 for

p(0) = 0.01 (blueline) and p(0) = 0.9 (orange dash line). Network size N = 10 000 and degree k = 10. The analytical results are
obtained from the mean-field approximation ((equations (21) and (22))).

unit interval of values of #) at 3 >~ 0.0067. The same transcritical bifurcations occur at 8 = 0.066. However, the
above conclusions are only mathematically significant. Physically, the value of § can onlylocate in the interval of
[0, 1], as shown in the region between the two vertical dotted lineat § = 1.0 and € = 0.0. The stable solutions at
0 > 1.0 and 6 < 0.0 have no physical meaning. Thus in fact, in the region 6 € [0, 1], equation (24) passes from
two solutions (one stable and one unstable) in 5 € [0, 0.0067] to three solutions (one unstable that goes into the
the unit interval of values of 6, and two stable) in G € (0.0067, 0.066) and then, to two solutions (one stable and
one unstable). From bifurcation analysis above we can learn that the physically meaningful stable solution of §
will suddenly increase, and there is an alternate outcome—explosive growth in p. Whether the unstable state
stabilizes to an outbreak state (¢ > 0, p > 0) or an extinct state (¢ = 0, p = 0) depends on the initial infection
density p(0), thus a hysteresis loop emerges. To distinguish the two thresholds of the hysteresis loop, we denote
Bper as the persistence threshold corresponding to the solution 6, > 0 (. = 1.0 in RRNs) of equation (24) at
which the disease initially has a large p(0) value. Here By, is the invasion threshold corresponding to the
nontrivial solution 6. = 0 of equation (24) at which the disease initially has a small p(0) value. The interval
[Bpers Binv) is the hysteresis region.

Figure A2(a) shows the numerical and simulation results in RRNs with a degree k = 10. In RRNs the first
invasion threshold 31, disappears and the transition of p is discontinuous, i.e., not hybrid. Since in RRNs, all
nodes approximately have the same infection and recovery rate as they have almost the same amount of infected
neighbors in physical contact layer and the same amount of healthy neighbors in social-relation layer. Thus
when 6 < By, there are sufficient resources to guarantee the recovery of the infected nodes, i.e., p(t) — 0
when t — t... However, when 6 > B, there is alarger transmission rate among the pairs of infected and
susceptible nodes, and resources that each infected nodes can get from healthy neighbors decreases, which
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induces reduction of the recovery rate for all nodes. The recovery delay of the infected nodes in turn enhances
the effective transmission rate and the infection range. Then, the available resources further diminish and a
cascade process forms, thus the disease evolves rapidly to the entire network. Therefore, there are only two
potential states of the system, namely all the infection or all the healthy, which is in contrast to the case of
network with heterogeneity degree distribution. In a network with heterogeneity degree distribution, nodes have
different infection and recovery probabilities. At each time step, nodes with larger degrees have larger infection
probabilities, which promotes the spreading of disease. Thus, when is around (31, as the promotion effect of
hub nodes, the disease will spread on finite scales centered by these hub nodes, as shown in figure 4(b). In
addition, we can observe from figure A2(a) that the hysteresis loops exist in the transition of p. The orange
dashed line and the blue line correspond to the theoretical results for p(0) = 0.01and p(0) = 0.9, respectively,
obtained from equations (21) and (22). Figure A2(b) shows the susceptibility measurement x versus g for

p(0) = 0.01and p(0) = 0.9. From these results we find that the theoretical results obtained from the mean-
field approximation agree with the simulation results in RRNs.
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