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Abstract

We study the continuum percolation in systems composed of overlapping objects of two

di!erent sizes. We show that when treated as a function of the volumetric fraction f as opposed

to the concentration x, the percolation threshold exhibits the symmetry �c(f; r) = �c(1 − f; r)

where r is the ratio of the volumes of the objects. Knowledge of this symmetry has the following

bene7ts: (i) the position of the maximum of the percolation threshold is then known to be at

exactly f = 1=2 for any r and (ii) full knowledge of the percolation threshold is obtained by

performing simulations only for f∈ [0; 1
2
] or f∈ [ 1

2
; 1], whichever is computationally easier.
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1. Introduction

For almost 50 years [1], percolation theory has been used to model static and dy-

namic properties of porous media and other disordered physical systems [2–4]. When

the size and shape of objects in the percolation system are an important aspect of

the system being modeled, continuum percolation—as opposed to simple site or bond
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percolation—must be used [2–4]. The size and shape of the objects are important in

real world systems such as gas and oil reservoirs. A 7rst step in taking into account

the various size objects found in these reservoirs is to model the systems using objects

of two di!erent sizes.

Recently, the critical density of continuum percolation systems composed of over-

lapping disks (2D) and spheres (3D) of two di!erent sizes was determined to high

accuracy [5,6]. When plotted as a function of concentration of the two-sized objects,

the critical density was found to be asymmetric. The focus of this paper is to show

analytically and with Monte Carlo simulations that when plotted against the relative

volumetric fraction, the critical density is a symmetric function.

For systems of volume V containing NA objects of volume vA and NB objects of

volume vB, the system is characterized by the quantities

� ≡
NAvA + NBvB

V
(1)

or the volume fraction [6–8]

= 1 − e−� : (2)

The percolation threshold �c is a function of the relative concentration of the objects

x ≡
NA

N
(3)

and the ratio of object sizes

r ≡
vB

vA
: (4)

That is,

�c = �c(x; r) : (5)

2. Percolation threshold symmetry

Conventionally �c is chosen to be a function of x and r. It is useful, however, to

consider �c as a function of the volumetric fraction f

f ≡ fA ≡
NAvA

NAvA + NBvB
=

1

[1 + r(1=x − 1)]
: (6)

In this section, we show that

�c(f; r) = �c(1 − f; r) : (7)

For given values of the volumes vA and vB, let the values of NA and NB at the

percolation threshold �c be

NA = INA ; (8)

NB = INB : (9)
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We then note that there is a second set of values of NA and NB with the same perco-

lation threshold

NA = IN ′

A =
vB

vA
INB ; (10)

NB = IN ′

B =
vA

vB
INA : (11)

Since

�′

c ≡

IN ′

AvA +
IN ′

BvB

V
=

INAvA + INBvB

V
≡ �c : (12)

If we denote the value of f corresponding to the solution speci7ed by

Eqs. (8) and (9) as If, we 7nd that the value of If′ corresponding to the solutions

speci7ed by Eqs. (10) and (11) satis7es

If′ = 1 − If ; (13)

from which it follows

�c(f; r) = �c(1 − f; r) : (14)

This symmetry can be expressed in an alternative form; by simply exchanging the

labels A and B, we have from Eqs. (1), (4) and (6) that

�c(f; r) = �c(1 − f; 1=r) ; (15)

and using Eq. (7), we 7nd the symmetry

�c(f; r) = �c(f; 1=r) : (16)

3. Simulations

Here we demonstrate the symmetry represented by Eq. (7). In Fig. 1, we plot c
versus both x and f for a two-dimensional system of disks with various values of the

ratio r [5]. While the plots versus x are highly asymmetric, the plots versus f exhibit

the expected symmetry. As an example, consider the sharpest asymmetric curve (�=0:1)

in which the points are plotted with asterisks and the corresponding symmetric curve

with corresponding points represented by open circles. We see that for the largest

concentrations of x, the points in the plot versus f are compressed into the region

near f = 1.

In Fig. 2, we plot c versus both x and f for a three-dimensional system of spheres

with volume ratio r = 0:125. Again we see the asymmetry in the plot versus x as

opposed to the symmetry of the plot versus f [6].

Since f has a range of [0; 1] and � function is symmetric with respect to f, the

critical density attains its maximum value at f∗ = 0:5. Solving Eq. (6) for x, when

f∗ = 0:5 we 7nd the corresponding value of x at which the critical density attains its

maximum

x∗ =
r

1 + r
=

1

1 + �−d
; (17)
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Fig. 1. Results from Ref. [5] for the percolation threshold for 2D disks versus both concentration x of larger

disks (dotted line) and versus volumetric fraction f (solid line) for values of the ratio � of the radii (from

top to bottom) = 0:1; 0:2; 0:3 and 0.5.
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Fig. 2. Results from Ref. [6] for the percolation threshold for 3D spheres versus both concentration x of

larger spheres (dotted line) and versus f (solid line) for the volume ratio r of the spheres = 0:125.
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where � is the ratio between the diameter of disks or spheres, and d is the dimension

of objects.

In Ref. [5], it was noted that for small �, the percolation threshold was maximized

near x = 1 − �−2. Expanding in a Taylor series, this is a 7rst approximation to our

result in Eq. (17).

4. Discussion and conclusions

We have shown that when considered as a function of the variable f, the percolation

threshold exhibits the symmetry

�c(f; r) = �c(1 − f; r) : (18)

For f = 0 and 1, this is just a statement of the fact that for systems with objects of

only one size, the percolation threshold is independent of the size of the object.

Awareness of this symmetry has the following bene7ts:

(i) The position of the maximum of the percolation threshold is now known to be

at exactly f = 1=2 for any r.

(ii) Full knowledge of the percolation threshold is obtained by performing simula-

tions only for f∈ [0; 1
2
] or f∈ [ 1

2
; 1] whichever is computationally easier.

Subjects for further study are the e!ects of shape and the distribution of orientations

on the critical threshold for systems composed of two di!erent types of objects.

Acknowledgements

We thank PETROBRAS/CENPES/PROFEX and FAURGS for the support.

References

[1] S.R. Broadbent, J.M. Hammersley, Proc. Cambridge Philos. Soc. 53 (1957) 629.

[2] D. Stau!er, A. Aharony, Introduction to Percolation Theory, Revised 2nd Edition, Taylor and Francis,

London, 1994.

[3] M. Sahimi, Applications of Percolation Theory, Taylor and Francis, London, 1994.

[4] A. Bunde, S. Havlin, Fractal and Disordered Systems, 2nd Edition, Springer, Berlin, 1996;

D. Ben-Avraham, S. Havlin, Di!usion and Reactions in Fractals and Disordered Systems, Cambridge

University Press, Cambridge, 2000.

[5] J. Quintanilla, Phys. Rev. E 63 (2001) 061 108.

[6] R. Consiglio, D.R. Baker, G. Paul, H.E. Stanley, Phys. A 319 (2003) 49–55.

[7] S. Chandrasekhar, Rev. Mod. Phys. 15 (1943) 1.

[8] C.D. Lorentz, R.M. Zi!, J. Chem. Phys. 114 (2001) 3659.


