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Abstract
Although suppressing the spread of a disease is usually achieved by investing in public resources, in the
real world only a small percentage of the population have access to government assistancewhen there
is an outbreak, andmostmust rely on resources from family or friends.We study the dynamics of
disease spreading in social-contactmultiplex networks when the recovery of infected nodes depends
on resources fromhealthy neighbors in the social layer.We investigate howdegree heterogeneity
affects the spreading dynamics. Using theoretical analysis and simulations wefind that degree
heterogeneity promotes disease spreading. The phase transition of the infected density is hybrid and
increases smoothly from zero to afinite small value at the first invasion threshold and then suddenly
jumps at the second invasion threshold.We alsofind a hysteresis loop in the transition of the infected
density.We further investigate how an overlap in the edges between two layers affects the spreading
dynamics.We find that when the amount of overlap is smaller than a critical value the phase transition
is hybrid and there is a hysteresis loop, otherwise the phase transition is continuous and the hysteresis
loop vanishes. In addition, the edge overlap allows an epidemic outbreakwhen the transmission rate is
below thefirst invasion threshold, but suppresses any explosive transitionwhen the transmission rate
is above the first invasion threshold.

1. Introduction

Anoutbreak of such diseases as SARS [1] andH5N1 [2, 3] puts at risk the lives of countless people. During the
first ninemonths of the recent Ebola epidemic therewere 4507 confirmed or probable cases of infection and
2296 deaths [4]. Increasing the investment of public resources to control a disease pandemic can be a serious
economic burden, especially in developing countries [5, 6].Many researches have been done on how to optimize
scarce public health care and immunization resources when attempting to control an epidemic [7–10], the goal
being tominimize the number of infected individuals by determining that optimal allocation [11].

A complex network science approach is nowbeingwidely used to determine the impact of resource
investment on spreading dynamics. Böttcher et al [12] studied the impact of resource constraints on epidemic
outbreaks and found that when the resources generated by the healthy population cannot cover the costs of
healing the infected population the epidemics go out of control and discontinuous transitions [13–17] occur.
Chen et al [18] explored the critical influence of resource expenditure on constraining epidemic spreading in
networks and found that public resources can affect the stability of the disease outbreak. At a certain disease
transmission rate there is a critical resource level abovewhich a discontinuous phase transition in the infected
population occurs. Böttcher et al [19] assumed that only the central nodes in a network can provide the necessary
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care resource, and they found that a discontinuous transition in infected nodes occurswhen the central nodes
are surrounded by infected nodes. All of these researches focus on howpublic resource investment affects the
spread of disease.

In real-world scenarios only a small percentage of patients are assisted by public resources. Themajority
depend on help from family and friends who provide economic [20–22] and emotional support [23, 24].We
thus study how social support from family and friends affects the dynamics of disease spreading. In a social
network, a node has different connections in different settings.We can thus regard friendship ties (virtual
contacts) and co-worker ties (physical contacts) as two different network layers. Although economic and
medical resources and sources of information usually propagate through social relationships, diseases usually
propagate through physical contacts. Thuswe use amultiplex network of two-layers [25–28] to study how
resource allocation in the social layer affects the spreading dynamics in the contact layer.

We use the susceptible-infected-susceptible (SIS)model in amultiplex network of two-layers tomimic the
coupling dynamics between disease spreading and resource support. The disease propagates through the layer of
physical contacts, but infected nodes seek help from their neighbors through the layer of social relations.
Infected nodes receive resources fromhealthy neighbors and do not generate resources.We analyze the process
using a dynamicmessage passing (DMP) approach [29–32].We examine howdegree heterogeneity affects the
dynamical process andfind that the infected density in the steady state (ρ) increases continuously at thefirst
epidemic threshold and then jumps suddenly at the second threshold. Hysteresis loops exist in the phase
transition of the infected density, and the size of the hysteresis region and the value of the invasion threshold
decrease with the degree heterogeneity. Examining how edge overlap between the two layers affects the dynamics
of spreadingwe find that the overlap has a critical value.When the overlap is below the critical value, the infected
density first increases continuously and then discontinuously with disease transmission rate, and there are
hysteresis loops.When the overlap is above the critical value, the phase transition of ρ is continuous and there is
no hysteresis loop.We alsofind that when the transmission rate is below the first invasion threshold the disease
outbreaksmore easily for a large edge overlap, butwhen the transmission rate is above the first invasion
threshold the edge overlap suppresses the disease spreading and the second invasion threshold increases as the
overlap increases.

2. Epidemicmodel with social-support

In amultiplex network of two-layers, each layer hasNnodes and each node in thefirst layer has a counterpart in
the second layer.Here the upper layer is the social relationship network (e.g., Facebook friends and family
members) fromwhich healthy nodes allocate resources to infected neighbors (see layer S infigure 1). The lower
layer is the physical contact network throughwhich the disease spreads (see layerC infigure 1). VariablesA andB
are the adjacencymatrices of layer S andCwith elements aij and bij. If nodes i and j are connected by one edge in
layer S, =a 1ij , otherwise =a 0ij . The same is true in layerC.We denote by sυ the node state variable of node υ,
and if it is in the susceptible state =us 0, otherwise =us 1.We assume that each healthy individual has a certain
resource level r per unit time, which for simplicity we set at r=1. Resources are distributed equally to infected

Figure 1. Schematic diagramof resource allocation in amultiplex network. The upper layer represents the social relationship network
where the healthy individuals (purple nodes)would equally allocate their personal resource to the immediate infected neighbors (red
nodes), as denoted by the arrows. The lower layer represents the physical contact networkwhere the epidemic spreading takes place.
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neighbors. Figure 1 shows that nodeX distributes one resource unit to three infected neighbors in layer S, and
that nodeY distributes one resource unit to one infected neighbor. For the sake of analytical tractability, we
assume that the total resources are not cumulative in the system, and if healthy nodes do not allocate their
resources to neighbors they consume these resources themselves. In addition, infected nodes consume all of the
received resources at the current time step, and each healthy individual generates a new one-unit resource at the
next time step. Using this definition, the resources that node j gives to node i in layer S is

å
=

u u u
l ( )R

a s

1
. 1j i

j

Without resource support a node recovers spontaneously at a rate m0 [35], and for simplicity we assume m = 00 .
The recovery rate of i at time t is

m m=( ) ( ) ( )t
R t

k
, 2i r

i

i
S

where m mº( ) ( ( ))t R ti i , andRi(t) is the expected resources that node i receives fromhealthy neighbors. The mr
value is the coefficient that represents the efficiency of resource support fromneighbors, m Î [ ]0, 1r , and ki

S is
the degree of i in layer S. The recovery rate of infected nodes is assumed to be positively related to the resource
received fromhealthy neighbors in layer S. In real-world setting the cost of repairing a vital node in a complex
system ismuch higher than the cost of repairing a commonnode. For example, because hub airports in airline
networks play a vital role in connecting a large number of countries and regions, the repairing cost when they fail
ismuch higher than that for lower-degree airports [33]. Similarly, the cost of repairing hub nodes in brain
networks ismuch higher than the cost of repairing commonnodes [34]. The same is true in epidemic spreading.
Individuals exposed to viruses over a long period of time, e.g.,medical staffmemberswho are in constant contact
with infected individuals, have large degrees in physical contact networks. Community leaders are also hub
nodes in high-degree physical contact networks. In both cases the cost of curing these hub nodes being infected
ismuch higher than other infected nodes in the contact networks. Thuswe assume that the recovery rate of an
infected node is negatively related to its degree.

We use the classical SISmodel to investigate the spreading process inmultiplex networks. Each individual
can be either infected or susceptible. Susceptible individuals are healthy and are then infected by an infected
neighbor at a rateβ. Infected individuals recover at a rate m ( )ti , which is assumed to be independent of the
availability of social resources in previous researches [36, 37].

3.Dynamicmessage-passingmethod

Weuse dynamicmessage-passingmethod to analyze the spreading dynamics. In thismethod a variable
‘message’ passes through the directed edges of the network and does not backtrack to the source node. Our
message is qlj i, the probability that node j is infected by its neighbors other than i. In addition, r ( )ti is the
probability that node i is in the infected state at time t. The probability that an infected node iwill connect to a
healthy node j in layer S is q- l( ( ))a t1ij j i , and the expected number of infected neighbors of node j is

qå +¹ l ( )ℓ ℓ ℓa t 1i j j , where the plus one takes into account that node i is infected. Thus the resourceRi(t) that
node i receives fromhealthy neighbors is

å å
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Using this definition, the discrete-time version of evolution of r ( )ti [38] is

r r m r+ D = - - + -( ) ( ( ))( ( )) ( ( )) ( ) ( )t t t q t t t1 1 1 , 4i i i i i

whereDt is the time increment, whichwe set atD =t 1, and qi(t) is the probability that i is not infected by any
neighbor in layerC, which is given by

&
� bq= -
Î

l( ) ( ( )) ( )q t t1 , 5i
j

j i

i
C

where & i
C is the neighbor set of i in layerC. Note that to exclude any contribution of node i to the infection of j,

we adopt ql ( )tj i instead of r ( )tj in equation (5). Similarly, the discrete-time version of evolution of ql ( )tj i is

q q f m q+ = - - + -l l l l( ) ( ( ))( ( )) ( ( )) ( ) ( )t t t t t1 1 1 1 . 6j i j i j i j j i
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Here f- l( ( ))t1 j i is the probability that j is infected by at least one neighbor other than i. Thus fl ( )tj i is

&
�f bq= -l
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Here & ⧹ij
C is the neighbor set of j excluding i, and the fraction of infected nodes at time t is

år r=
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where r r¥ º( )i i and m mº( )ti i at the steady state l ¥t . Solving equations (4) and (6) at the stationary state

r r m r= - - + -( )( ) ( ) ( )q1 1 1 9i i i i i

and

q q f m q= - - + -l l l l( )( ) ( ) ( )1 1 1 , 10j i j i j i j j i

we obtain the phase diagramof themodel.We use iteration to numerically compute the evolution of the state of
network nodes.

Due to nonlinearities in equations (3)–(7) they do not have a closed analytic form, and this disallows
obtaining the epidemic threshold bc. If b b> c, r > 0, otherwise r = 0 in the steady state.When b bl c,
r l 0i , q ll 0j i , and the number of infected neighbors of each healthy node in layer S is approximately zero in
the thermodynamic limit, prior to reaching the epidemic threshold q- ll( )1 1j i . If we add these
assumptions to equation (3) resourceRi becomes lR ki i

S, wewill obtain the recovery rate m mli r in the
steady state (see figures 4(a) and 7(a)).

To compute the threshold, we linearize equations (6) and (7) around q =l 0j i and obtain

åb q» -
=

l ( )q b1 11i
j

N

ji j i
1

and

åf b q» -l l l l ( )B1 , 12j i j i l h l h,

where B is the non-backtrackingmatrix [39] of layerC and

d d= -l l ( ) ( )B 1 , 13j i l h jh il,

where dil is aDirac delta function. Inserting equation (12) into (10) and neglecting second-order termswe obtain

å d d m b q- + =l l l( ) ( )B 0. 14lj ih r j i l h l h,

To solve equation (14)wedefine a ´E E2 2 matrix J, where E is the number of edges and the elements of J are

d d m b= - +l l l l ( )J B . 15j i l h lj ih r j i l h, ,

The system enters a global epidemic region inwhich the epidemic grows exponentially when the largest
eigenvalue of J is greater than zero [31, 32, 37]. Thuswe can obtain the epidemic threshold as

b =
L

( )1
, 16c

J

where LJ is the largest eigenvalue of J.

4.Numerical and simulation results

To examine how resource support affects epidemic dynamics, we performnumerical computations and
stochastic simulations in the networks. Becausemany real-world complex networks have a highly skewed degree
distribution, e.g., Facebook [40] and theWorldWideWeb [41], we focus on networks with a heterogenous
degree distribution.We assume that the two layers of the network have the same degree sequences ( =k ki

S
i
C).

Thus for simplicity we denote ki to be the degree of node i in both layers S andC.
To build ourmultiplex networkwe use an uncorrelated configurationmodel (UCM) [42]with a given degree

distribution ~ g-( )P k k inwhich γ is the degree exponent.Here a smaller γ implies amore heterogeneous
degree distribution. Themaximumdegree is determined by the structural cut-off ~k Nmax [43] andwe set
theminimumdegree at =k 3min . In additionwe disallowmultiple and self-connections and set the network size
asN=10000.When studying resource support fromneighbors, we eliminate any possibility of spontaneous
recovery, i.e., m = 00 , and assume that node recovery is solely dependent on the amount of resources received.
Herewe set the efficiency parameter at m = 0.6r and the mr value does not affect the result [37, 44].
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Todetermine the epidemic threshold, we use a susceptibilitymeasure [45, 46]

c
r r

r
=

á ñ - á ñ
á ñ

( )N , 17
2 2

where á¼ñ is the ensemble averaging, andχ exhibits peaks at the transition points.
We now examine howdegree heterogeneity and edge overlap between the two layers of the network affect its

dynamic features.

4.1. Effects of degree heterogeneity
To investigate howdegree heterogeneity affects spreading dynamics, we disallow any edge overlap between the
two layers, i.e., nodes are randomly connected by edges in layer S and layerC, and the amount of edge overlapme

is approximately 0 in the thermodynamic limit.
To examine ρ as a function ofβ, we randomly select one percent of the nodes to be seeds (r =( )0 0.01).

Figures 2(a) and (b) show the epidemic spreading for g = 2.4 and g = 3.2. Note the hybrid phase transition in ρ
that exhibits properties of both continuous and discontinuous phase transitions. Asβ increases ρ grows
continuously at b I

inv. Then an infinitely small increase inβ induces an sudden jumpof ρ at b II
inv, where b

I
inv and

b II
inv are thefirst and second invasion thresholds. The ρ transition type indicates that there are three possible

system states, (i) completely healthy, (ii) partially infected, and (iii) completely infected. This differs significantly
from the classical SISmodel. Note thatwhen r =( )0 0.9, there is a discontinuous jump from0 to 1 at bper,
which is in contrast to the case of r =( )0 0.01. In addition, we find hysteresis loops in the phase transition of ρ
when g = 2.4 and g = 3.2 (see figures 2(a) and (c)).When the seed density is initially low, e.g., r =( )0 0.01, the
disease breaks out at the invasion threshold b I

inv, but when it is initially high, e.g., r =( )0 0.9, the disease breaks
out at the persistence threshold bper. The arrows infigures 2(a) and (b) indicate the direction of the hysteresis
loops.We determine critical points b I

inv and b
II
inv and persistence threshold bper using the susceptibilityχ shown

infigures 2(b) and (d). The theoretical results obtained from the numerical iterations agreewith the simulation
results (see the lines infigures 2(a) and (b)).

Figure 2. Influence of degree heterogeneity on the spreading dynamics. The infected density ρ as a function of disease transmission
rateβ for g = 2.4 (a) and g = 3.2 (c). Symbols and lines represent the simulation and analytical results respectively, arrows indicate
the direction of the hysteresis loops. Quantities b I

inv , b
II
inv represent thefirst and second invasion thresholds respectively, bper are

persistence thresholds. The susceptibilitymeasureχ as a function ofβ for g = 2.4 (b) and g = 3.2 (d). The dotted lines and solid lines
correspond to the cases for the initial infected density r =( )0 0.01 and r =( )0 0.9. Each data is averaged over 500 independent
realizations.
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Wenext determine howdegree heterogeneity (i.e., parameter γ) influences the spreading dynamics.
Figure 3(a) shows the two-parameter b g( ), phase diagram. The parameter space is partitioned into three
regions according to ρ value.When b b< I

inv, the system falls into the no-epidemic regime, i.e.,the green and
part of the purple area below b I

inv.When -b b b<I II
inv inv, it falls into the low-epidemic regime (bounded by

two critical lines) inwhich ρ increases slowlywithβ. Finally, above b II
inv, ρ suddenly jumps to the high epidemic

regime (red) inwhich approximately all nodes are infected. The regime between invasion threshold b II
inv and

persistence threshold bper is the hysteresis region (purple). The values of b I
inv and b

II
inv both increase with γ.

Althoughwe can obtain the theoretical value of b I
inv from equation (16), we cannot obtain the theoretical value

of b II
inv and bper by linearizing the equations around r l 0i and q ll 0j i and thuswemust apply numerical

methods using equations (4) and (6).Wefirst define a judgment value ò that is linear with system sizeN.Without
loss of generality we set � = 0.3.We then define the jump size rD to be

r r b r b bD = - - D( ) ( ) ( ), 18

where bD is an infinitesimal increment inβ, whichwe set at bD = 0.001, and r b( ) is the infected density in the
steady state when the transmission rate isβ.We obtain the thresholdwhen �.rD is at a certainβ value in the
thermodynamic limit [16, 47]. Using the numericalmethod, we obtain the second invasion threshold b II

inv and
the persistence threshold bper. Figure 3 shows that the theoretical valuesmarked by dotted lines agreewith the

Figure 3.Effect of degree heterogeneity on spreading dynamics. (a)Phase diagram in the two-parameter b g( ), space. Three regions
of the stable state are obtained. The high epidemic regionwith large value of ρ (denoted by red color) in steady state, the no epidemic
regionwith zero value of ρ (denoted by green color), and the low epidemic regionwith small value of ρ (part of the purple region
bounded by the two critical lines). The hysteresis region (denoted by purple color) is boundedwithin b II

inv and bper (denoted by red
squares). The two invasion thresholds b I

inv (denoted by lower blue circles), b
II
inv (denoted by upper blue circles) and persistence

thresholds bper are determined by the susceptibilitymeasureχ. Theoretical results obtained from theDMPmethod are denoted by
dotted lines in thefigure. (b)The thresholds interval b b-& &II I

inv inv is plotted as a function of system sizeN for three different values of
γ : g = 2.0 (red triangles), g = 2.2 (blue circles), and g = 2.8 (dark gray squares). Error bars are smaller than the symbols used for
the data points.
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simulation results. The change in the system state among the three regions indicates that the phase transitions of
ρ are hybrid. Figure 3(a) shows that the low epidemic and hysteresis regions expand as γ increases.

To demonstrate that there are two invasion thresholds in networks with heterogeneous degree distribution,
we use afinite-size scaling analysis [48]. Figure 3(b) shows the interval in -b b b<I II

inv inv, whichwe denote
b b-& &II I

inv inv , as a function ofN for g = 2.0, g = 2.2, and g = 2.8, where& &• is the normoperator. Figure 3(b)
shows the values of b b-& &II I

inv inv converging asymptotically to positive constant values in the thermodynamic
limit, i.e., b b-l¥& & �lim 0.006N

II I
inv inv for g = 2.0, b b-l¥& & �lim 0.008N

II I
inv inv for g = 2.2, and

b b-l¥& & �lim 0.026N
II I
inv inv for g = 2.8, which implies the two invasion thresholds do notmergewhen

-g 2.2 and the two are always present in networkswith a heterogeneous degree distribution.
To analyze the sudden jump of ρ and the hysteresis loops, we examine the transmission process analytically

usingmean-field approximation in random regular networks (RRNs), which corresponds to the limit g l ¥.
Through a bifurcation analysis we account for the existence of the sudden jump of ρ and the hysteresis loops (see
appendix information). Note that the first threshold b I

inv disappears in the RRNs and the transition of ρ is
discontinuouswhen it is not hybrid (see figure A2(a)).

To explain the hybrid transitionwhen γ isfinite, i.e., when -g 3.2, we investigate the number of susceptible
neighbors around each infected node in layer S and their recovery rates as a function ofβ. In the steady state the
number of each infected node’s susceptible neighbors in layer S is nsi

and their fraction n ks ii . Here the recovery
rate is mi. To evaluate the collective state, we examine the average quantity á ñn ks of n ks ii

and the average
quantity má ñof the recovery rate. Figure 4(a) shows values of á ñn ks and má ñas functions ofβ for g = 2.8.We
find that both á ñn ks and má ñare constant when b b< I

inv, which implies zero values for ρ. They then slowly
decrease until they reach the b II

inv, at which point an infinitesimal increase inβ causes a jump in á ñn ks and má ñ.
Figures 4(b)–(d) show the time dependence near b I

inv and b
II
inv. Figure 4(b) shows the time evolution of the

infected density r ( )t around b � 0.023I
inv for g = 2.8. The difference in r ¥( ) forβ just below and above

threshold b I
inv is rD (see equation (18)). Note that r ¥( ) increases slowly at b I

inv, i.e., a small increment
rD � 0.022.We next examine the time evolutions of the average resources of the infected nodes á ñ( )R t and the

hub nodes á ñ( )R th . Note that without loss of generality we can assign hubnode status to nodes with a degree
larger than k=30.Note also that whenβ is just below b I

inv both á ñ( )R t and á ñ( )R th increase until *=t t , which
implies that all infected nodes have acquired sufficient resources to recover and r ( )t evolves to zero. In contrast,

Figure 4.Analysis of the hybrid transitions in heterogeneousmultiplex networks. (a)Plot of fraction of healthy (S)neighbors around
infected nodes á ñn ks (red circles) and average recovery rate má ñ (black squares) as functions ofβ in the steady state for g = 2.8, where
initial intected density is r =( )0 0.01. (b)Time evolution of average resource of all infected nodes á ñ( )R t and hubnodes á ñ( )R th (left
ordinate) for b b> � 0.023I

inv (red circles) and b b< I
inv (black triangles), and the time evolutions of infected density r ( )t (left

ordinate) for b b< I
inv (lower black line) and b b> I

inv (upper red line). rD is the jumpof ρ in the steady state forβ is just below b II
inv

and just above b II
inv . t

* is themomentwhen all the neighbors of the infected nodes are in healthy state. (c)The time evolution of
infected density r ( )t forβ close to b � 0.033II

inv . (d)The average resource of á ñ( )R t and á ñ( )R th as functions of t, t* is the critical time
when the received resource of the hub nodes drops abruptly, which corresponds to themomentwhen r ( )t increases sharply in (c).
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whenβ is just above b I
inv, as the promotion effect of the hub nodes, the disease will spread on afinite scale

centered by these nodes. The processes of infection and recovery take place repeatedly among these nodes when
l ¥t t . Thus infection and recovery processes are balanced, and the values of á ñ( )R t and á ñ( )R th fluctuate

around afinite value when l ¥t t (seefigure 4(b)). Asβ smoothly increases at b b= I
inv, the level of available

resources decreases continuously as the number of infected nodes increases (see figures 4(a)). Thus the density of
infection increases continuously at b I

inv. Figures 4(c) and (d) show a critical time * �t 220 at whichβ is
approximately b � 0.033II

inv . At the early stage of the propagation process, i.e., when *<t t , the disease spreads
through the local seed nodes. Becausemost of neighbors of the infected nodes in layer S remain healthy, they
have a sufficient resource level to recover. Here the infection and recovery processes are balanced. As the r ( )t
value increases slowly the available resources levels á ñ( )R th and á ñ( )R t for b b� II

inv slowly decrease (see
figures 4(c) and (d)).When b b< II

inv the infection and recovery processes remain balancedwhen l ¥t , thus
the density of infectionfluctuates around a smallfinite valuewhen l ¥t t (r ¥ �( ) 0.18) (see figure 4(c)).
Note that as hub nodes disappear in theRRNs the disease is suppressed untilβ reaches a threshold at which point
it jumps discontinuously, the balance disappears (see appendix), and only one threshold remains.When
b b> II

inv the transmission rate is relatively large and the balance between infection and recovery is broken.
Infecting the healthy nodes in layerC decreases the resources available to the nodes in layer S and delays the
recovery of infected nodes. This recovery delay increases the effective transmission probability in layerC, more
healthy nodes are infected, and both the available resources and the recovery rate decrease. This causes a
cascading infection in systemnodes that is acceleratedwhen hub nodes are surrounded by infected nodes, and
this can cause total system failure. Figure 4(d) shows an abrupt drop of á ñ( )R th and á ñ( )R t at t*when b b> II

inv.
Figure 4(c) shows a rapid increase in the density of infection from a small value *r �( )t 0.18 to a high value
r ¥ �( ) 1.0. Note that in the steady state the large difference rD between b b< II

inv and b b> II
inv causes

explosive transitions. This explains the hybrid transition in networkswith a heterogeneous degree distribution.
At last, we give a qualitative explanation to the jump of ρ from0 to 1with r =( )0 0.9.When b b< per, there

is a small transmission rate. Thus only a small amount of resources (r ( )0 is large) can provide a relatively large
recovery rate. Then the basic reproduction number is less than 1, andmore infected nodes get recovery as time
goes on. Consequently, a larger amount of resources will be generated and the recovery rate is further improved.
Thus, when l ¥t t , r ( )t decreases to 0 gradually.However, when .b bper, there is a larger transmission rate,
and the limit initial resources of the healthy nodes can notmeet the recovery of a large number of nodes. As time
goes on, the recovery rate of infected decreases with the reduction of resources gradually. The recovery delay
enhances the effective transmission rate, and resources further decrease. Then a cascading process forms and at
last the disease evolves rapidly to the entire network (r = 1.0). Thuswhen the initial fraction of infected nodes is
large, i.e., r =( )0 0.9, ρ jumps from0 to 1, which is in contrast to the case of r =( )0 0.01.

Figure 4(d) shows the evolution of the resource level in the hub nodes. This explains the decrease in the two
invasion thresholds and the gap that appears between the two thresholds with the increase of degree
heterogeneity. Amore heterogeneous network hasmore hub nodes and ismore sensitive to increases inβ. Thus
increasing the degree heterogeneity reduces the gap between the two thresholds (see figure 3).

These numerical and simulation results differ greatly from the classical SISmodel. In themultiplex networks
with a heterogeneous degree distribution, degree heterogeneity enhances disease spreading and the phase
transition is hybrid. Besides, there are hysteresis loops in the phase transition of ρ, and the interval between the
two invasion thresholds and the hysteresis region decreases as degree heterogeneity increases.When g l ¥ the
network is approximately a RRN, b I

inv disappears as hub nodes disappear, and the transition is discontinuous.

4.2. Effects of edge overlap
In social networks two individuals can be friends in the social relation layer and coworkers in the physical
contact layer. In transportation networks two cities can be connected by both an expressway and a railway. Thus
edge overlap is essential in the science of complex networks, especially when studying percolation inmultiplex
networks [49]. Here we examine how the amount of edge overlapme between the two layers affects the spreading
dynamics. To eliminate the effect of structure, we fix the values g = 2.2 and á ñ =k 9.We then useUCM to build
amultiplex networkwith two identical layersme= 1.0. To generate a variety ofme values, with a probability
= -q m1 e we rewire pairs of links in layer S.
Figures 5(a) and (c) show the infected density ρ as a function ofβwith two typical valuesme= 0.2 (a) andme

= 1.0 (c). Note that when the edges between the two layers overlap completely (me= 1.0) the infected density ρ
smoothly increases from0 to 1 and there is no hysteresis loop (see figure 5(c)).When the rate of edge overlap
between two layers is lowered, i.e., whenme= 0.2, a hybrid phase transition appears (see figure 5(a)). The
infected density ρ smoothly increases at b b= I

inv and then the system acquires a low epidemic region
(b b b< <I II

inv inv) inwhich ρ slowly increases. Subsequently at b b= II
inv an infinitesimally small increase inβ

causes an abrupt jump in ρ and the disease suddenly spreads throughout the entire system.Hysteresis loops
appear in the transition process and the arrows indicate their direction. Figures 5(b) and (d) show that the
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invasion thresholds (i.e., b I
inv) and b

II
inv and the persistence threshold bper are determined by the susceptibilityχ.

Note that the hysteresis loop disappears whenme= 1.0 (see figure 5(c)), and it no longer satisfies the definition
of � > 0.3 at bL. Thus bL is an inflection point at which the increase in ρ accelerates. The theoretical results from
theDMPmethod agree with the simulation results.

To determine how the amount of edge overlap between the two layers affects the spreading dynamics, we
perform simulations for values ofme from0 to 1 and obtain the space in the plane b( )m, e shown infigure 6. The
parameter space is separated into phase regions I and II by a critical value of edge overlap �m 0.8e

c .When
<m me e

c the system falls into phase I inwhich the phase transition of ρ is hybrid and the space is again separated
into three regions by two invasion thresholds b I

inv (lower blue circles) and b
II
inv (upper blue circles).When

b b< I
inv the systemhas a no-epidemic region (green) in which all nodes are healthy and in a steady state.When

-b b b<I II
inv inv the systemhas a low-epidemic region (orange) inwhich the infected density ρ increases

continuously from0 to a finite value until it reaches the second invasion threshold b II
inv. Figure 3(b) shows a

small low-epidemic regionwhen -m 0.2e such thatwhen g = 2.2 andme= 0.0 the value of b b-& &II I
inv inv

converges to a non-zero constant valuewhen l ¥N .When .b b II
inv the system jumps abruptly to a high

epidemic region (red) inwhich the disease spreads throughout the entire system. The hysteresis loops (purple)
appear in phase I. In contrast, when .m me e

c the system falls into phase II inwhich the phase transition of ρ is
continuous. The value of ρ smoothly increases from0 to 1 and the hysteresis loops disappear. Figure 6 shows that
when b b< I

inv the value of b
I
inv decreases as the amount of edge overlap increases. Here edge overlap promotes

disease spreading.When .b b I
inv the value of b

II
inv increases as the amount of edge overlap increases. Here edge

overlap suppresses disease spreading.We obtain the theoretical value of b I
inv using equation (16) and b

II
inv and

bper using themethod in section 4.1. Figure 6 shows that the theoretical valuesmarked by the dotted lines agree
with simulation results.

To clarify these results,figures 7(a) and (b) show a plot of the average recovery rate má ñand the number of
susceptible neighbors around each infected individual á ñn ks as functions ofβ. Note thatwhen the two layers
overlap completely (me= 1.0), á ñn ks and má ñdecrease at the first threshold b I

inv to a certain value and then
decrease continuously to zero, indicating that the infected density in the steady state increases continuously up

Figure 5. Influence of edge overlap on the spreading dynamics. The infectd density ρ as a function of transmission rateβ and hysteresis
study forme=0.2 (a),me=1.0 (c). The symbols and lines represent simulation and analytical results respectively. Arrows indicate
the direction of the hysteresis loop.Quantities b I

inv and b II
inv respectively represent thefirst and second invasion thresholds, bper are

the persistence thresholds, bL forme=1.0 represent the inflection point. Susceptibilitymeasureχ as a function ofβ forme=0.2 (b)
andme=1.0 (d). The dotted lines and solid lines in (b) correspond to the cases for the initial infected density r =( )0 0.01 and
r =( )0 0.9 respectively. Each data is averaged over 500 independent realizations.
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Figure 6.Phase diagram in the b( )m ,e space. The space is separated into two phase regions by the critical values �m 0.8e
II : phase I

and II. In phase region three stable regions are obtained: the high epidemic region denoted by red color, the no epidemic region
denoted by green color, and the low epidemic region denoted by yellow color. The hysteresis region (denoted by purple color) is
boundedwith the line of b II

inv and the line of bper (denoted by red squares). The invasion thresholds b I
inv , b

II
inv (denoted by blue

circles) and the inflection point bL, the persistence thresholds bper are determined by the susceptibilitymeasureχ.While in phase
region II , the phase transition of ρ becomes continuous. The green region represents no epidemic and the pink region represents
disease outbreaks. Theoretical results obtained from theDMPmethod are denoted by dotted lines.

Figure 7.Analysis of the phase transitionwith edge overlap between the two layers. The fraction of healthy (S)neighbors around
infected nodes á ñn ks (red circles) and average recovery rate má ñ (black squares) as a function ofβ in the steady state for g = 2.2 when
me= 1.0 (a) andme= 0.5 (b). Time evolution of average resource of all infected nodes á ñ( )R t , hub nodes á ñ( )R thub , and infected
density r ( )t forβ is close below b I

inv (b II
inv) and close above b

I
inv (b II

inv)whenme=1.0 (c) [ =m 0.5e (d)]. t* in (c) is themoment
when all the neighbors of the infected nodes are in healthy state, abovewhich there is no definition of á ñ( )R thub and á ñ( )R t . rD in (c)
and (d) is the increase of ρwhenβ changes from close below the threshold to close above the threshold. Initial infected density is set to
r =( )0 0.01 in the simulations.

10

New J. Phys. 20 (2018) 013007 XChen et al



to 1 asβ increases. In contrast, whenme= 0.5 there are two abrupt jumps of á ñn ks and má ñat b I
inv and b

II
inv,

respectively. Here má ñ jumps sharply to zero at b II
inv (see figure 7(b)) indicating an explosive jump in ρ.

Figures 7(c) and (d) show the time dependence of the infected density and the resource value. Figure 7(c)
shows the average resource of all infected nodes á ñ( )R t and the average resource of hub nodes á ñ( )R th as a
function of t forme= 1.0.Note thatwhenβ is immediately below b I

inv both á ñ( )R th and á ñ( )R t increase
continuously until *=t t .When *>t t there is no definition of resource because all infected nodes recover (see
r ( )t for b b< I

inv at *=t t ).When .b b I
inv the infection and recovery rates are balanced, and both á ñ( )R th and

á ñ( )R t fluctuate around afinite valuewhen l ¥t t . Thus all the infected nodes recover with a certain probability
and r ( )t alsofluctuates around afinite value when l ¥t t (see r ( )t for b b> I

inv).With an increase inβ,
resource availability decreases continuously as the number infected nodes increases until the disease spreads
throughout the system and no available resources remain (see figures 7(a) and (c)). This accounts for the
continuous increase in ρwhenme= 1.0.

Figure 7(d) shows the time evolution of the infected density and available resource level forme= 0.5. Note
thatwhenβ is immediately below b II

inv at the early stage the disease propagates within the local range of seed
nodes, and there are sufficient healthy neighbors in layer S to temporarily suppress the spread. This causes a brief
increase in available resources at the beginning of the propagation process and a slight decline in the density of
infection. Subsequently the disease rapidly spreads along the edges in layerC.When edges in layer S link out (me

= 0.5), with a high probability that infected nodes in layer S infect their neighbors, á ñ( )R th and á ñ( )R t rapidly
decline, and r ( )t rapidly increases. Eventually infection and recovery become balanced, and r ( )t , á ñ( )R th , and
á ñ( )R t converge tofinite values.When b b> II

inv there is also a temporary increase in both the available resources
and the density of infection.However, when the propagation begins, unlike whenme= 1.0 (see figures 4(c) and
(d)) there is no balanced period at the beginning of the process. The infection of the S-state nodes reduces the
resource available to a large number of infected nodes in layer S and delays their recovery. This recovery delay
further increases the transmission probability in layerC. Thus á ñ( )R th and á ñ( )R t decline sharply to zero, the
density of infection rapidly increases to 1, and cascading infection occurs.

An increase in the overlap between two layers indicates an increase in the local social circle of an individual.
When an individual’s colleagues (those frequently in contact, defined as the contact layer) and friends (the social
relations, defined as the social layer) are the same group of people, the links in these two layers largely overlap.
When b b< I

inv, seed nodes initially transmit the disease only to immediate neighbors withwhom they are in
frequent contact. This high-value local effect causes infected nodes to have a higher probability of linkingwith
other infected nodes in layer S and lowers the level of resources available fromneighbors. Thus the overlap
between two layers increases network fragility against the invasion of the disease, and increases the probability of
an epidemic breakout, and thus lowers the epidemic threshold b I

inv. In contrast, a lower value of overlap rate
between the two layers indicates amore global social circle, neighbors of nodes in the social layer differ from
neighbors in the contact layer. The infected nodes in the contact layer can acquire resources fromhealthy
neighbors in the social layer. Thus the network ismore robust against the invasion of the disease, and there is a
relatively high epidemic threshold b I

inv. This is the reason b I
inv decreases asme increases, as shown infigure 6.

When -b b b<I II
inv inv, hub nodes promote disease transmission, the disease breaks out in afinite range, a

sufficient number of healthy neighbors are present in layer S to help infected nodes to recover, and infection and
recovery remain balanced. Figure 7(d) shows that the value of resource availability fluctuates around afinite
valuewhen l ¥t t , and the density of infection converges continuously to afinite value (r � 0.28). Thus in this
region the global connections in a social layer have an advantage over the local connections (see figures 5 (a) and
(c)).When .b b II

inv the disease breaks out rapidly and globally, and the balance between infection and recovery
is broken.When <m me e

c (a relatively lowoverlap rate), the connections in layer S aremore global. The
infection of a small number of S-state nodes in layerC influences the recovery of a large number of I-state nodes
in layer S. Thus there is a delay in the recovery of infected nodes that further increases the transmission
probability, promotes the disease spreading in layerC, and causes global cascading failure. This explains the
increase in b II

inv withme and the explosive jumpof ρ (see figure 7(c))when <m me e
c . In contrast, when

>m me e
c, the connections of layer S ismore localized, and the infection of nodes in layerC delays the recovery of

the infected nodeswithin only a small range in layer S. This small range in recovery delay does not globally
increase the effective transmission probability. Thus as the effective transmission probability gradually increases
the value of ρ smoothly increases withβ (see figures 7(a) and (c)).

5. Conclusions

Wehave investigated how the level of social support affects spreading dynamics using the SISmodel in social-
contact coupled networks. Links in the social layer represent relationships between friends or families through
which healthy nodes allocate recovery resources to infected neighbors. Links in the contact layer represent daily
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physical contacts throughwhich the disease can spread. Infected nodes do not have resources, and their recovery
depends on obtaining resources in layer S fromhealthy neighbors.We assume the recovery rate of an infected
node to be a function of the resources received fromhealthy neighbors.We use theDMPmethod to analyze the
spreading dynamics.Wefirst examine howdegree heterogeneity impacts disease spreading.Wefind that degree
heterogeneity enhances disease spreading, and due to the existence of hub nodes there is a balanced interval
b b b< <I II

inv inv inwhich the infection and recovery processes remain balanced. The value of ρ increases
continuously from0 to a finite value at the first invasion threshold b I

inv, increases slowly in b b b< <I II
inv inv,

then suddenly jumps at b II
inv. Thus the transition of ρ is hybrid. In addition, increasing the degree exponent γ in

the network increases the gap between the two thresholds and the hysteresis region. To analyze the sudden jump
of ρ and the hysteresis loops, we examine the spreading process analytically usingmean-field approximation in
RRNs. Through a bifurcation analysis we account for the existence of the sudden jumpof ρ and the hysteresis
loops. In addition, in the RRNs the balanced interval disappears when there is a lack of hub nodes. The first
invasion threshold b I

inv thus disappears.
We nextfix the degree heterogeneity and investigate the effect of edge overlap between the two layers.We

find that there is a critical valueme
c.When <m me e

c there is a second invasion threshold b II
inv that increases with

me. The value of ρ smoothly increases at b I
inv and then suddenly jumps at b II

inv, revealing the transition of ρ to be
hybridwith the presence of hysteresis loops in this region (see figure 6). In contrast, when >m me e

c the phase
transition of ρ is continuous and the hysteresis loops disappear. In addition, when b b< I

inv seed nodes can only
transmit the disease locally at the early stage. Here an increase in global connectivity with a lower rate of overlap
in the social layer (layer S) increases the probability of linking to healthy neighbors and increases the probability
that infected nodeswill recover. Thus the first invasion threshold b I

inv decreases as the overlap rateme increases.
When b b> I

inv, increasing the transmission rate increases the fraction of infected nodes, and an increase in
global connectivity in layer S increases the probability of linking to infected neighbors and lowers the recovery
rate. Thus the second invasion threshold b II

inv increases withmewhen <m me e
c .

Although researchers in different scientificfields have focused onways of constraining disease epidemics in
humanpopulations,most scientific literatures have been devoted to questions concerning the optimum
allocation of public resources or the impact of government investment on spreading dynamics. There has been
little examination of how social supports affect spreading dynamics, and our novelmodel fills this gap.Whereas,
there are still some limits of ourmodel. For example, for the sake of analytical tractability, we assume that the
resources of each node in layer S are not cumulative. This kind of phenomenon has certain rationality in the real
world. For example, the healthy individuals will generate a certain amount of resources in their daily life. To
maintain their lives, resources will also be consumed. Basically, the generation and consumption of resources
remain balance during a period, and therewill not bemany resources to accumulate formost individuals. Thus,
wemake the assumption that the resources generated in current stepwill be consumed out. Although the
assumption is reasonable to a certain extend, amore prevalent phenomenon is that resources such as economic
wealth and human resources are cumulative over time. It will be interesting to consider the following questions.
(a)How it would affect the dynamics of disease spreading if resources are accumulative over time? (b) Is the
accumulation of resources an efficient way to prevent epidemic outbreaks or is just delaying the infection?
Moreover, in real world, theMatthew effect [51] such as the the phenomenon that the rich tend to get richer is
ubiquitous. Thus it will be interesting to consider the effect of preference-driven resource allocation on
spreading dynamics. These are some open questions and possible directions after this work that will definitely
motivate future works.
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Appendix

When g l ¥ the system is approximately a RRN. To analyze the hysteresis loop and the sudden jump of ρ, we
solve equations (4) and (6) analytically for RRNusingmean-field approximation. In themean-field
approximation for a RRN, the degree of each node has the same value and the same probability of being infected.
Becausewe have only considered the case =k ki

S
i
C, for simplicity we denote the degree to be k. Each edge in the

network also has the same probability of connecting with infected neighbors. Thuswe define r ( )t and q ( )t such
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that r r r= =( ) ( ) ( )t t ti j and q q q= =l l( ) ( ) ( )t t tj i l h . Consequently the resource that each infected node
can receive fromhealthy neighbors is

q
q

=
-

- +
( ) ( ( ))

( ) ( )
( )R t

k t

k t

1

1 1
19

and the recovery rate of each node is

m
m q

q
=

-
- +

( ) ( ( ))
( ) ( )

( )t
t

k t

1

1 1
. 20r

Whenwe approximate bq- -( ( ))t1 1 k as bq ( )k t and bq- - -( ( ))( )t1 1 k 1 as bq-( ) ( )k t1 for smallβwe
obtain

r
bq r

m q
q

r= - -
-

- +
( ) ( )( ( )) ( ( ))

( ) ( )
( ) ( )t

t
k t t

t

k t
t

d

d
1

1

1 1
21r

and

q
b q q

m q
q

q= - - -
-

- +
( ) ( ) ( )( ( )) ( ( ))

( ) ( )
( ) ( )t

t
k t t

t

k t
t

d

d
1 1

1

1 1
. 22r

The steady state of the spreading process corresponds to conditions r =( )t td d 0 and q =( )t td d 0.We
denote q ¥( ) as θ and obtain

q q b
m
q

- - -
- +

=
⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )
( )k

k
1 1

1 1
0. 23r

Wealso define q( )g as the function of θ in the steady state, which is

q q q b
m
q

= - - -
- +

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

( )
( )g k

k
1 1

1 1
. 24r

Here q( )g is tangent to the horizontal axis at q ¥( )c , which is the critical value in the limit l ¥t . The critical
condition is

q
q

=q
( ) ∣ ( )gd

d
0. 25c

Solving equation (25)we also obtain the critical transmission rate.
In order to analyze clearly the bifurcation phenomenon inRRNs, we give an example that illustrates the

relationship between ρ andβwhen k=10 infigure A1.We can observe that the number of solutions for
equation (24) is dependent onβ. Besides, q( )g is tangent to the horizontal axis at q = 1.0 and q = 0.0 when
b � 0.0067 and b � 0.066 respectively, which implies the existence of two critical values ofβ. From thewhole
parameter space of θ, we can observe that the transcritical bifurcations [50] occur at b � 0.0067 and b � 0.066
respectively. Specifically, there are three solutions (one unstable and two stable) passing to two solutions (one
stable and one saddle point) and then, passing to three solutions (two stable and one unstable that goes into the

Figure A1. Illustration of graphical solution of equation (24) for RRNswith k=10. The red line corresponding to b = 0.066 is
tangent to the horizontal axis at q = 0. The purple line correspionding to b = 0.0067 is tangent to the horizontal axis at q = 1.
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unit interval of values of θ) at b � 0.0067. The same transcritical bifurcations occur at b � 0.066. However, the
above conclusions are onlymathematically significant. Physically, the value of θ can only locate in the interval of
[ ]0, 1 , as shown in the region between the two vertical dotted line at q = 1.0 and q = 0.0. The stable solutions at
q > 1.0 and q < 0.0 have no physicalmeaning. Thus in fact, in the region q Î [ ]0, 1 , equation (24) passes from
two solutions (one stable and one unstable) in b Î [ ]0, 0.0067 to three solutions (one unstable that goes into the
the unit interval of values of θ, and two stable) in b Î ( )0.0067, 0.066 and then, to two solutions (one stable and
one unstable). Frombifurcation analysis abovewe can learn that the physicallymeaningful stable solution of θ
will suddenly increase, and there is an alternate outcome—explosive growth in ρ.Whether the unstable state
stabilizes to an outbreak state (q > 0, r > 0) or an extinct state (q = 0, r = 0) depends on the initial infection
density r ( )0 , thus a hysteresis loop emerges. To distinguish the two thresholds of the hysteresis loop, we denote
bper as the persistence threshold corresponding to the solution q > 0c (q = 1.0c in RRNs) of equation (24) at
which the disease initially has a large r ( )0 value.Here binv is the invasion threshold corresponding to the
nontrivial solution q = 0c of equation (24) at which the disease initially has a small r ( )0 value. The interval
b b[ ),per inv is the hysteresis region.

Figure A2(a) shows the numerical and simulation results in RRNswith a degree k = 10. In RRNs thefirst
invasion threshold b I

inv disappears and the transition of ρ is discontinuous, i.e., not hybrid. Since in RRNs, all
nodes approximately have the same infection and recovery rate as they have almost the same amount of infected
neighbors in physical contact layer and the same amount of healthy neighbors in social-relation layer. Thus
when b b< inv, there are sufficient resources to guarantee the recovery of the infected nodes, i.e., r l( )t 0
when l ¥t t . However, when .b binv, there is a larger transmission rate among the pairs of infected and
susceptible nodes, and resources that each infected nodes can get fromhealthy neighbors decreases, which

Figure A2.Phase transition of infected density in steady state and susceptibilitymeasureχ on random regular networks. (a) Infected
density ρ versusβ for r =( )0 0.01 (blue circles) and r =( )0 0.9 (orange triangles). (b) Susceptibilitymeasureχ versusβ for
r =( )0 0.01 (blue line) and r =( )0 0.9 (orange dash line). Network sizeN=10 000 and degree k=10. The analytical results are
obtained from themean-field approximation ((equations (21) and (22))).

14

New J. Phys. 20 (2018) 013007 XChen et al



induces reduction of the recovery rate for all nodes. The recovery delay of the infected nodes in turn enhances
the effective transmission rate and the infection range. Then, the available resources further diminish and a
cascade process forms, thus the disease evolves rapidly to the entire network. Therefore, there are only two
potential states of the system, namely all the infection or all the healthy, which is in contrast to the case of
networkwith heterogeneity degree distribution. In a networkwith heterogeneity degree distribution, nodes have
different infection and recovery probabilities. At each time step, nodes with larger degrees have larger infection
probabilities, which promotes the spreading of disease. Thus, whenβ is around b I

inv, as the promotion effect of
hub nodes, the diseasewill spread onfinite scales centered by these hub nodes, as shown infigure 4(b). In
addition, we can observe from figure A2(a) that the hysteresis loops exist in the transition of ρ. The orange
dashed line and the blue line correspond to the theoretical results for r =( )0 0.01and r =( )0 0.9, respectively,
obtained from equations (21) and (22). Figure A2(b) shows the susceptibilitymeasurementχ versusβ for
r =( )0 0.01and r =( )0 0.9. From these results wefind that the theoretical results obtained from themean-
field approximation agree with the simulation results in RRNs.
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