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Abstract

We consider the cluster mass distribution between two lines of arbitrary orientations and

lengths in porous media in three dimensions, and model the porous media by bond percolation

at the percolation threshold pc. We observe that for many geometrical con.gurations the mass

probability distribution presents power law behavior. We determine how the characteristic mass

of the distribution scales with such geometrical parameters as the line length, w, the minimal

distance between lines, r, and the angle between the lines, �. The fractal dimensions of the

cluster mass are independent of w; r, and �. The slope of the power-law regime of the cluster

mass is una1ected by changes in these three variables; however the characteristic mass of the

cluster depends upon �. We propose new scaling functions that reproduce the � dependence of

the characteristic mass found in the simulations.

c© 2002 Published by Elsevier Science B.V.

1. Introduction

Percolation theory is one of the best ways to investigate the structure of disordered

media, particularly porous media [1–4]. Here we use percolation theory to analyze the

mass distributions of clusters that are connected in con.gurations of the type shown

in Fig. 1, con.gurations in which the two lines are connected by occupied bonds. The

cluster mass is the number of bonds that are connected to the two lines (Fig. 1(a)). The

backbone of the cluster is the set of bonds that are connected to the two lines through
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Fig. 1. (a) Illustration of well geometry. (b) Examples of a percolation cluster with two line wells with

parameters r = 2; �= 90◦, and w=
√

50. The .lled sites are members of the percolation cluster, which has

a mass of 52. Solid lines form the backbone, which has a mass of 28.

independent paths (i.e., paths that have no common bond [5–8]). For con.gurations

of two points, the distributions of various quantities have been studied [9–15]. Re-

cently the distribution of the shortest paths between two lines for a three-dimensional

cubic lattice [13] has been studied. Here we calculate the cluster mass distributions

as a complement to our earlier study of the backbone mass distribution of the same

clusters [16].

This study is motivated by the application of percolation theory to the techniques

of oil recovery [17]. A commonly used technique in oil recovery is the injection of

Duid into the ground at one site in the .eld in order to force oil out of the ground

at another site nearby (Fig. 1). It is common to inject the Duid along a portion of

the length of the injection well and to collect the oil along a portion of the length

of the production well (as opposed to injecting and collecting at single points on the

wells). In our model, each line represents a well in the oil .eld. One line represents

the injection well, and the other the production well. In many cases the oil reservoir

is extremely heterogeneous, and the percolation model is appropriate. Separation of oil

reservoir rocks into two types—high permeability and low or zero permeability—can

be modeled in percolation simulations, with the high-permeability rock represented by
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occupied bonds and the low-permeability rock represented by unoccupied bonds. The

connected mass represents the total oil in the reservoir connected to the two wells and

the backbone mass the recoverable oil. Of course this model is only a crude approxi-

mation of a real oil .eld. Actual oil .elds have strong correlations due to layering in

the rocks, preferential orientation of porosity, etc. Viscous forces also play an important

role during oil migration, which these models do not consider. Furthermore, actual oil

.elds are rarely at the percolation threshold. Nevertheless, this work provides important

insights into how well geometry may a1ect the percolation cluster mass.

2. Simulations

We perform a numerical study of the system using Monte-Carlo simulations. We

specify two sets of points representing lines in a simple cubic lattice to be the wells

and we grow the cluster from these two lines of seeds. If the growth of either cluster

stops before the two clusters connect, we discard the realization. For realizations in

which the two clusters connect, the simulation ends either when the cluster growth stops

naturally, or when the cluster mass reaches some speci.ed limit, which is imposed to

constrain the use of cpu time. To eliminate .nite size e1ects, we use the technique of

Ref. [18] to simulate systems on lattices of large enough size that the clusters never

reach the edge of the lattice. We perform the simulations at the percolation threshold,

pc = 0:2488126 [19]. The con.gurations are characterized by three parameters: length

w, angle �, and minimal distance r (see Fig. 1(a)). We treat con.gurations in which

the two wells are co-planar. Ref. [18] examines the distributions of shortest paths

between non-coplanar wells and .nds that the asymptotic behavior of the distributions

is independent of whether the wells are coplanar or not. For each con.guration, we

run at least 106 non-discarded realizations. We calculate the cluster mass for each of

the simulations as exempli.ed in Fig. 1(b).

3. General observations

We expect to .nd an initial cuto1 in the cluster mass distributions due to the fact that

these masses cannot be smaller than the distance �. Somewhere above this minimum

cuto1 we expect to observe a regime that exhibits power-law behavior. These general

features of the distributions have been observed in the distributions for other quantities

[9–13]. The quantities of interest are (i) the most-probable value of the distribution

(the maximum), the scaling of which will be determined by the fractal dimensions of

the quantities measured, and (ii) the slope of the power-law regime. For clusters grown

from a single point, the slopes of the power-law regimes of the cluster distributions are

� − 1, where � is the Fisher exponent. The fractal dimensions and power-law regime

slopes are related by [1,3,5]

�− 1 =
d

df
; (1)
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where d is the dimension of the system, and df is the fractal dimension of the cluster.

For d= 3, estimates for these values are [20,21]

df = 2:524 ± 0:008 ; (2)

�− 1 = 1:189 ± 0:004 : (3)

4. Cluster mass

4.1. Parallel wells

In order to gain insight into the general behavior, we .rst study parallel wells (�=0)

see Fig. 2(a). We consider .rst the following limiting cases:

(i) w�r—In this case, we approximate the con.guration by two points (see

Fig. 2(b)). In Fig. 3(a) we show the mass probability distribution P(m | r) for

w = 0 and r = 1, 2, 4, 8, 16, 32 and 64. The distribution shows a maximum

followed by a power-law regime with slope −1:18, consistent with Eq. (3). We

study also how the characteristic mass m∗, corresponding to peak of the distribu-

tion, scales with the distance r. The log–log plot of m∗ vs. r in Fig. 3b indicates

that m∗ scales with exponent dB ∼= 2:6 which is consistent with Eq. (2).

(ii) w�r—For this case (see Fig. 2(c)) we approximate the con.gurations by r = 0

(a single line). We perform the same analysis as before, and obtain similar results

(see Fig. 4(a)) i.e., power-law distribution for P(m |w ) with a slope ≈ −1:18 and

fractal dimension ≈ 2:55 (Fig. 4(b) and (c)).

We now study cases intermediate to those studied in (i) and (ii). In Fig. 5a, we plot

the distribution of cluster mass for con.gurations in which r=16 and we vary w from

0 to 64. For small w, the distributions are essentially unchanged, but for to w�r, the

distributions scale with the exponent df (Fig. 5a and b).

We now develop a scaling form for the dependence of the characteristic mass m∗

on r and L, the system size. Without loss of generality we can write

m∗(r; L) =
[

f
( r

w

)

r
]df

: (4)

Fig. 2. Parallel well examples. (a) General case. (b) w�r. (c) w�r.
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Fig. 3. (a) Cluster mass distribution P(m|r), for the percolation cluster for the two points case (w = 0),

for several values of r (r = 1; 2; 4; 8; 16; 32; 64). The line of slope −1:18 denotes the theoretical expectation.

(b) Scaling behavior of m∗, the most probable mass, as a function of r. The .tted slope of 2.61 is consistent

with the fractal dimension df = 2:54. (c) Plots of (a) collapsed using df = 2:61.
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Fig. 4. (a) Cluster mass distribution P(m|w) for (r= 0) for several values of w (w = 1; 2; 4; 8; 16; 32;

64; 128; 256; 512). (b) Scaling behavior of m∗ as a function of w. (c) Plots of (a) collapsed using df =2:55:
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Fig. 5. (a) Mass distribution P(m|w) for two parallel wells with r = 16 and w = 0; 1; 2; 4; 8; 16; 32; 64.

(b) Scaling behavior of m∗ versus w for r = 4 (circles) and for r = 16 (squares).

This form is consistent with the scaling of the cluster mass (Figs. 3(c) and 4(c)). That

is, if

r′ ≡ �r ;

w′ ≡ �w ; (5)
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then

m∗(r′; L′) =

[

f

(

r′

w′

)

r′
]df

=
[

f
( r

w

)

�r
]df

= �dfm∗(r; L) : (6)

Having con.rmed above that the numerical results of our obey scaling, m∗(r; L) can

be written as,

m∗(r; L) =
[

ar + g
( r

w

)

w
]df

; (7)

since w and r become irrelevant variables for r�w and r�w, respectively. Thus we

expect

g
( r

w

)

→

{

0 r�w ;

constant r�w :
(8)

4.2. Non-parallel wells

We now study non-parallel wells. The results for the mass probability distribution

P(m | �) are shown in Fig. 6(a). We .nd that the power-law regime is consistent with

a slope −1:18 independent of �, We consider also the peak of these distributions,

analyzing how m∗ evolves with �. Fig. 6(b) shows the dependence of m∗ vs. �. m∗

increases rapidly for small values of �, and for larger � asymptotically approaches a

limiting value at, �= �.

We now suggest a functional form for the dependence of the characteristic mass m∗

on �. Without loss of generality we can write

m∗(�) = m∗(0)[f(�)]df : (9)

Since the con.guration for � = � is simply a single straight line twice the length of

the single line for �= 0, we expect

m∗(�) = m∗(0)2df : (10)

We then are motivated to write

m∗(�) = m∗(0)[1 + g(�)]df ; (11)

where g(�) is monotonic and

g(0) = 0

and

g(�) = 1 :

A .rst guess at a functional form for g(�) is some power of sin(�=2) but no power

seems to .t the data of Fig. 6(b) well. A functional form that .ts better is

h(�) = sin

[

�

2
sin

(

�

2

)]0:4

: (12)
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Fig. 6. (a) Mass distribution P(m|�) for r = 0 and w = 32 for the percolation cluster to the general non

parallel wells for several values of the angle �. (b) Corresponding scaling behavior of m∗ versus �.

The .nal functional form for m∗(�) is thus

m∗(�) = m∗(0)

(

1 + sin

[

�

2
sin

(

�

2

)]0:4
)df

; (13)

where the exponent 0.4 is obtained by the power law .t in Fig. 7(a). We note that there

is no a priori justi.cation for this form; it simply satis.es the appropriate boundary
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Fig. 7. (a) Determination of exponent in Eq. (11), where x≡ sin[(�=2) sin(�=2)]. (b) Comparison of func-

tional form m(�) (solid line) versus observed data.

conditions and .ts the simulation results reasonably well, as shown in Fig. 7(b). This

simple expression relating cluster mass with the angle of the two lines provides impor-

tant information for the orientation of wells designed to intersect the largest possibly

cluster mass from which they might extract oil.

5. Discussion

We have analyzed the distributions of cluster mass for various con.gurations of

2-line 3d percolation clusters. The cluster mass distributions are independent of the

angle � between the lines, in contrast to the dependence of the power-law regime

exponent of the cluster backbone mass distribution [16] and the power-law regime

exponent of the shortest path between two lines [13]. Our experimental discovery that

the power-law regime exponent for some quantities is dependent on � and for other

quantities is independent of � is still not understood.

The dependence of the power-law regime exponent of the cluster mass distribution in

restricted spaces-wedges of angle �-has been predicted by Cardy for 2d using conformal

invariance arguments [22]. These con.gurations are di1erent from the con.gurations we

study here in which the space is not restricted; rather we investigate clusters between
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Fig. 8. Cluster mass distribution P(m) in 2 dimensions for clusters starting from one point, clusters connecting

two lines with �=90◦, w=32 and r=0, and clusters growing in a wedge bounded by two lines intersecting

at an angle of 90◦. The power-law exponents for clusters starting at a point and connecting two lines are

the same, whereas the power-law exponent for clusters growing in restricted space is signi.cantly larger.

two lines oriented at angle �. In order to con.rm the di1erence of these con.gurations

we have performed 2d simulations, the results of which are plotted in Fig. 8. Three

simulations were performed in 2d at the percolation threshold using the techniques

discussed above. In the .rst simulation, clusters were grown from a single point in

space. In the second simulation, clusters were grown between two lines with r=0; w=

32 and � = 90◦ in space. As found in 3d, the slopes of the power-law regime of the

distribution of cluster size in these two simulations are the same. The slopes of both

power-law regimes for these two simulations shown in Fig. 8 are ≈1:05, consistent

with the 2d value of �− 1 = 96
91

[1]. In the third simulation, designed to reproduce the

geometry of Cardy’s calculation [22], the clusters were grown in space restricted to a

90◦ wedge; for this case the power-law exponent of the cluster mass is 1.35, see Fig. 8.

These results demonstrate that our con.gurations are di1erent from those of Cardy-our

lines oriented at �=90◦ to each other are embedded in space and the cluster can grow

past them, whereas the lines in Ref. [22] form two boundaries of space and clusters

cannot cross them. Thus, the results of [22] do not presently provide insight into the

percolation behavior discovered in this study; however other applications of conformal

invariance theory may possibly provide the key to understanding the � dependence of

the exponents observed in this paper.
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