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Fairness plays a key role in explaining the emergence and maintenance of cooperation. Opponent-oriented
social utility models were often proposed to explain the origins of fairness preferences in which agents take
into account not only their own outcomes but are also concerned with the outcomes of their opponents. Here,
we propose a payoff-oriented mechanism in which agents update their beliefs only based on the payoff signals
of the previous ultimatum game, regardless of the behaviors and outcomes of the opponents themselves.
Employing adaptive ultimatum game, we show that �1� fairness behaviors can emerge out even under such
minimalist assumptions, provided that agents are capable of responding to their payoff signals, �2� the average
game payoff per agent per round decreases with the increasing discrepancy rate between the average giving
rate and the average asking rate, and �3� the belief update process will lead to 50%-50% fair split provided that
there is no mutation in the evolutionary dynamics.
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Understanding the evolution of cooperative behavior is
one of the greatest challenges in the modern biological and
social sciences. Fairness plays a key role in explaining the
emergence and maintenance of cooperation in evolving
populations. In order to punish unfair behaviors, humans are
even willing to forego material payoffs �1�. Such fairness and
other-regarding preferences have been widely studied by us-
ing the ultimatum game �2�. In the standard version of the
ultimatum game, two players are given the opportunity to
split a sum of money. They are assigned the role of either
proposer or responder. The proposer makes an offer on how
to divide this money and the responder can then accept or
reject the proposer’s offer. If it is accepted, the money is split
as proposed, whereas if it is rejected, then neither player
receives anything. The canonical economic model of pure
self-interest predicts that the proposer will offer the smallest
share possible and that the responder will accept any positive
offer because the alternative is a zero payoff. However, ulti-
matum game literature indicates that, irrespective of the
monetary sum, proposers typically make offers of 40% to
50% and responders routinely reject offers under 20% �3�.
Furthermore, this kind of inequity aversion may not be
uniquely human quality. Once being put under conditions
similar to those of humans, animals would also behave like
humans, if they are able to grasp the fundamental aspects of
these conditions. For example, brown capuchin monkey re-
sponded negatively to unequal reward distribution in ex-
changes with a human experimenter �4�. There is a volumi-
nous literature discussing the cultural, social, and genetically
evolutionary origins of the observed fairness preferences, in
which all players are capable of comparing their own efforts
and payoffs with those of others �5–7�. However, remember-
ing opponents’ payoffs or reasoning out a better strategy is a
difficult task for most nonhumans with extremely low intel-
ligence. Therefore, we need to reduce the complexity of the
rules, which an individual, animal, or human, must be able to
grasp in order to show fairness behavior in the ultimatum
game. This paper develops an adaptive ultimatum game
model in which agents are only required to react adaptively
to their own payoff signals of the previous ultimatum game.

Unlike those opponent-oriented models, agents are not re-
quired to have remembering or reasoning capability. Based
on computer simulations, the results show that fairness be-
haviors can always emerge from zero intelligence agents.
The ultimatum game will even reach at 50%-50% fair split if
there is no mutation in the evolutionary dynamics.

To show how our payoff-oriented model can lead to the
emergence of fairness behaviors, we introduced the adaptive
ultimatum game and studied it from the perspective of evo-
lutionary game theory. Different from the published litera-
ture, we shift our focus on fairness behavior rather than on
fairness sense. The opponent-oriented concept of fairness
sense is related to player’s subjective understanding of the
equity of the situation. Such subjective approaches might
work in studying humans, but are impossible in studying
nonhumans. Fairness behavior method relies on the informa-
tion provided by players’ behavioral reactions to inequitable
situations. It is a more general concept and can be applied to
study both humans and nonhumans �8�. Similar to the adap-
tive dynamics framework to describe evolutionary ultimatum
game in Refs. �9,10�, fairness behaviors can be characterized
by agents’ willingness to give to and anticipation to receive
from their opponents. For a given monetary sum, the agent
acting as proposer will offer its own giving rate p of the total
money and the agent acting as responder will reject any offer
smaller than its own asking rate q of the total money. With-
out loss generality, we set the total money to 1. The values of
p and q, called as a player’s strategy in Ref. �9�, can repre-
sent agents’ internal beliefs about how to respond to external
payoff signals. Evidently, we can observe more fairness be-
haviors when p and q are more close to 0.5. In our adaptive
ultimatum game, we assume agents with little intelligence so
that we can uncover the evolutionary mechanism of fairness
from the view of population dynamics of zero intelligence
agents �11�. In the evolutionary process of our adaptive ulti-
matum game, each agent makes offer or responds to other
agent’s offer only based on its internal belief value p or q.
Agents do not purposefully make any strategic offers that are
less likely to be refused. They also do not intentionally pun-
ish their opponents. For each ultimatum game, if the re-
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sponder’s asking rate q is not larger than the proposer’s giv-
ing rate p, the responder and the proposer obtain p and 1
− p of the monetary sum, respectively. Otherwise, the offer is
rejected and both agents obtain nothing. Without doubt, re-
jection is detrimental to both agents as it results in no earn-
ings. When the ultimatum game is finished, the proposer and
the responder update their beliefs simultaneously. If the re-
sponder accepts the proposer’s offer, the responder increases
its asking rate q but the proposer decreases its giving rate p
with small values. Conversely, if the responder rejects the
proposer’s offer, both agents update their beliefs in reverse
manners. Let qb and qa denote the responder’s asking rate
before and after playing the ultimatum game respectively; pb

and pa denote the proposer’s giving rate before and after
playing the ultimatum game. Two belief update mechanisms
are considered in this paper: �1� adding mechanism qa

=qb�v and pa= pb�v and �2� multiplying mechanism qa

=qb�1�v� and pa= pb�1�v�, where v is often a small con-
stant value.

Let us now describe the evolutionary dynamics of a popu-
lation consists of N agents with discrete generations. Agents
are located on a network which defines the neighborhood of
each agent. Considering that the interaction structure plays
an important role in the evolutionary dynamics of coopera-
tion and fairness �12–14�, we consider two kinds of networks
with average degree 2r in this work: random network and
scale-free network �15�. In each generation, each agent inter-
acts with all of its neighbors and is equally likely to be
proposer or responder. Then, each agent will be proposer on

average r times and be responder the same number of times.
After each agent has participated in all neighborhood pairing
ultimatum games, we consider that a game generation has
concluded and compute the cumulative game payoff of each
agent. Agents are reproduced on the basis of their total pay-
off obtained by adding a background payoff onto the cumu-
lative game payoff �16�. This is realized by comparing each
agent with another randomly chosen agent in the neighbor-
hood and giving an offspring to the one with the higher total
payoff. Then, this offspring occupies the site of the one with
the lower total payoff. Ultimatum game represents one kind
of interactions. The background payoff represents the contri-
butions to fitness that come from other kinds of interaction. It
is characterized by the background payoff coefficient k
which equals the background payoff divided by r. Like most
evolutionary models, each offspring is also subject to poten-
tial mutation which may change the offspring’s beliefs.
Given an agent with beliefs �p ,q�, its offspring will also hold
beliefs �p ,q� with probability 1−u and adopt beliefs with
values drawn at random in �0 0.5� with probability u.

Because agents update their internal beliefs after they ac-
complished each ultimatum game, it is too difficult to per-
form mathematical analysis. Therefore, we show the evolu-
tional dynamics only by computer simulations. One run of
the model consists of 100 agents and 1000 generations. Each
experimental condition is replicated 36 times. In all these
simulations the typical behaviors of the system are attained
less than three hundred generations and then persist stochas-
tically over the entire 1000 generation period history. That
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FIG. 1. �Color online� Typical population evolutionary dynamics of the first 200 generations in which each agent has average r=28 times
to be both proposer and responder in each generation. “R,” “S,” “A,” and “M” are the abbreviations of random network, scale-free network,
adding belief update mechanism and multiplying belief update mechanism, respectively. Scale-free networks are generated according the
Barabási-Albert model �15�. �a� The evolution process of the average giving rate p. �b� The evolution process of the average asking rate q.
�c� The evolution process of the average game payoff per agent per round R.
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full history is the basis of our reported averages. Our simu-
lation results show that the payoff-oriented mechanism can
readily lead to the emergence of fairness behaviors �see Fig.
1�. The average giving rate p and the average asking rate q
are the averages of the beliefs of all agents; the average game
payoff per agent per round R is obtained by using the cumu-
lative ultimatum game payoffs of all agents divided by Nr. If
one ultimatum game is successful, it will contribute payoff 1
to the whole population. Otherwise, the ultimatum game
contributes nothing to the population. Therefore, R corre-
sponds to the probability of the proposer’s off being ac-
cepted. The population starts with giving rate and asking rate
uniformly distributed over �0 0.5�, so the initial average giv-
ing rate and asking rate are 0.25, and the initial average
payoff per agent per round is 0.5. As we can see from Fig. 1,
there are some differences among the evolution speed, the
values of p, q, and R in the steady state, which are caused by
belief update mechanism, interaction structure, and param-
eter combination. However, all populations are able rapidly
to establish a substantial degree of fairness and evolve to the
steady state after 120 generations, regardless of adding or
multiplying belief update mechanisms, random or scale-free
networks and different parameter values. Unlike other direct
or indirect reciprocal evolutionary models required that all
players are capable of comparing their own efforts and pay-
offs with those of others �4,9�, our results indicate that fair-
ness behaviors, like cooperative strategies �17�, can evolve
even under such minimalist assumptions, provided that
agents are capable of responding to their own payoff signals
of the previous ultimatum game.

Considering that the parameter r characterizes the average
number of ultimatum games each agent played with others in
one generation, bigger r implies that agents will have more
chance to adaptively adjust their internal beliefs. Therefore,
we need to examine the role of the parameter r in determin-
ing the fairness behaviors at steady state. As shown in Figs.
2�a� and 2�b�, both the average giving rate p and the average
asking rate q increase with increasing r, and the general
trend is close to the universal fairness behaviors 50%-50%.
However, the functional relationships between �p ,q� and r
are influenced by belief update mechanisms, interaction net-
works, and other parameters. Furthermore, we study the rela-
tive changes of p and q with increasing r by defining the
discrepancy rate between the average giving rate and the
average asking rate as d= �p−q� /q. Evidently, higher degree
of discrepancy rate implies the proposer’s willingness to of-
fer is much higher than the responder’s rejection level, which
leads to higher acceptance probability in the ultimatum
games. As shown in Fig. 2�c�, the discrepancy rate d de-
creases monotonically with increasing r. Therefore, the pa-
rameter r exerts opposite effects on the degree of fairness
and the acceptance probability of the ultimatum game.

Let us now examine the effects of the background payoff
coefficient k in establishing fairness. As agents’ fitness is
determined by the summation of the background payoff and
the ultimatum game payoff, the latter will play a less impor-
tant role in determining an individual’s lifetime fitness when
k becomes larger. Unfortunately, the effects of the back-
ground payoff are too sensitive to the interaction structure,
the belief update mechanism and other parameters. As shown
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FIG. 2. �Color online� Degree of fairness at steady state influenced by the average number of ultimatum games each agent played in each
generation. �a� Measured the average giving rate p as a function of the parameter r. �b� Measured the average asking rate q as a function of
the parameter r. �c� Measured the discrepancy rate d= �p−q� /q as a function of the parameter r.
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in Figs. 3�a�–3�c�, p, q, and d change only slightly with
increasing k when the scale-free network and the adding be-
lief update mechanism are used in computer simulations �see
curves labeled as “SA”�. However, p decreases and q in-
creases sharply with increasing k while the random network
and the multiplying belief update mechanism are used in
computer simulations �see curves labeled as “RM
v=0.001”�. It is difficult to conclude some consistent results
about how p and q are influenced by k. However, as shown
in Fig. 3�c�, there is a general trend that the discrepancy rate
d decreases with increasing k. This result suggests that the
background payoff might not exert direct influences on the
degree of fairness, but lead to suppress agents’ relative will-
ingness to offer more to and require less from their oppo-
nents. McNamara et al. first introduced the background fit-
ness contribution in evolutionary model and illustrated its
importance in the evolution of cooperation �16�. However,
our results show its importance might not be much signifi-
cant in the evolution of fairness.

In our model, each agent has average r times to be pro-
poser and responder in his lifetime. The average cumulative
game payoff divided by r is called as the average game pay-
off per agent per round R. Evidently, R also equals the prob-
ability of the proposer’s offer being accepted in one ultima-
tum game. Though larger r leads to higher p and q in steady
state, R decreases significantly with increasing r �see in Fig.
4�a��. Therefore, we can infer that higher degree of fairness
does not certainly improve the average game payoff per
agent per round. Mathematically, the acceptance probability
in ultimatum game can be computed based on the discrep-
ancy rate d if the probability distribution functions of random

variables p and q is known. Combining Figs. 2�c� and 4�c�,
we can conclude that larger r will degrade R by lowering d.
In other words, the number of ultimatum games played by
each agent in one generation influences the acceptance prob-
ability first, and then changes agents’ relative game payoffs.
The similar logic can also be applied to analyze the effect of
the background payoff coefficient. In the simulations with
SA, both d and R vary little with increasing k �see Figs. 3�c�
and 4�b�� and the corresponding curves in Fig. 4�c� are very
short. Conversely, in the simulations with “RM v=0.001,” d
and R decrease significantly with increasing k and the corre-
sponding curves are much longer.

Following we examine a special case by setting mutation
probability u=0, which means that there is no mutation in
the evolutionary dynamics. As we can see from Fig. 5, the
ultimatum game will reach at 50%-50% fair split, regardless
of different belief update mechanisms, interaction structures,
and parameter combinations used in simulations. In steady
state, the average giving rate, the average asking rate, and the
average game payoff per agent per round are all 0.5. We also
note that there are some differences in the evolution process
before the evolutionary dynamics reaches at the evolutionary
stability state. For example, the population will evolve to the
steady state more quickly with larger r. Considering that our
concerns are mainly focused on the steady state, we are not
planning to discuss those minor differences in this paper. We
should point out that R would be 1 rather than 0.5 if the
population evolves to an ideal state in which each agent
holds fairness beliefs �p ,q�= �0.5,0.5�. However, the popu-
lation will evolve toward, but never reach at the ideal state in
limited time because of the belief update mechanisms used in
our model.
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FIG. 3. �Color online� The average giving rate, the average asking rate, and the discrepancy rate shown as a function of the background
payoff coefficient at steady state. �a� Measured p as a function of the parameter k. �b� Measured q as a function of the parameter k. �c�
Measured d as a function of the parameter k.
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As we can see from Figs. 1–5, the interaction structure
plays a role in determining the evolution process, the degree
of fairness and the average game payoff per agent per round
in steady state. Roughly speaking, compared with random
networks, the evolutionary dynamics evolves to the steady
state more quickly, and leads to higher degree of fairness and
lower average game payoff per agent per round when agents
are located on scale-free networks.

As incorporated adaptive dynamics in one generation and
evolutionary dynamics among generations, our model ex-
tends the insight of Nowak et al. �9� by reducing the require-
ments for the participating agents: both the proposer and the
responder take action only based on their own internal be-
liefs. Unlike the empathy model required that a fixed propor-

tion of agents employing strategies with p=q �18�, the initial
values of agents’ giving rate and asking rate are chosen at
random, and then update independently in the evolution pro-
cess. Furthermore, our results show that fairness behaviors
can emerge out regardless of the interaction structure, which
is different from structure dependent fairness models �13,14�.
In our model, the emergent fairness behaviors do not require
any agent being capable of remembering its previous inter-
actions with other agents, observing and recalling how the
other agents behaved with third parties �19�. Agents are only
required very limited adaptive capability of updating their
fairness beliefs based on their previous payoff signals. There-
fore, the payoff-oriented model could be widely applicable in
situations where agents are nonhumans with extremely low
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FIG. 4. �Color online� The average game payoff per agent per round influenced by the number of ultimatum games and the background
payoff coefficient. �a� Measured R as a function of the parameter r. �b� Measured R as a function of the parameter k. �c� Measured R as a
function of the discrepancy rate d when r changed from 4 to 40. �d� Measured R as a function of the discrepancy rate d when k changed from
0 to 0.5.
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FIG. 5. �Color online� Typical population evolutionary dynamics of the first 400 generations with mutation probability u=0. �a� The
evolution process of the average giving rate p. �b� The evolution process of the average asking rate q. �c� The evolution process of the
average game payoff per agent per round R.
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intelligence. For example, there is ongoing debate about
whether chimpanzees are tolerant of unfairness. It was re-
ported that chimpanzees are sensitive to unfairness and are
negatively reciprocal �4�. However, other researchers’ experi-
ments have shown that chimpanzees are rational maximizers
when food was involved �20�. These conflicting experimental
phenomena can be reconciled in our model that chimpanzees
�agents� might not compare their own rewards and efforts
with those of others, but their fairness behaviors make
people to draw the conclusion that they are sensitive to un-
fairness.

In summary, our results have shown that fairness behav-
iors can be established and sustained in a population consists
of zero intelligence agents without any strategic reasoning

and memory. The evolutionary dynamics will lead to 50%-
50% fair split provided that there is no mutation. Higher
degree of fairness can be attained if agents have more chance
to play the ultimatum game with others in each generation,
but it does not certainly lead to higher acceptance probability
in the ultimatum game and higher average game payoff per
agent per round, which depend on the discrepancy rate be-
tween the average giving rate and the average asking rate
rather than on the absolute degree of fairness.
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