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Statistical Collapse of Excessive Market Losses
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We analytically derive superstatistics (or complex statistics) that accurately model empirical market activity
data (supplied by Bogachev, Ludescher, Tsallis, and Bunde) exhibiting transition thresholds. We measure the
interevent times between excessive losses (that is, greater than some threshold) and use the mean interevent time
as a control variable to derive a universal description of empirical data collapse. Our superstatistic value is a
power-law corrected by the lower incomplete gamma function, which asymptotically tends toward robustness but
initially gives an exponential. We find that the scaling shape exponent that drives our superstatistics subordinates
themselves and a “superscaling” configuration emerges.

DOI: 10.12693/APhysPolA.129.913
PACS/topics: 89.65 Gh, 05.40.–a, 89.75.Da

1. Introduction and principal goal

Financial markets fluctuate (quite often strongly) as
traders estimate risk levels and attempt to gain a profit.
The interevent interval between times when market re-
turns are producing excessive losses and times when they
are producing excessive profits can be described by using
waiting-time distributions (see Refs. [1–4] and references
therein).

Empirical market data on excessive profits and
losses [5–8] define excessive profits as those greater than
some positive fixed threshold Q and excessive losses as
those below some negative threshold �Q. The mean in-
terevent time† between losses versus Q has been used in
this paper as an aggregated basic variable.

Interevent times constitute a universal stochastic mea-
surement of market activity on time-scales that range
from one minute to one month [5, 6]. The mean in-
terevent time can be used as a control variable that
produces a universal description of empirical data col-
lapse [7], i.e., the distribution of interevent times for a
fixed mean interevent time is a universal statistical quan-
tity unaffected by time-scale, type of market, asset, or
index.

This distribution can be described using (i) the
continuous-time random walk (CTRW) valley model (see
Refs. [2, 4] and references therein), which treats time
intervals as random variables, and (ii) generalized ex-
treme value statistics‡ for stochastic dependent basic
processes [13].
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†
The term “interevent time” appears in the literature under

such names as “pausing time”, “waiting time”, “intertransaction

time” and “interoccurrence time” in the context of different ver-

sions of the continuous-time random walk formalism [4, 9–12].

‡
Whether the value of losses or profits in the basic stochas-

tic process are statistically independent is irrelevant because any

possible correlations between them are absent in our derivations.

Our principal goal is to model the empirical data (pro-
vided in Refs. [5–8]) associated with single-variable statis-
tics, i.e., (i) the mean interevent time period RQ between
extreme (excessive) losses, defined as those below a neg-
ative threshold �Q, as a function of the Q(> 0) value§

and (ii) the distribution  Q(�Qt) of interevent times be-
tween losses �Qt, previously described using ad hoc q-
exponentials [5, 6]. Note that the q-exponentials used
in Refs. [5–8] cannot produce the key empirical data in
item (i), and thus in our approach we use superstatistics.
Although small losses (and also profits) are of little con-
cern to traders, we focus both on small and medium to
high Q-values. Our goal is to provide market superstatis-
tics that have universality.

2. Basic results

We here find an analytically closed form of the mean
interevent time period RQ between excessive (extreme)
losses that is greater than some threshold Q, i.e.,

R�1
Q = P (�"  �Q) = P (" � Q) =

Z 1

Q
D(")d", (1)

where D(") is the density of returns given by the Weibull
distribution of extreme (or excessive) losses¶ [14–16],

D(") =
⌘

"̄

⇣"
"̄

⌘⌘�1
exp

⇣
�
⇣"
"̄

⌘⌘⌘
, "̄, ⌘ > 0. (2)

Note that we consider random variable " to be an incre-
ment of some underlying stochastic process. In general,
values of this random variable can be dependent [13].
It is sufficient to consider herein the case when ⌘ < 1

(see Table I) which means that distribution D(") is, for
"/"̄� 1, a decreasing truncated power-law [17].

§
For the sake of simplicity, we will treat losses as positive quan-

tities.

¶
The remaining extreme distributions, i.e., the Gumbel and

Fréchet ones, are unable to give a proper description of empirical

data.

(913)
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Reference [18] uses the Weibull distribution to de-
scribe the statistics of interevent times between subse-
quent transactions for a given asset. We use the Weibull
distribution and the conditional exponential distribution
of the CTRW valley model to derive superstatistics or
complex statistics associated with the threshold of exces-
sive losses.

Substituting (2) into (1), we obtain

RQ = exp

✓✓
Q

"̄

◆⌘◆
, (3)

i.e., lnRQ increases vs. the relative (dimensionless) vari-
able Q/"̄ according to a power-law.

The solid curves in Fig. 1 indicate the predictions gen-
erated by (3) and fit the empirical data (the points are
represented by different marks). This basic agreement
enables us to construct the corresponding superstatistics
and allows us to study the successive empirical data. Be-
cause the statistical error is low we are able to deter-
mine ⌘ and "̄ (see Table I) and derive the subsequent
parameters that define the shape of the superstatistics.

Fig. 1. Mean interevent time period RQ vs. thresh-
old Q for four typical classes of quotations. Black
circles, red squares, green rhomboids, and blue trian-
gles concern US/GBP exchange rate, S&P 500 index,
IBM stock, and WTI (the crude oil) empirical data
(from January 2000 to June 2010), respectively, taken
from Fig. 2 in Ref. [5] (plotted from the top curve down
to the bottom one). The solid, well fitted curves present
predictions of our formula (3).

TABLE I

Values of exponent ⌘ and quantity "̄ obtained from
the fit of predictions of formula (3) to the empir-
ical data (all of them plotted in Fig. 1).

Index/Par. ⌘ "̄

US/GBP 0.8756±0.0156 0.0037±0.0003
S&P500 0.6981±0.0292 0.0035±0.0005

IBM 0.8246±0.0236 0.0078±0.0007
WTI 0.7855±0.0182 0.0131±0.0008

3. Superstatistics and its empirical verification

We next construct an unnormalized, unconditional dis-
tribution  Q(�Qt) of the interevent time stochastic vari-
able, �Qt, in the form of superstatistics based on the
Weibull distribution used in Sect. 2,

 Q(�Qt) =

Z 1

Q
 Q(�Qt|")D(")d". (4)

Here we assume the conditional distribution  Q(�Qt|")
is in the exponential form�

 Q(�Qt|") =
1

⌧Q(")
exp

✓
� �Qt

⌧Q(")

◆
. (5)

Because it is conditional, the next (subsequent) loss is ex-
actly ", and the relaxation time is given by the stretched
exponential

⌧Q(") = ⌧Q(0) exp ((BQ")
⌘
) (6)

as a straightforward extension of the exponential relax-
ation time used in the CTRW valley model introduced
by [1, 19–21] in the context of photocurrent relaxation
in amorphous films. Here ⌧Q(0) is a free ("-independent)
relaxation time, and quantity BQ(> 0) is independent
of variable " which is an analog of the valley depth.
Exponents in (6) (Ockham’s razor principle) and to de-
rive superstatistics  Q(�Qt) in an exact closed analytical
form. Note that the stochastic dependence of interevent
time �Qt on loss " assumed in (5) is confirmed when
smaller losses appear more frequently than larger ones.
This is described by definition (6) in which conditional
mean time h�Qt|"i = ⌧Q(") is a monotonically increas-
ing function of ". This creates an expanding hierarchy
of interevent times where larger losses and profits appear
less frequently than smaller ones.

Substituting (6) and (5) into (4) we finally derive a
superstatistics in the searched form

 Q(�Qt) =
1

⌧Q(Q)

↵Q

(�Qt/⌧Q(Q))

1+↵Q

⇥�Euler(1 + ↵Q,�Qt/⌧Q(Q)), (7)
where the scaling shape exponent

↵Q =

1

(BQ"̄)⌘
=

1

ln (⌧Q("̄)/⌧Q(0))
, (8)

and the lower incomplete gamma function
�Euler(1 + ↵Q,�Qt/⌧Q(Q)) =

Z �Qt/⌧Q(Q)

0
y↵Q

exp(�y)dy. (9)

It is possible to analytically prove that RQ (or lnRQ) is
the control variable that allows a universal form of (7)
that depends solely on RQ (or lnRQ). This variable
was used previously in the analogous context in connec-
tion with the q-exponential [5]. Moreover, we obtain the

�
The exponential form of the conditional distribution (5) as-

sumes that the losses of a fixed value " are statistically independent,

which is generally not valid for different values of losses.
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superscaling of the scaling variable lnRQ or the scaling
of scaling, i.e., the scaling of the scaling exponent ↵Q (for
details see [22]).

Fig. 2. Collected plots of empirical distributions (col-
ored marks) and theoretical superstatistics,  Q(�Qt),
(black solid curves), which are predictions of our for-
mula (7) (while the dashed curves were given by q-
exponential shown by Eq. (3) in Ref. [5]) vs. interevent
time, �Qt, for RQ = 2, 5, 10, 30, and 70 (going from
the bottom curve to the top one — for the relative daily
price returns for sixteen typical examples of financial
data in the period 1962–2010 all empirical data were
drawn from Refs. [5, 6]).

Figure 2 shows the agreement between the predictions
of (7) and the empirical data for IBM for RQ = 2, 5, 10,
30, and 70 (going from the bottom curve to the top one).

Table II shows the corresponding fits of quantities ↵Q

and ⌧Q(Q) (for more empirical results see Ref. [22], es-
pecially Figs. 2 and 5 there). Thus by analytically and
empirically proving the RQ-dependence of the uncondi-
tional superstatistics,  Q(�Qt), we explain the empirical
data collapse shown in Fig. 2 (for details see Ref. [22]).

TABLE II

Values of exponent ↵Q and quantity
⌧Q(Q) obtained from the fit of for-
mula (7) to the empirical data repre-
senting companies shown in Fig. 2 for
RQ = 2, 5, 10, 30, 70.

RQ ↵Q ⌧Q(Q)

2 1000 1.5436
5 2.30 2.70
10 2.0 5.0
30 1.050 5.560
70 0.550 4.760

4. Concluding remarks

We find an explicitly closed form of the threshold in-
terevent time superstatistics (7) that is valid for excessive
losses, is the foundation of the continuous-time random
walk valley model, and that is useful in the study of a
double action market (see [12] and refs. therein). These
superstatistics are more credible than the q-exponential
distribution that is applied ad hoc in this context in
Refs. [5, 6], and they agree with the key empirical relation
between the mean interevent time RQ and the thresh-
old Q (see Fig. 1).

We model the empirical data collapse (cf. Fig. 2) us-
ing superstatistics as a function of a single aggregated
variable RQ.

Note that using our microscopic model to simulate
agent behavior [23, 24] gives results very close to those
predicted by Eq. (7). An approach using agent-based
modeling in this context was recently explored by other
authors [25].
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