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a b s t r a c t

The fluctuations of international crude oil markets have caused significant attention around the world
and aroused strong interest in the forecasting of the systemic risk in crude oil trade. Based on the oil
imported values data of 34 major oil-importing countries from January 2005 to June 2017, we calculate
the cross-correlation functions of time lags and construct a sequence of time-evolving oil import cor-
relation networks according to the similarities between countries. The probability distribution of time lag
shows that the time lag effect is not sensitive to positive correlations, but obvious for negative corre-
lations. There is a longer time-lag effect in the years when positive correlations are stronger. Further, we
use a percolation analysis to quantify the structural change in the correlation network. The key result is
that abrupt percolation transition is leading spikes in systemic risk with advance of 3e11 months sug-
gesting that this event could function as an alarm. Therefore, percolation transition in the correlation
network of oil-importing countries can be used as a means to estimate signals about future systemic risk.
The methodology and results presented in this paper bring a fresh perspective to the study of systemic
risk in crude oil importing trade, and they facilitate risk early-warning research in other energy systems
that also have interactions among their elements.

© 2019 Published by Elsevier Ltd.
1. Introduction

Crude oil is an important energy source that is often called
“black gold” and “the blood of modern industry”. It is non-
renewable and rare, and thus strongly affects the economy and
social development. As a strategic natural resource, oil remains the
worlds leading fuel and accounts for one-third of global energy
consumption [1].

The distribution of crude reserves oil is extremely uneven, and
this creates a structural imbalance in the global supply and demand
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of crude oil that generates a widespread international crude oil
market. Actually oil trade flows embody the relationship among
different countries, which can form a complex network. The
network model presents countries as nodes, trade relations as
edges and trade volume as weight [2]. It offers a helpful tool for
better analyzing the trading patterns by abstracting the trade sys-
tem generated by the oil flows as a network [3]. This can be shown
in Refs. [4e8]. An et al. constructed a directed network model of
international oil trade to study the relationship between countries
with common trade partners [4] and designed a weighted complex
network model for examining the dynamics of the co-movement
between crude oil features and spot prices [5]. Zhong et al. stud-
ied the evolution of communities of the world oil trade network by
setting up un-weighted and weighted oil trade models using data
from 2002 to 2011, and analyzed their evolutionary features and
stabilities over the time [6]. Ji et al. identified the global oil trade
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patterns using complex network theory, discovering that the global
oil export core network displays the typical feature of complex
network, that is scale-free distribution [7]. Zhang et al. studied the
competition among oil importers using complex network theory,
combined with several alternative measures of competition in-
tensity, to analyze the evolution of the pattern and transmission of
oil-trading competition [8]. Actually a detailed understanding of oil
trading-based network is meaningful for governments because
they are eager to increase their understanding of global oil trade in
order to avoid the market risk.

Risks in supply, pricing, and geopolitics have caused price fluc-
tuations and turmoil in the crude oil market. Kilian identified the
underlying demand and supply shocks in the global crude oil
market and estimated of howmuch each of the shocks contributed
to the evolution of the real price of oil during the 1975e2007 period
[9]. Hamilton found that historical oil shocks were a contributing
factor in economic recessions [10]. The fluctuations in the crude oil
market are caused by risk factors that are both systemic and non-
systematic. Some studies have focused on such non-systematic
risk factors as mismatches in supply and demand, capital specula-
tion and exchange rates, but systemic risks bring themost powerful
shocks to both the crude oil market and the global economy.
Because of its uncontrollability and its ability to cause harm, it has
been the focus of widespread concern in academia and among
policy makers, especially since the 2008 financial crisis.

The systemic risk of crude oil importing trade system is the risk
associated with the entire system, not the risk only related to an
individual country. The issue of crude oil importing trade system is
a global complex problem owing to the complex coupling re-
lationships among the crude-oil-import countries. For example, the
decisions of crude oil importers when they select exporters and
imported values are not simply based on their own demand, for
example, but are influenced by the behavior and decisions of other
importers [11]. Incomplete information and market uncertainties
would make it difficult for an importer in isolation to make optimal
decisions. A sudden change, either increase or decrease of the oil
imported value in one or several countries will lead to corre-
sponding changes, either direct or indirect, in other countries. How
much impact the imported value changes of one or several coun-
tries have on other oil-import countries, is determined by the
complex coupling relationships among the different countries. In
fact, various characteristic of the crude oil import market, such as
systemic risk can be reflected by the coupling relationships among
the crude oil importing countries. Thus understanding behavior
correlations among oil importers is essential if we are to under-
stand systemic risk. Network correlation study has long been used
to quantify interactions, and the produced results are often useful.
It has been applied to a wide variety of disciplines, including
finance, biology, and climatology [12e29] but has seldom been
used to understand systemic risk in the crude oil market. Recently,
Wang et al. [30] built time-evolving interaction networks by using
correlations among oil dependent countries, and proposed a for-
mula, which is the linear combination of the topological indexes of
the correlation networks, for measuring the evolution of systemic
risk in crude oil importing system. Their study does not take into
account how time lags delay the observable correlations among the
imported values of different oil importing countries. However, time
lag effect in fact exists among the correlation behavior of different
oil importing countries. Thus we add the time lag influence to the
oil import correlation network, where nodes are major oil im-
porters and edges are correlations among the oil-import returns in
different countries. Because understanding the structure and evo-
lution of the early warningmechanism of systemic risk is important
to governments and policy makers, our goal is to measure the
correlation of oil-import behavior of different countries and
forecast of the systemic risk in crude oil importing trade in a timely
manner.

Systemic risk is often caused by dramatic changes in the struc-
ture of the system. In statistical physics and mathematics, perco-
lation theory is an effective tool for understanding the resilience of
connected network components to node breakdowns through
structural properties [31,32]. It has been applied to many natural
and human-made systems [29,31e36]. We here first combine the
percolation method and network to identify the largest structural
change occurred during the evolution of oil import correlation
network, which is the signal about future systemic risk. The key
result is that the abrupt percolation transition is leading spikes in
systemic risk with advance of 3e11 months. The methodology is
proved to be useful for forecasting the future systemic risk in in-
ternational crude oil importing trade and potentially be used as a
template to study other complex systems.

The paper is organized as follows. Section 2 describes the
empirical data, the oil importing correlation network model, and
the percolation analysis approach. Section 3 examines the time lag
effect in the correlation network model and presents the results
obtained from a percolation analysis that is comparable to the ab-
sorption ratio in the literature. Section 4 discusses the findings and
presents conclusions.
2. Data and methodology

2.1. Data

All the data on crude oil imported values is derived from the
United Nations Commodity Trade Database (UN Comtrade; http://
comtrade.un.org). The data are recorded monthly from January
2005 to June 2017, 150 months. We rank the total oil imported
values of each country. Due to limits and imperfect of data, we
choose 34 major oil importers, where 61.8%, 20.6%, 5.9%, 5.9%, 2.9%,
and 2.9% are from Europe, Asia, Oceania, South America, North
America and Africa, respectively. There are 21 countries from
Europe, including Germany, Netherlands, Italy, France, Spain,
United Kingdom, Belgium, Poland, Greece, Sweden, Portugal,
Finland, Lithuania, Austria, Czech Republic, Romania, Slovakia,
Bulgaria, Switzerland, Croatia and Ireland. Seven countries are from
Asia, including China, Japan, India, Korea, Singapore, Thailand and
Philippines. Two countries are from Oceania, including Australia
and New Zealand. Two countries are from South America, including
Peru and Chile. One country, the United States of America, is from
North America. One country, South Africa, is from Africa.

In probability theory and statistics, kurtosis is a measure of the
“tailedness” of the probability distribution of a real-valued random
variable. The kurtosis is the fourth standardized moment, defined
as [37].

KðXÞ ¼ E½X � EðXÞ�4
s4X

; (1)

where EðXÞ is the average of the random variable X and s is the
standard deviation. The kurtosis of any univariate normal distri-
bution is 3. It is common to compare the kurtosis of a distribution to
this value. First, by Eq. (1) we calculate the kurtosis value based on
the crude oil import value data of all countries at each time point.
Fig. 1 shows the evolution of kurtosis values, and the proportions of
KðXÞ>3 and KðXÞ<3. We find most of the time, KðXÞs3, which
indicates that the distribution deviates significantly from the
normal distribution. And KðXÞ is greater than 3 for a long time. This
is said to be leptokurtic, which means the distribution produces
more outliers than the normal distribution [38]. Therefore, it is
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Fig. 1. (a) Evolution of kurtosis values; (b) Proportions of KðXÞ>3 and KðXÞ<3.
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necessary to study the crude oil importing trade system under the
condition of non-normal distribution.

2.2. The oil importing correlation network construction method

The nodes are the N ¼ 34 major oil importing countries. For
each country i, we denote ViðtÞ the monthly imported value at time
t. The fluctuation at time t is defined

riðtÞ ¼
ViðtÞ � Viðt � 1Þ

Viðt � 1Þ : (2)

The evolution of the fluctuation data is shown in Fig. 2.
Next we estimate the time-dependent correlation between each

pair of the countries and construct a sequence of correlation net-
works. If we evaluate the correlation patterns over time through a
Fig. 2. Evolution of the
time-series model from a holistic perspective, we will miss some
important information because the correlation patterns are also a
fluctuant process. Therefore we divide the holistic time series into
different small-scale fragments using a moving window, and then
construct a sequence of time-dependent correlation networks.
Here, we assume that the length of the moving window is 24
months, the moving step is 1 month. The advantage of utilizing the
moving window method is that the moving window have the
feature of memory and transitivity. Thus the holistic fluctuation
time series is divided into 120 segments with length 24. Within
each window, we compute the correlation matrix CðtÞ, in which
element Ci;j is the weight of the link that connects country i and
country j. First, the time-delayed cross-correlation function be-
tween the two time series friðtÞg and frjðtÞg is calculated by
Refs. [28,29],
fluctuation data.
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Ci;jðtÞ ¼
�
riðtÞrjðt þ tÞ�� hriðtÞi

�
rjðt þ tÞ�

sriðtÞsrjðtþtÞ
; (3)

where sriðtÞ is the standard deviation of friðtÞg, t2½�tmax; tmax� is
the time lag, with tmax ¼ 6 months. Because of the time-reversal
symmetry, Ci;jð� tÞ ¼ Cj;iðtÞ. We identify the value of the highest
peak of the absolute value of the cross-correlation function and
denote the corresponding time lag of this peak to be t�i;j, and the

weight of link connecting country i and country j to be Ci;j ¼
Ci;jðt�i;jÞ. The sign of t�i;j indicates the direction of each link. That is,

when the time lag t�i;j >0, the direction of the link is from i to j,

which reflects the influence flow from i to j. When t�i;j <0, the di-

rection of the link is from j to i, which means i is influenced by j. At
each time point, there are 34�33

2 time lags and they can be described
by a probability distribution function (PDF) Pðt�Þ.

Thus the sequence of monthly shifting-correlation networks is
constructed according to the similarities between nodes. More
specifically, the nodes which are more similar (based on their oil-
importing values variations) will be connected. The weighted
adjacent matrix AðtÞ of the correlation network at time t is defined
as

Ai;j ¼
�
Ci;j;

��Ci;j��> q;

0;
��Ci;j�� � q;

(4)

where Ai;j is the weight of link connecting country i and country j,
the critical threshold q is the average of the absolute values of
correlation matrix CðtÞ. Then we obtain 120 34-order directed and
weighted networks for investigation that correspond to the time
points from January 2007 to December 2016.

2.3. Percolation analysis

We examine the percolation phase transition by studying the
evolution of clusters. At each time point, given N ¼ 34 isolated
nodes, links are added one by one according to the weight, i.e., we
first add the heaviest link and then continue in order of decreasing
weight. During the evolution of the network, we measure the
fraction of the giant component G ¼ p

N, where p is the number of
nodes in the largest component [31e36]. A component is a subset of
network nodes in which each node has at least one path to another
node in the subset [33]. During the growth process, the largest size
change of the largest cluster is calculated by

D ¼ maxfGðC2Þ � GðC1Þ;GðC3Þ � GðC2Þ;/;GðCTþ1Þ
� GðCT Þ;/g; (5)

where CT denotes the weight of the T-th added edge. The step with
the largest jump is denoted Cc. The percolation transition in the
network is D, and Cc is its transition point.

2.4. Absorption ratio

For the correlation matrix CðtÞ at time t, we find N ¼ 34 eigen-
values li in descending order. Here we use a measure of systemic
risk called the absorption ratio, which is explained or “absorbed” by
a fixed number of eigenvectors [39]. The absorption ratio captures
the extent to which systems are unified or tightly coupled. When
systems are tightly coupled, they are more fragile in the sense that
negative shocks propagate more quickly and broadly than when
systems are loosely linked. Reference [39] offers persuasive evi-
dence that the absorption ratio effectively captures system fragility.
We measure the systemic risk in the correlation network using the
absorption ratio [11,21,30,39,40].

En ¼
Xn
i¼1

li
N
; (6)

where n is the number of the deviating eigenvalues. In this paper,
they are chosen from the eigenvalues, which are greater than a
critical value determined by the prediction of the Random Matrix
Theory [21]. If an eigenvalue is greater than this critical value, it
frequently contains valuable information about systemic dynamics
[21]. The absorption ratio is a better approach because a perfectly
integrated system can exhibit weak correlation. The larger En is, the
higher the systemic risk is [15,40,41].
2.5. Empirical mode decomposition (EMD)

EMD is a method to extract the global structure and take into
account fractal-like signals [42]. It is similar to other analysis
methods, such as Fourier Transform and wavelet decomposition.
We can use it to analyze natural signals, which are most often non-
linear and non-stationary, and we can use it to decompose any
complicated data set into a finite and small number of components
called intrinsic mode functions (IMF) [43]. The first IMF usually has
the most oscillating components (e.g., random noise) [44]. The
equation is

IðnÞ ¼
XM
m¼1

IMFmðnÞ þ ResMðnÞ; (7)

where IðnÞ is the multi-component signal, IMFmðnÞ is the mth IMF,
and ResMðnÞ is the residue corresponding to M intrinsic modes. By
using EMD method, we get a trend graph of a curve by removing
the random noise.
2.6. Cross entropy

The cross-entropy measure has been used as an alternative to
squared error. Cross-entropy characterizes the distance between
the distribution of real data (probability p) and the predicted dis-
tribution of the model (probability q), often used as a loss function
to estimate the degree of deviation between the series of predicted
and actual values [45]. That is, the smaller the value of the cross
entropy, the closer the two probability distributions are. Mini-
mizing the cross entropy is the same as maximizing the likelihood
[46].

The cross entropy for two discrete series p and q is defined as
follows:

Hðp; qÞ ¼ �
X
x
pðxÞlogqðxÞ: (8)

In this paper, p is the time series of absorption ratio En (the
measure of systemic risk), q is the time series of lagged D obtained
by percolation analysis. The minimum of HðEn;DÞ corresponds to
the greatest similarity of the two series.
3. Results and analysis

3.1. The correlation feature and probability distribution functions
(PDFs) of time lag

We calculate the cross-correlation functions Ci;jðtÞ between 34
countries using Eq. (3) and setting tmax ¼ 6. months. From Ci;jðtÞ,



Table 1
Proportions of positive and negative correlations.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

gp 65.7% 70.1% 77.2% 73.4% 62.1% 60.6% 56.1% 57.9% 60.4% 62.5%
gn 34.3% 29.9% 22.8% 26.6% 37.9% 39.4% 43.9% 42.1% 39.6% 37.5%
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we obtain correlation Ci;j between countries i and j. Table 1 lists
proportions gp;gn of positive and negative correlations for different
years and shows that the PDF of correlations is separated into
positive and negative parts. During the first four years, the pro-
portions of positive correlation increase and are higher in 2009 and
2010. Following 2011 the proportions of positive correlation pro-
gressively shrink. In contrast, the proportions of negative correla-
tion gradually increase and attain high values in 2013 and 2014. In
2015 and 2016 the proportions of positive correlations continue to
increase.

The different characters of positive and negative correlations
can be further demonstrated by their PDF of time lag t�. Fig. 3
shows the PDF of the positive Ppðt�Þ and negative Pnðt�Þ correla-
tions. The PDF of time delay has a maximum at t� ¼ 0 for positive
correlations and t�s0 for negative correlations. This indicates that
the time lag effect is clear for countries with negative fluctuation
correlations but not for countries with positive fluctuation corre-
lations. Combined this with Table 1, we see longer time-lag effects
between countries with negative correlations that occur in years
with higher proportion of positive correlations during the evolu-
tion, i.e., 2009, 2010, 2015 and 2016. When the proportion of pos-
itive correlations increases, the longer time-lag effect of the
negative correlation grows more obvious.

3.2. Percolation analysis: identifying the peak point of systemic risk
in oil importing trade

We use Eq. (5) to obtain the percolation transition for each oil
import correlation network, and find that, usually between three
and eleven months prior to the peak point of systemic risk, the
correlation network has the largest D. We use this feature to fore-
cast the peak point of systemic risk for the following year. Fig. 4
compares the evolution of the forecasting result and the absorp-
tion ratio. Fig. 4(a) shows the eight predicted time points obtained
by percolation analysis. For a continuous warning within six
months, we make the last one the standard. The remaining five
time points are May 2008, May 2010, November 2012, December
2014, and October 2016. The last time point, October 2016 (blue), is
out of the sample range. The absorption ratio obtained by Eq. (6)
closely reflects the systemic risk of the correlation network, and
Fig. 4(b) shows its evolution (blue curve). Using empirical mode
decomposition (EMD), we remove the random noise from the blue
curve and obtain the green curve, which reflects the trend of En. The
trend of EMD curve shows that the blue curve reaches a maximum
at December 2008, the first peak point, and then decreases to the
second and the third peak points in April 2011 and February 2013.
After bottoming, the blue curve moves upward and reaches the
fourth peak point in September 2015. The time lead between the
prediction and the peak point of systemic risk is in the interval of
three to eleven months, which is shown in Table 2. There are four
accurate alarms (orange points). The prediction point in October
2016 corresponds to the time point several months later. In 2017
the oil price trend is V-shaped and reaches the peak point in the
middle of the year. This confirms our above findings.

Next, we concentrate on specific peak points of systemic risk in
international oil importing trade to illustrate the evolving compo-
nent structure. Using April 2011 as an illustrative example, in Fig. 5
we show the giant component G as a function of link strength C. We
find that the largest jump of G occurs in May 2010, eleven months
prior to the peak point in April 2011. The link connecting Thailand
in Asia and Chile in South America was added in May 2010, and the
giant component jumped from 0.353 to 0.706. For other time points
the gap becomes smaller. This shows that the correlation influence
from Asia has spread to South America. We find similar results at
the other peak points: December 2008, February 2013 and
September 2015. For the peak point of December 2008, the largest
jump of G occurs in May 2008, seven months prior to it. The link
connecting Greece and Lithuania in Europewas added inMay 2008,
and the giant component jumped from 0.382 to 0.676. The directed
edge shows the influence flow in Europe, from south to north, and
makes Europe the most highly correlated continent. For February
2013, the largest jump of G occurs in November 2012, three months
prior to that. The link connecting Slovakia and Austria in Europe
was added in November 2012, and the giant component jumped
from 0.324 to 0.618. We also find that for the peak point of
September 2015, the largest jump of G occurs in December 2014,
nine months prior to that. The link connecting Sweden in Europe
and Chile in South America was added in December 2014, and the
giant component jumped from 0.529 to 0.824. This result indicates
that the correlation tendency has spread from Europe to South
America. Following the above, we can obtain information about the
peak point of systemic risk in crude oil importing trade by inves-
tigating these abrupt transitions in the giant component G. We get
that the largest gap occurs between three and eleven months prior
to the peak point of systemic risk. Therefore, large D can be
regarded as an alarm forecast that the peak point of systemic risk
will develop in the following month.

In our manuscript, the “abrupt percolation” term is a concept
from physical phase transitions, and not necessary related to abrupt
changes in oil import values. It indicates discontinuous phase
transition, which has attracted much attention recently in the
context of interdependent networks [35,36]. While for randomly
connected network system, it behaves a continuous percolation
phase transition [28,32]. That is to say, if there is no interaction
between the oil importers, the oil import correlation networks will
not undergo an abrupt phase transition. The key result of our work
is that the abrupt transitions occur 3e11 months prior to the peak
point of systemic risk in oil importing trade. This is probably since
the network percolation approach can capture in time the signals
hidden behind the actual data, which reflects the interaction
among the oil importing countries. This interdependence can cause
system instability and even cascading failures.
3.3. The robustness analysis of prediction result

In order to investigate the robustness of the prediction result,
we use Eq. (8) to obtain cross entropy to estimate the degree of
deviation between the time series of En and lagged D. Fig. 6 shows
the cross entropy of the two time series D and En, as a function of
the interval D leading to En. Fig. 6(a) (orange point) shows that
when the percolation transition sequence (from Dec. 2007 to Oct.
2008) leads the systemic risk sequence (from Jul. 2008 to May
2009) for 7 months, the cross entropy reaches minimum, which
means the two time series have the least degree of deviation. The



Fig. 3. Probability distribution function of time lag t� is shown for positive and negative correlations.
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Fig. 4. Percolation forecasting result and absorption ratio based on oil imported value fluctuation dataset. We compare the largest gap of the largest cluster D during the oil
importing correlation network evolution with a threshold Dc ¼ 0:268 (left panel) and the absorption rate (right panel) between January 2007 and December 2016. When D is bigger
than Dc , which is 1.5 standard deviations, we give an alarm and predict that the peak point of systemic risk for oil importing trade will start in the following months. In the inset we
show the full plot for the largest gap of the largest cluster D. The horizontal red line represents the critical value Dc . (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Table 2
The time lead between the predictions and the peak points of systemic risk.

D May 2008 May 2010 Nov. 2012 Dec. 2014 Oct. 2016

En Dec. 2008 Apr. 2011 Feb. 2013 Sep. 2015
Intervals (months) 7 11 3 9

Fig. 5. The giant component G as a function of the link strength C. The largest jump of G oc
connecting Thailand in Asia and Chile in South America was added in May 2010, the giant co
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intermediate time points of the two time series respectively
correspond to the predicted time point (May 2008) and the peak
point (Dec. 2008) in systemic risk, as shown in Table 2. And for
other time intervals D leading to En, there exist high cross entropy
between the two time series. In Fig. 6(b), when the percolation
curs in May 2010, eleven months prior to the peak point in April 2011. When the link
mponent jumped from 0.353 to 0.706. The gap becomes smaller for other time points.



Fig. 6. The cross entropy of the two time series D and En as a function of the interval that D is leading to En . The minimum values (orange points) in (a), (b) and (c) respectively
correspond to the cross entropy of the following time series: (a) D: Dec. 2007eOct. 2008, En: Jul. 2008eMay 2009; (b) D: Dec. 2009eOct. 2010, En: Nov. 2010eSep. 2011; (c) D: Jun.
2012eApr. 2013, En: Sep. 2012eJul. 2013. The intermediate time points of the above time series are consistent with those given in Table 2. However in (d), when the cross entropy of
the two time series takes the minimum value, their intermediate time points do not coincide with the results in Table 2. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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transition sequence (from Dec. 2009 to Oct. 2010) leads the system
risk sequence (fromNov. 2010 to Sep. 2011) for 11months, the cross
entropy of the two sequences reaches the minimum. The inter-
mediate time points of the two time series are May 2010 and Apr.
2011. Fig. 6(c) shows that the cross entropy reaches the minimum,
as the percolation transition sequence (from Jun. 2012 to Apr. 2013)
is leading the system risk sequence (from Sep. 2012 to Jul. 2013)
with advance of 3 months. The intermediate time points of the two
time series are Nov. 2012 and Feb. 2013. The central time points
appropriately correspond to the predictions and the peak points of
systemic risk in Table 2. However in Fig. 6(d), when the cross en-
tropy takes theminimumvalue, the intermediate time points of the
corresponding two time series are inconsistent with those given in
Table 2.

To investigate whether our findings are also valid when taking
into account the influence of q for constructing the correlation
networks, we compare the cross entropy results under different
thresholds: q±0:5s, q±1:2s and q±1:5s, where s and q are the
standard deviation and the average of the absolute values of the
correlation matrix CðtÞ respectively. The results of robustness
testing are shown in Figs. 7e9. For the first prediction result in
Table 2, regardless of the critical threshold, when the correspond-
ing percolation transition sequence leads the system risk sequence
for 7 months, the cross entropy result reaches a minimum, as
shown in Fig. 7. For the second prediction in Table 2, Fig. 8 shows
that adjusting the critical threshold has no effect on the prediction
result. For the third prediction in Table 2, Fig. 9 shows that for
different thresholds, the cross entropy reaches minimumwhen the
percolation transition sequence (from Jun. 2012 to Apr. 2013) leads
the systemic risk sequence (from Sep. 2012 to Jul. 2013) for 3
months. But when the critical threshold is taken as q±1:5s, the
network connection is very sparse, the minimum deviation is not
obvious. We conclude that the density of the network has an effect
on the prediction results. However, for the fourth prediction result
in Table 2, we find that for different critical thresholds, the corre-
sponding percolation transition sequence and the systemic risk
sequence show a high degree of deviation.

4. Discussion and conclusions

We have used the monthly crude oil import value data on 34
major oil importing countries from January 2005 to June 2017. We
introduce the time lag effect and study the fluctuation correlations.
The probability distribution function of correlations is separated
into positive and negative sectors. The probability distribution
functions of time lag indicate that the time lag effect is clear for
countries with negative fluctuation correlations but not for coun-
tries with positive fluctuation correlations. When the proportion of
positive correlations increases, the longer time-lag effect of the
negative correlation grows more obvious.



Fig. 7. The cross entropy results under different thresholds: (a) qþ 0:5s, (b) q� 0:5s, (c) qþ 1:2s, (d) q� 1:2s, (e) qþ 1:5s, (f) q� 1:5s, where s and q are the standard deviation and
the average of the absolute values of the correlation matrix CðtÞ respectively. For different thresholds, the cross entropy reaches minimumwhen the percolation transition sequence
(from Dec. 2007 to Oct. 2008) leads the systemic risk sequence (from Jul. 2008 to May 2009) for 7 months.

Fig. 8. The cross entropy results under different thresholds: (a) qþ 0:5s, (b) q� 0:5s, (c) qþ 1:2s, (d) q� 1:2s, (e) qþ 1:5s, (f) q� 1:5s, where s and q are the standard deviation and
the average of the absolute values of the correlation matrix CðtÞ respectively. For different thresholds, the cross entropy reaches minimumwhen the percolation transition sequence
(from Dec. 2009 to Oct. 2010) leads the systemic risk sequence (from Nov. 2010 to Sep 2011) for 11 months.

R. Du et al. / Energy 176 (2019) 281e291 289
Based on the sequence of monthly shifting-correlation net-
works, we use the percolation method to develop an advance
warningmechanism for systemic risk in the oil importing trade.We
find that the structure of the network sharply changes and un-
dergoes a first-order phase transition between three and eleven
months prior to the peak point of systemic risk, which is measured



Fig. 9. The cross entropy results under different thresholds: (a) qþ 0:5s, (b) q� 0:5s, (c) qþ 1:2s, (d) q� 1:2s, (e) qþ 1:5s, (f) q� 1:5s, where s and q are the standard deviation and
the average of the absolute values of the correlation matrix CðtÞ respectively. For different thresholds, the cross entropy reaches minimumwhen the percolation transition sequence
(from Jun. 2012 to Apr. 2013) leads the systemic risk sequence (from Sep. 2012 to Jul. 2013) for 3 months. However, when the critical threshold is taken as qþ 1:5s, the minimum
deviation is not obvious. At this time, the average degree of the network is small, and the network connection is very sparse. We conclude that the density of the network has an
effect on the prediction results.
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using the absorption ratio. Thus the largest change in the giant
component is an alarm that indicates that a peak point of systemic
risk will occur within a fewmonths. Using the percolation method,
our forecasted time points are May 2008, May 2010, November
2012, December 2014 and October 2016. October 2016 is out of the
sample data range. The peak points of systemic risk obtained
through the absorption rate are December 2008, April 2011,
February 2013 and September 2015. Further, cross entropy is
applied to verify the robustness of the results. We also analyze and
compare the structural changes in the network before and after the
prediction time point and the peak point of systemic risk. We find
the largest change in the size of the giant component in the cor-
relation network of oil imported values fluctuation to be caused by
the flow of influence among European countries and from Europe
and Asia to South America.

To sum up, we have described the time-lag effect in the oil
importing correlation network and used a percolation analysis to
quantify the structural change. The key result is that abrupt
percolation transition is leading spikes in systemic risk with
advance of 3e11 months suggesting that this event could function
as an alarm. Therefore, the percolation analysis in statistical physics
can be used as an effective way for predicting signals about future
systemic risk, and provides an important reference for oil trading
countries and market analysis. Our work will help oil importers
understand the varying structure of the oil importing correlation
network and enable them to improve the security of the oil import
market. Our new method can also be applied to other energy sys-
tems that have correlations among their elements. Although sub-
stantial progress in the study of oil trade networks has been
recently achieved, a number of challenging problems remain. For
example, we need a risk-warning mechanism that combines early
warning informationwith an emergency response strategy.We also
need a way of integrating the oil market, encouraging cooperation
among oil importers and exporters, and improving world-wide
systematic oil supply security. These issues are topics for future
research.
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