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ABSTRACT

Interdependent networks as an important structure of the real system not only include one-to-one dependency relationship but also include
more realistic undirected multiple interdependent relationship. The study on interdependent networks plays an important role in designing
more resilient real systems. Here, we mainly focus on the case of interdependent networks with a multiple-to-multiple correspondence of
interdependent nodes by generalizing feedback andnonfeedback conditions.Wedevelop a newmathematical framework and study numerically
and analytically the percolation of interdependent networks with partial multiple-to-multiple dependency links by using percolation theory.
By analyzing the process of cascading failure, the size of the giant component and the critical threshold are analytically obtained and testified
by simulation results for couple Erdös-Rėnyi and scale-free networks. The results imply that the system shows a discontinuous phase transition
for different coupling strengths. We find that the system becomes more resilient and easy to defend by increasing the coupling strength and the
connectivity density. Our model has the potential to shed light on designing more resilient real-world dependent systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5093074

The interdependent network as an important research field is
attracting a lot of attention, but most of the previous works
are limited to a one-to-one dependency relationship. The phe-
nomenon of the dependent network with a multiple-to-multiple
dependency relationship exists widely in the real world. The exist-
ing conclusions are not suitable to explain the resilience among
more complicated multiple dependency relationships and also
challenge the existing theoretical methods. To fill this gap, we
develop a framework with two partially dependent networks with
multiple-to-multiple dependency relationship to study the robust-
ness of the system.We investigated the phase transition behaviors
and testified the simulation results by using the percolation the-
ory. Interestingly, the system shows a discontinuous phase transi-
tion behavior for strong coupling strength, which is a remarkable
contrast to two interacting network models. The results help us
to obtain a deeper understanding of the dependent system with
multiple-to-multiple relationship, and the developed theoretical

method could also be applied for designing more resilient real
systems.

I. INTRODUCTION

A complex network as a momentous research field is attracting
together researchers from different scientific communities working
on these areas. Recently, interdependent networks with different
types of dependent links have drawn a lot of attention.1–11 The initial
investigations of network properties are mainly on single networks,
which are viewed as independent and do not exchange any informa-
tion with other networks.12–21 However, the real systems are always
coupled or are interdependent on each other to function. More
recently, some analytical frameworks for exploring the percolation
properties of two interdependent networks or multilayered interde-
pendent networks have been put forward because many real systems
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interact with each other virtually.22–27 Previous studies have shown
two strongly interdependent networks consisting of two networks
with one-to-one correspondence, where distinct phase transition and
discontinuous phase transition occur, from a single network, which
shows a continuous transition.22 Buldyrev et al. developed a frame-
work for understanding the robustness of two dependent networks
with a one-to-one correspondence of dependent nodes subject to
such cascading failures.27 Gao et al. introduced a more general case
of percolation of interdependent networks, Network of Networks,
by considering undirected one-to-one correspondence with feed-
back and nonfeedback conditions between networks, respectively.28

Shao et al. presented a model of cascading failure on interdepen-
dent networks by considering directed support-dependence relations
between two coupled network systems.3 Dong et al. introduced a cou-
pling network model with similar types of connectivity-link within
and between communities’ structure. The results highlight that the
coupling community structure can significantly affect the resilience
of the system in that it removes the phase transition present in a single
module, and the network remains resilient at this transition.29 How-
ever, a node within the network not only depends on one node in
another network butmost oftenmutually depends onmultiple nodes
in the real system. Examples of this case include global trade cou-
pled networks, power grid networks, and communication networks.
Due to a shortage of resources in various countries, there exist trade
dependencies between countries. Since each national demand is dif-
ferent and necessary, multiple-to-multiple dependent relationship
can be described between countries. In addition, based on economic

considerations, one power station often provides power to several
communication stations, and one communication station functions
by depending on multiple power stations. The undirected one here
means that there is a demand for each system in real systems. This
real undirected multiple dependent relationship is different from
directed multiple support-dependence relations, where active nodes
have at least one directed support node in the system. For an inter-
dependent network with two networks A and B, a single node in
network A depends on multiple nodes in network B and functions
since at least one of the dependent nodes of another network is func-
tional. Similarly, a node in network B also depends on several nodes
in network A. In an undirected multiple dependence relationship,
node failures in one network will cause the failure of interdepen-
dent nodes in the other network and vice versa. Furthermore, this
recursive process leads to a cascading failure until a stable state
is reached, in which no node fails. Based on this motivation, we
develop a theoretical framework for understanding the robustness of
the interdependent networks with a multiple-to-multiple correspon-
dence of interdependent nodes. Furthermore, the system threshold
value, which plays an important role in determining the system
robustness, is also numerically predicted by using the percolation
theory.

II. MODEL DESCRIPTION

We simply assume that two independent networks A and B
with the same number of nodes N, which have the given degree

FIG. 1. Demonstration of the process
of cascading failures of dependent net-
works A and B with undirected multi-
ple-to-multiple dependency links. Curves
represent connectivity-links within net-
works and dashed lines represent differ-
ent multiple dependency links between
networks A (blue) and B (orange).
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FIG. 2. SA and SB as functions of p with parameters ⟨kAin⟩ = ⟨kBin⟩ = 4. Analytic predictions in comparison with simulation results. Symbols and lines represent simulation

results and theoretical results. (a) ⟨kAout⟩ = ⟨kBout⟩ = kout = 2, 4, 8, 16, and q = 1. (b) and (c) Different coupling strength q = 0.5, 0.8, 1 with kout = 4 and 8, respectively.

Simulation results are averaged over 100 realizations with the size N = 105.

distributions P(kAin) and P(kBin). Here, k
A
in and kBin are the degrees of a

node in single network A and B, respectively. The topological struc-
ture of undirected multiple-to-multiple dependency links between
networks A and B is described by degree distributions P(kAout) and
P(kBout), which means that a node in network A has kAout dependency
links from network B and a node in network B has kBout support links
from network A. The process of the cascading of failures for small
networks is described in Fig. 1. Without loss of generality, we assume
that the attack on network A occurs before network B. At the ini-
tial state, let every node in the interdependent system be active. At
every stage, the nodes without any dependency link from the other
network or separated from the giant component within the network
are considered to be inactive and removed from the interdependent
system. This process will be continuous until there is no further node
removed in the system.We first consider the process of failure in net-
work A. Node A6 becomes inactive because of the random attack,
and nodes A5 and A4 are removed due to the absence of one interde-
pendency link and not belonging to the set of the giant component,
respectively. Since there are failures of nodes in network A, some
nodes in network B are triggered to fail. Correspondingly, nodes B5

and B6 become inactive due to loss of all interdependent links after

B1 fails in the interdependent system. After the cascading failure, the
system achieves a stable state and no more nodes fail.

III. ANALYTICAL FRAMEWORK

Here, we develop an analytical framework to study the system
robustness by applying the method of generating functions19,30 for
partially interdependent networks. Let xA and xB be the possibility
that a randomly chosen connectivity-link in network A is connected
to the giant component of networks A and B, respectively. The sym-
bol xBA denotes the probability of a node in networkAwith in-degree
kAin and connecting by kAout dependency nodes within the giant com-
ponent of the network B. Analogously, we define probability xAB
for the dependency networks A and B. For partially interdependent
networks A and B, xA satisfies

xA = pq
[

1 − Gin
A,1(1 − xA)

] [

1 − Gout
A,0(1 − xBA)G

out
B,0(1 − xBA)

]

, (1)

where we assumed that only a fraction q of nodes within networks

A and B depends on each other. Gin
i,0(x) =

∑∞

kiin=0 P(kiin)x
kiin and

Gin
i,1(x) =

∑∞

kiin=1

P(kiin)x
kiin−1

⟨kiin⟩
are the generation function and branch

FIG. 3. Graphic solutions of SA and SB with parameters q = 1 and ⟨kAin⟩ = ⟨kBin⟩ = 4 for different p [(a) p = 0.5, (b) p = 0.528, (c) p = 0.6] from Eq. (8) and the simulation

results are averaged over 100 realizations with size N = 105.
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FIG. 4. pc as a function of q for different ⟨kAout⟩ = ⟨kBout⟩ = 2, 8, 16 with

⟨kAin⟩ = ⟨kBin⟩ = 4.

generation function of network i (i = A,B), respectively. Similarly,
we can get the expression of Gout

i,0 (x) and Gout
i,1 (x) (i = A,B). Gin

A,1

(1 − xA) represents the probability of a randomly selected link
attaching a node with in-degree kAin in network A excluded in the
largest component of network A. Gout

A,0(1 − xBA) represents the prob-
ability of the node with in-degree kAin and has kAout interdependent
nodes in networkB, which does not belong to the giant component of
network B.Gout

B,0(1 − xBA) can be explained similarly asGout
A,0(1 − xBA).

Similarly, we obtain the expression of xB with the same method as
follows:

xB = pq
[

1 − Gin
B,1(1 − xB)

] [

1 − Gout
B,0(1 − xAB)G

out
A,0(1 − xAB)

]

. (2)

The probability xBA of a node in network A with in-degree kAin con-
necting via an interdependency link to a node, which included in the
giant component from network B, using the following formula can
be obtained:

xBA = p
[

1 − Gin
B,0(1 − xB)

]

. (3)

The probability xAB can be similarly written as

xAB = p
[

1 − Gin
A,0(1 − xA)

]

. (4)

Furthermore, SA and SB, which describe the probability that a chosen
node belongs to the giant component of the steady networks A and B

at the stable state, can be obtained as

SA = pq
[

1 − Gin
A,0(1 − xA)

] [

1 − Gout
A,0(1 − xBA)G

out
B,0(1 − xBA

]

,

SB = pq
[

1 − Gin
B,0(1 − xB)

] [

1 − Gout
B,0(1 − xAB)G

out
A,0(1 − xAB)

]

.
(5)

IV. COMPARING THEORETICAL RESULTS WITH
SIMULATION RESULTS

In this section, we study two interdependent ER
networks, whose degree distribution follow the Poisson distribu-

tion P(kiin) =
e
−kiin ⟨kiin⟩

kiin

kiin!
(i = A,B) with the equal average degree

⟨kAin⟩ = ⟨kBin⟩. Equations (1)–(5) become

xA = pq
[

1 − e−kAinxA
][

1 − e−kAoutp(1−e
−kBinxBA )e−kBoutp(1−e

−kBinxBA )
]

,

xB = pq
[

1 − e−kBinxB
][

1 − e−kBoutp(1−e
−kAinxAB )e−kAoutp(1−e

−kAinxAB )
]

,

(6)

xBA = p
[

1 − e−kBinxB
]

,

xAB = p
[

1 − e−kAinxA
]

,
(7)

SA = pq
[

1 − e−kAinxA
][

1 − e−kAoutp(1−e
−kBinxBA )e−kBoutp(1−e

−kBinxBA )
]

,

SB = pq
[

1 − e−kBinxB
][

1 − e−kBoutp(1−e
−kAinxAB )e−kAoutp(1−e

−kAinxAB )
]

.

(8)

From Fig. 2, one can observe that the simulation results agree
well with the theoretical predictions and the system shows a dis-
continuous phase transition. As p increases, SA and SB gradu-
ally decrease to zero at the critical threshold pc. As shown in
Fig. 2(a), the system becomes more and more vulnerable and easy
to defend as the average degree increases. Also, for strong cou-
pling strength q = 1, the system becomes more robust, but for
weak coupling strength q = 0.5, the system becomes more vul-
nerable. This follows the fact that 1 − q fraction of nodes will
fail due to the absence of dependency links for weak coupling
strength, whereas the network connectivity mainly depends on the
nodes with interdependency links in the system. Now, we will give
an analysis of how to obtain the critical value pc. Figure 3 gives
graphic solutions of SA and SB by using Eq. (8). From Fig. 3(a),
we find that there exists a trivial solution SA = SB = 0 at p = 0.5.

FIG. 5. Analytic predictions (line) in
comparison with simulation results (sym-
bol) with different parameters. (a) The
parameters q = 1, λ = 3.2 with differ-
ent ⟨kAout⟩ = ⟨kBout⟩. (b) The parameters

⟨kAout⟩ = ⟨kBout⟩ = 4, λ = 3.2 with differ-
ent q. Simulation results are averaged
over 100 realizations with size N = 105.
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As p = 0.528, SB(SA) forms a tangent point, at which S starts to
appear at a finite value. It means that pc can be obtained from

the condition dSA(SB)

dSB
·
dSB(SA)

dSA
= 1, as shown in Fig. 3(b). Further-

more, Fig. 3(c) shows that SB(SA) has two intersection points
for p = 0.6 > 0.528. For this case, the bigger value is chosen to
SA = SB ≈ 0.4223, since it denotes the size of the biggest component
of the system. In order to explore the influence of coupling strength
on system robustness, we show the critical value pc as a function of
q in Fig. 4. From Fig. 4, we notice pc as a function of q with different
parameters ⟨kAout⟩ = ⟨kBout⟩ = ⟨kout⟩ for ⟨kAin⟩ = ⟨kBin⟩ = ⟨kin⟩ = 4. The

results imply that the system becomes more robust as q increases,
as shown in Fig. 4. As the network density increases, the system
becomes more resilient and easy to defend. This will prompt a better
understanding and further realization in designing more resilient
dependent systems.

Next, we will compare our theoretical results with the
numerical results in partially interdependent networkswithmultiple-
to-multiple relationship, whose degree distributions follow power
law distribution p(k) ∼ k−λ20 and dependency links follow
Poisson degree distribution. Thus, Eqs. (1)–(5) become

xA = pq

⎡

⎣1 −

∞
∑

kAin=1

(

(

kmin

kAin

)λ−1

−

(

kmin

kAin + 1

)λ−1
)

x
kAin−1

A

⟨kAin⟩

⎤

⎦

×

⎡

⎣1 −

∞
∑

kAout=0

(

(

kout
kAout

)λ−1

−

(

kout
kAout + 1

)λ−1
)

x
kAout
BA

∞
∑

kBout=0

(

(

kout
kBout

)λ−1

−

(

kout
kBout + 1

)λ−1
)

x
kBout
BA

⎤

⎦ ,

(9)

xB = pq

⎡

⎣1 −

∞
∑

kBin=1

(

(

kmin

kBin

)λ−1

−

(

kmin

kBin + 1

)λ−1
)

x
kBin−1

B

⟨kBin⟩

⎤

⎦

×

⎡

⎣1 −

∞
∑

kBout=0

(

(

kout
kBout

)λ−1

−

(

kout
kBout + 1

)λ−1
)

x
kBout
AB

∞
∑

kAout=0

(

(

kout
kAout

)λ−1

−

(

kout
kAout + 1

)λ−1
)

x
kAout
AB

⎤

⎦ ,

xBA = p

⎡

⎣1 −

∞
∑

kBin=0

(

(

kmin

kBin

)λ−1

−

(

kmin

kBin + 1

)λ−1
)

x
kBin
B

⎤

⎦ ,

xAB = p

⎡

⎣1 −

∞
∑

kAin=1

(

(

kmin

kAin

)λ−1

−

(

kmin

kAin + 1

)λ−1
)

x
kAin
A

⎤

⎦ ,

(10)

SA = pq

⎡

⎣1 −

∞
∑

kAin=1

(

(

kmin

kAin

)λ−1

−

(

kmin

kAin + 1

)λ−1
)

x
kAin
A

⎤

⎦

×

⎡

⎣1 −

∞
∑

kAout=0

(

(

kout
kAout

)λ−1

−

(

kout
kAout + 1

)λ−1
)

x
kAout
BA

∞
∑

kBout=0

(

(

kout
kBout

)λ−1

−

(

kout
kBout + 1

)λ−1
)

x
kBout
BA

⎤

⎦ ,

(11)

SB = pq

⎡

⎣1 −

∞
∑

kBin=0

(

(

kmin

kBin

)λ−1

−

(

kmin

kBin + 1

)λ−1
)

x
kBin
B

⎤

⎦

×

⎡

⎣1 −

∞
∑

kBout=0

(

(

kout
kBout

)λ−1

−

(

kout
kBout + 1

)λ−1
)

x
kBout
AB

∞
∑

kAout=0

(

(

kout
kAout

)λ−1

−

(

kout
kAout + 1

)λ−1
)

x
kAout
AB

⎤

⎦ .
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FIG. 6. pc as a function of q. (a)
For different λ = 2.7, 3.2, 4.2 with
⟨kAout⟩ = ⟨kBout⟩ = 4. (b) For different
kout = 4, 6, 8 with λ = 3.2.

By comparing analytical and simulation results, we find that the
simulation results agree well with the analytical results, as shown
in Fig. 5. Figure 5(a) shows that pc becomes smaller if the value of
⟨kAout⟩ = ⟨kBout⟩ becomes bigger, whichmeans that one can get a robust
system by increasing the dependency density. From Fig. 5(b), the
results imply that the system becomes more robust as the fraction
of dependency nodes increases for our model. For different power
law exponents λ, pc as a function of q is shown in Fig. 6(a) for
⟨kAout⟩=⟨kBout⟩= 4. We find that the value of pc is getting smaller with
a smaller λ, which means that the interdependent system is more
robust for smaller power law exponents. For fixed λ, pc values get
smaller as the average dependency degree increases, and the system
here becomes more steady and robust, as shown in Fig. 6(b).

V. CONCLUSIONS

In this paper, the robustness of twomultiple-to-multiple depen-
dent networks is numerically and analytically studied by extending
previous works.28,31 By defining the mechanism of cascading failures
of the system, we developed a framework and obtained the theo-
retical prediction for the size of the giant component at the stable
state. The analytical results agree well with the simulation results for
coupled networks. Additionally, the graphical solution of the crit-
ical threshold is numerically analyzed for the above models. The
results suggest that the system behaves as a discontinuous phase
transition for the above two systems. The robustness of a single net-
work increases as the coupling strength q increases. We expect that
the increased network density can also strengthen the robustness of
the network for both Erdös-Rėnyi and scale-free networks.Moreover,
the studies imply that one can obtain amore robust systemby increas-
ing the power exponent index of the system. The case of robustness
of the general case of n coupled networks with multiple-to-multiple
dependent relationship has been studied very recently.
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