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Cascading Failures in 
Interdependent Networks with 
Multiple Supply-Demand Links and 
Functionality Thresholds
M. A. Di Muro1, L. D. Valdez2,3, H. H. Aragão Rêgo4, S. V. Buldyrev5, H. E. Stanley6 &  
L. A. Braunstein1,6

Various social, financial, biological and technological systems can be modeled by interdependent 
networks. It has been assumed that in order to remain functional, nodes in one network must receive 
the support from nodes belonging to different networks. So far these models have been limited to the 
case in which the failure propagates across networks only if the nodes lose all their supply nodes. In 
this paper we develop a more realistic model for two interdependent networks in which each node has 
its own supply threshold, i.e., they need the support of a minimum number of supply nodes to remain 
functional. In addition, we analyze different conditions of internal node failure due to disconnection 
from nodes within its own network. We show that several local internal failure conditions lead to similar 
nontrivial results. When there are no internal failures the model is equivalent to a bipartite system, 
which can be useful to model a financial market. We explore the rich behaviors of these models that 
include discontinuous and continuous phase transitions. Using the generating functions formalism, we 
analytically solve all the models in the limit of infinitely large networks and find an excellent agreement 
with the stochastic simulations.

Studying complex systems includes analyzing how the different components of a given system interact with each 
other and how this interaction affects the system’s global collective behavior. In recent years complex network 
research has been a powerful tool for examining these systems, and the initial research on isolated networks has 
yielded interesting results1–3.

A network is a graph composed of nodes that represent interacting individuals, companies, or elements of an 
infrastructure. Node interactions are represented by links or edges. Real-world systems rarely work in isolation 
and often crucially depend on one another4–10. Thus single-network models have been extended to more general 
models of interacting coupled networks, the study of which has greatly expanded our understanding of real-world 
complex systems. One intensive study of these “networks of networks” has focused on the propagation of failure 
among closely-related systems11–26. The great blackout of Italy in 2003 and the earthquake of Japan in 2011 were 
catastrophic events that demonstrated that breakdowns in power grids strongly impact other systems such as 
communication and transport networks, and that the failure of these networks in turn accelerates the failure of 
the power grid. The propagation of these “failure cascades” has received wide study in recent years11–21,27,28.

The simplest model of these systems consists of two interdependent networks in which nodes in one network 
are connected by a single bidirectional edge to nodes in a second network11. In this model a node is functional (i) 
if it belongs to the largest connected component (the “giant component”) in its own network (the internal rule of 
functionality) and (ii) if its counterpart in the other network is also functional (the external rule of functionality). 
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This original model has been extended to include localized and targeted attacks15,29–32 and mitigation13,25,26,33,34 and 
recovery strategies27,35. Recently it was found that the giant component membership requirement can be replaced by 
a weaker requirement of belonging to a cluster of a size larger than or equal to a threshold h*28. Alternatively, a het-
erogeneous k-core condition can be applied as an internal functionality condition in which node i is functional when 
at least ki

⁎ nodes among its ki immediate neighbors remain functional36–40. In this model the random failure of a 
critical fraction of nodes in an isolated network leads to an abrupt collapse of this network.

Although the original interdependent network model expanded our understanding of different coupled sys-
tems, the single-dependency relationship between nodes in different networks does not accurately represent what 
happens in real-world structures. A cascading failure model of a network of networks with multiple dependency 
edges has been applied to a scenario in which nodes fail only when they lose all their support nodes in the other 
network14,17, but nodes in complex real-world systems can be so fragile that the loss of a single support link can 
cause them to shut down. More generally, each node may require a certain minimal number of supply links con-
nected to the nodes in the other network to remain functional. In the world-wide economic system, for example, 
banks and financial firms lend money to non-financial companies who must pay the amount back with interest 
after a stated period of time. If a single non-financial company becomes insolvent, the bank that lent money to 
this company will likely not fail, but if the number of companies that cannot pay back their loans is sufficiently 
large, the possibility of bank failure becomes real. This resembles the k-core process in a single network described 
above.

Here we model the process of cascading failure in a system of two interdependent networks A and B in which 
nodes have multiple connections or supply-demand links between networks. In the following, network X means 
either network A or B. Each node i in network X has ksX,i supply nodes in the other network that are connected 
to node i by supply links. This node remains functional at a certain stage of the cascade of failures if the number 
of its functional supply nodes in the other network remains greater or equal to its supply threshold ksX,i

* ≤ ksX,i. 
We call this the external functionality condition. We assume that a supply threshold is predefined for each node.

In principle, this model is non-trivial even if the survival of a node in network X does not directly depend 
on the internal connectivity of network X. In this case our model is equivalent to cascading failures in a bipartite 
network composed of two sets of nodes A and B connected only by supply-demand links, i.e., these networks only 
have external functionality. For generality, we add to the external functionality condition an internal function-
ality condition that can be one of the following: a node is functional (i) when it belongs to the giant component 
of its network (“giant component rule”), (ii) when it belongs to a finite component of size h that survives with 
probability 1 − q(h) (“mass rule”), and (iii) when a node i with internal connectivity ki has a number of functional 
neighbors greater than or equal to ki

* (“k-core rule”).
We develop a theoretical model that is solved using the formalism of generating functions. We present numer-

ical solutions and compare them with stochastic simulations. We find that for all internal rules of functionality, 
increasing the ksX

⁎  value increases system vulnerability and often causes a discontinuous transition. For the mass 
rule of internal functionality we find a continuous transition for some parameter values. We also study the asymp-
totic limit of a large number of supply links, and we find a relation between the critical threshold of initial failure 
and the ratio ⁎ksX/ksX.

Model
We assume that the system consists of two networks A and B with internal degree distributions PA(k) and PB(k), 
respectively, where k is the degree of a node within its own network. Each node i in network A is supplied by 
ksA,i supply links from nodes in network B, and each node j in network B has ksB,j demand links that act as supply 
links for nodes in network A. For simplicity we assume that the demand links in network A serve as supply links 
for nodes in network B, and that supply links in network A serve as demand links for nodes in network B. Thus 
each supply-demand link is a bidirectional link that connects a node in network A with a node in network B. If 
the internal degree of all nodes in networks A and B is zero, our model is equivalent to a bipartite network. We 
assume that the degree distribution of supply-demand links in network A is PsA(k) and the degree distribution of 
supply-demand links in network B is PsB(k). In principle, some nodes may not have supply links and still remain 
functional13. If this is the case, PsA(0) > 0.

The functionality of the nodes in both networks is related to their connections within their own network, 
which we call the internal rule of functionality. In addition, the state of the nodes also depends on the supply 
demand links that connect both networks, which we call the external rule of functionality.

We study three different internal rules of functionality:

	(I)	 Model I (The “giant component” rule): nodes that belong to the giant component in their own network are 
functional.

	(II)	 Model II (The “finite component” or “mass” rule): a finite component of size h remains functional with a 
probability 1 − q(h). If it fails, all of its nodes fail. If it survives, all of its nodes remain functional.

	(III)	Model III (The “k-core” rule): a node i with internal connectivity ki remains active if the number of its 
functional neighbors is greater than or equal to ki

⁎.

The external rule of functionality states that nodes in network X must be connected with the other network 
through a number of functional supply links greater than or equal to ksX

⁎ .
We call ksX i,

⁎  the supply-demand functionality threshold of node i, since in principle the threshold may be 
different for different nodes. For conceptual simplicity, we assume that the supply thresholds are predefined for 
each node by random selection from a cumulative probability distribution rsX(j, k) = P(ksX

⁎  ≤ j|ksX = k), where P(|) 
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is the conditional probability. Alternatively, function rsX(j, k) can be understood as a probability that a node with 
k supply links remains functional if j of its k supply nodes in the other network remains functional.

For example, in the case of a uniform supply threshold ksX
⁎  = m where m is a constant, the distribution rsX is a 

step function, i.e., rsX(j, k) = 0 for j < m and rsX(j, k) = 1 for j ≥ m. Another option is linear: rsX(j, k) = j/k. For 
autonomous nodes that can survive without any functional supply nodes in the other network, ⁎ksX = 0. This case 
is included in the general scheme if we assume that rsX(0, ksX) > 0.

Figure 1a shows a schematic of the internal rules of functionality, and Fig. 1b,c show a schematic of the exter-
nal rules of functionality. In each network green nodes are functional, i.e., they satisfy both internal and external 
conditions of functionality. Red nodes are affected by the initial failure, blue nodes do not satisfy internal condi-
tions of functionality and pink nodes do not satisfy external conditions of functionality. Internal links are black, 
and supply links are orange. Here we use PsA(k) = PsB(k) = δk,3, but for simplicity in Fig. 1b,c we omit the internal 
links and some of the supply-demand links in network A. For example, in Fig. 1b node A3 has two additional 
supply nodes from network B that are not shown. Figure 1b shows the case ks,i

* = 1 for all i. Note that since all 
nodes in network B receive supplies from functional node A0 they are unaffected when other nodes in network 
A fail. On the other hand, Fig. 1c shows that when ks,i

* = 2 all nodes must have two functional supply nodes from 
the other network to remain functional. Nodes B2 and B3 are connected to A0, receive supplies from functioning 
nodes A3 and A6, respectively, and remain active. On the other hand, because node B1 is only supported by node 
A0, it fails, as indicated by the pink color.

Theoretical approach
We construct a system of two randomly connected networks in which connectivity links within each network 
follow degree distributions PA(k) and PB(k) and supply-demand links between the networks follow distributions 
PsA(k) and PsB(k). For this system we achieve a theoretical solution within the limit of a large number of nodes, 
NA and NB, where NA and NB are the number of nodes in networks A and B, respectively. The bidirectionality of 
the supply-demand links requires that relation NA〈k〉sA = NB〈k〉sB is satisfied, where 〈k〉sA and 〈k〉sB are the average 
degrees of the supply links in networks A and B respectively.

When we randomly remove a fraction 1 − yX of nodes from network X, the remaining fraction of active nodes 
μX for an isolated network X is determined by which internal functionality rule is followed. It can be expressed 
in the closed-form expression μX = yXgX(yX), where gX(yX) ≤ 1 is an exacerbation factor that takes into account 
additional node failures triggered by the random removal of a fraction of 1 − yX nodes. The explicit form of this 
factor is determined by the internal functionality rules of the model. The Supplementary Information presents 
equations for gX for Rules I, II, and III (see Supplementary Information: section Explicit form of the functionality 
rules). For example, for a bipartite network gX(yX) = 1.

Figure 1.  Schematic of the rules of functionality of the model. Black links represent internal connections and 
orange links the supplies between networks. The state of the nodes varies according to their color: functional 
nodes ( ), nodes that do not fulfill the internal rule of functionality ( ) and nodes that fail due to the initial 
damage ( ). In addition, we have nodes that externally fail because they do not get enough supply from the 
other network ( );. In panel (a) we show the three internal rules of functionality for a node i (marked with the 
blue arrow) to be functional: (I) it must be connected to the GC (represented by the ∞ symbol), (II) it must 
belong to a component of size h which survives with probability 1 − q(h) (in this case k* ≡ ki

*), or (III) it must 
have a number of neighbors equal to or greater than k* ≡ ki

* (we show k* = 2). In panel (b) we show the external 
rule of functionality for ks

* = 1, and ks
* = 2 in panel (c). In these cases PsA(k) = PsB(k) = δk,3, however, not all 

supplies are shown, nor are the internal connectivity links.
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The cascading process begins with a random failure in network A. This failure causes an additional loss of 
nodes determined by the exacerbation factor. This event triggers a cascade in which failure is transmitted back 
and forth between networks A and B through the supply-demand links, and this further decreases the fraction of 
functional nodes. The external functionality rule states that node i with ks,i supply-demand links must have ks i,

⁎  or 
more nodes to remain functional, similar to k-core percolation.

External functionality failure is similar to heterogeneous k-core percolation37. To describe this failure due 
to a lack of supply between networks A and B, we introduce the functions WsA(x),WsB(x) and ZsA(x),ZsB(x), 
which are the k-core generating functions of the degree distribution and the excess degree distribution of the 
supply-demand links in networks A and B, respectively. These functions depend on the degree distributions PsA 
and PsB of supply-demand links and the distribution of the thresholds rsA(j,k) and rsB(j,k) of the supply-demand 
links in networks A and B,
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where 〈ks〉X is the average number of supply links per node in network X. In this context β is the probability that a 
functional node will be selected. Similar formulas were derived in ref.41 for a variant of the Watts opinion model42.

We next examine a theoretical approach to the temporal evolution of the cascading process. As explained 
above, initially a randomly selected fraction 1 − p of nodes fails in network A. Then the surviving fraction of 
nodes in network A in this first stage of the cascade is μA,1 = pgA(p). We introduce a new parameter fB, which is the 
probability of randomly choosing a supply link that is connected to a functional node in the other network. When 
a node fails, all its demand links also fail. Thus fB,1 = μA,1.

After applying the external functionality rule to network B, the fraction of nodes that fulfill the conditions is 
given by yB,1 = WsB(fB,1). Because there are additional disconnected nodes in network B given by the exacerbation 
factor gB, the number of functional nodes in network B at the first stage of the cascade is μB,1 = yB,1gB(yB,1). In 
the second stage of the cascade we cannot apply the same rules to obtain μA,2, because fA,2 ≠ μB,1. If, for exam-
ple, a supply-demand link connects nodes i in A and j in B, then the probability that this link is active depends 
on how many other links belonging to nodes i or j are active. Thus the fraction of surviving links at this step is 
fA,2 = ZsB(fB,1)gB(yB,1).

Thus the recursion relations for the stages n > 1 are
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are the fractions of nodes that satisfy the external rule of functionality, i.e., randomly removing a fraction of 
1 − yX,n nodes leaves the same number of functional nodes as in stage n of the cascade. The fractions of functional 
nodes at stage n of the cascade are
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The process begins with fA,1 = 1 and yA,1 = p, which is equivalent to an initial random failure on network A.

Results
We next present these theoretical results using several simple examples and verifying them with stochastic 
simulations.

To test the validity of the equations, Fig. 2 shows the temporal evolution of the order parameter of networks 
A and B close to the critical threshold pc, computed using the equations and stochastic simulations when the 
giant component functionality rule is applied (see Supplementary Information: subsections Giant Component 
and Numerical Solution for the threshold pc). Note that the plots show the simulation results are in total agreement 
with the theoretical results.

Figure 3 shows a plot of μA and μB in the steady state as a function of the initial fraction of surviving nodes 
p when the giant component rule is applied. The results for the k-core rule are shown in the Supplementary 
Information. We use two random regular (RR) networks with a degree distribution PX(k) = δk,5, with X = A, B, 
and where the distribution of supplies is also RR with Ps,A(k) = Ps,B(k) = δk,5. For the external rule of functionality 
we use rsX(j, k) = 0 if j < m and rsX(j, k) = 1 if j ≥ m for all m from m = 1 to m = 4. The results obtained from the 
equations (dashed lines) agree with the results of the simulations (symbols). In addition we compare the results of 



www.nature.com/scientificreports/

5Scientific Reports | 7: 15059  | DOI:10.1038/s41598-017-14384-y

the present model with the results of the original model of cascading failures11 shown as a dashed-dotted line in 
which PX(k) = δk,5, but Ps,A(k) = Ps,B(k) = δk,1 and m = 1.

Note that in network A the order parameter for all values of ks
* is proportional to p until it begins to drop and 

become close to the critical threshold pc. This means that the depletion of the supply from network B does not sig-
nificantly impact network A until it reaches the collapse threshold at which the system breaks down with a discon-
tinuous transition. We calculate this critical value numerically using the generating functions (see Supplementary 
Information: section Numerical solution for the threshold pc). Note also that, as expected, the behavior of network 
B is different. Because there is no initial random failure in network B, it remains more intact than network A. 
When network A crumbles, however, both networks collapse. Thus despite its damage being minor the transition 
in network B is more abrupt, more unexpected, and, therefore, more dangerous. This is the key difference between 
the present mode and the original model11 in which the behaviors of network A and B are identical. In addition, 
note that the system is more resilient when ks

* is smaller, i.e., when the supply level decreases. We also observe 
that the interdependent system with only one supply-demand link (the dashed-dotted line) is more resilient than 
a system with more connections between the two networks, but with large functionality thresholds m ≥ 3.

If instead of the giant component we apply the k-core as an internal functionality rule we get the same qual-
itative results. For different values of k* and ks

* the order parameters also undergo a discontinuous transition, 
and the system becomes more vulnerable when the threshold of internal links and the threshold of supply links 
increases (see Supplementary Information: section k-core Percolation).

When applying the “mass” rule, finite components of size h in network X survive with a probability 1 − qX(h). 
When all nodes have a single supply-demand link, i.e., when ks = 1 and ks

* = 1, and all finite components of size 
greater than or equal to h = 2 are preserved, the system undergoes a continuous transition28. Here qX(1) = 1 and 

Figure 2.  Temporal evolution, close to the critical threshold, of the giant component μA(n) and μB(n) of 
networks A and B, when both are random regular (RR) networks with delta degree distribution PX(k) = δk,5, with 
X = A,B. The degree distributions of supply links are also delta-distributions with PsA(k) = PsB(k) = δk,5 and 
ks

* = 2. The critical threshold for this system is pc = 0.381. (a) p = 0.38, (b) p = 0.381. Network A (○, ), 
Network B ( , ). The dashed lines are the results from the equations and the symbols are the results from the 
stochastic simulations.

Figure 3.  Two random regular (RR) networks with PA(k) = PB(k) = δk,5 and PsA(k) = PsB(k) = δk,5 and system size 
N = 105 for different values of required supplies, ⁎ksX = 1 (○), ksX

⁎  = 2 ( ), ksX
⁎  = 3 ( ), ⁎ksX = 4 ( ), as a function 

of the initial fraction of survived nodes p. Also shown two RR networks with PA(k) = PB(k) = δk,5, but 
PsA(k) = PsB(k) = δk,1, ⁎ksX = 1 ( ). The symbols are the results of the stochastic simulations and the lines are the 
iterated values obtained by equations (3–5). The dashed-dotted lines represent only the theoretical results since 
they have been obtained in Ref.11. In panels (a) and (b) we show the order parameter of network A and B, μA and 
μB, respectively for the giant component rule.
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qX(h) = 0 for h ≥ 2. If the number of supply links increases and the threshold ks
* = 1 is fixed, the system becomes 

more resilient and the transition remains continuous. In contrast, if all the components of size h = 2 are removed 
[qX(2) = 1] the transition becomes discontinuous irrespective of the number of supply-demand links connecting 
the networks. Nevertheless, not all the components of size h = 2 need to survive to have a continuous transi-
tion. Figure 4 shows the order parameters for q(2) = 0.3 and q(2) = 0.85 when qA(h) = qB(h) = q(h). Note that 
when q(2) = 0.3 the transition is continuous even when some of the components of size h = 2 are deleted. When 
q(2) = 0.85 the number of surviving h = 2 components is insufficient to prevent an abrupt transition.

Thus when ks
* = 1 there is a critical value of q(2) = qc(2) that separates the zone of continuous transition from 

the zone of discontinuous transition. Figure 5 shows a phase diagram for a system of networks following the 
“mass” rule with an internal distribution PA(k) = PB(k) = δk,5 and supply distribution PsA(k) = PsB(k) = δk,ks. Note 
that the behavior of the critical probability as a function of the number of supply-links ks between the networks 
delimits these two zones. As ks increases the system becomes more robust, and more components must fail to 
cause an abrupt transition. In the limiting case ks → ∞ the curve reaches the value qc(2) = 1, but also pc → 0. On 
the other hand, when ks

* > 1 the transition is always discontinuous for any value of q(s) and sufficiently large ks.
What happens if no internal functionality rule is applied? This could be the case in a bipartite system in which 

nodes within each network do not interact but use nodes in the other network as bridges to establish connections. 
Here the exacerbation factor is simply gX(y) = 1, which simplifies the equations. If we analyze this system for dif-
ferent functions rsX(j,k) (see Supplementary Information: section Examples of rsX(j,k) functions) we see that if 
rsX(j,k) is a step function with fixed threshold ⁎ksX  = 2, the transition is continuous, but it is discontinuous for 

Figure 4.  Order parameters for the “mass rule”, for a system of networks with internal distribution 
PA(k) = PB(k) = δk,5, supply distributions PsA(k) = PsB(k) = δk,2 and thresholds kA

* = kB
* = 1. All the components 

of size h = 1 are deleted (q(1) = 1), and all the components of size h ≥ 3 are preserved 
(q(3) = q(4) = ... = q(hmax) = 0 where hmax is the maximum value of h). The curves represent the case q(2) = 0.3 
(●, ), for which there is a continuous transition, and q(2) = 0.85 ( , ), which leads to an abrupt 
breakdown of the order parameter. The dashed lines represent the theoretical results and the symbols the 
stochastic simulations. (a) Network A, (b) Network B.

Figure 5.  Phase diagram that shows the continuous and discontinuous transitions zones when the “mass rule” 
is applied. The curve represents the critical probability of failure of the components of size h = 2 as a function of 
the number of the supply-demand links. In this case PA(k) = PB(k) = δk,5, PsA(k) = PsB(k) = δk,ks and ksA

* = ksB
* = 1. 

For clarity, the ks axis is shown on a log scale.
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ksX
⁎  > 2, and there is no transition for p > 0 if ksX

⁎  = 1. Also if we choose a linear function, i.e., rsX(j, ksX) = j/ksX, there 
is again no transition because here functions Ws(β) and Zs(β) become linear functions of β. On the other hand, 
when the function rsX is by nonlinear, the behavior changes. Figure 6 shows the behavior of the order parameter 
of network A for a polynomial function rsX(j, ksX) = 3(j/ksX)2 − 2(j/ksX)3 and for a supply-demand distribution 
Ps,X(k) = δk,ks. Note that for small values of ks the order parameter moves smoothly to zero but for ks = 8 the system 
undergoes a discontinuous transition. The existence of these transitions can be explained studying Eqs (3) and (4) 
(see Supplementary Information: section Numerical solution for the threshold pc).

Unlike the previous results, the transition here does not produce a total collapse of the system, and after the 
jump a small fraction of nodes remains functional for any p > 0. If a delta-distribution of supply links is replaced 
by the Poisson distribution with 〈ks〉X = λ, we find a critical point on a (p, λ) plane λc = 7.58465, pc = 0.728102 
at which the first order phase transition emerges. For λ > λc the transition is first order and for λ < λc there is no 
phase transition for p > 0. At this point the system belongs to the mean-field universality class, such as the Ising 
model in infinite dimensions where p corresponds to the ordering field and λ to the thermal field.

We next analyze the limiting case of large ks values when all nodes in network B have a fixed threshold ksB
*, and 

we find that the collapse threshold pc converges to a value determined by the ratio γ ≡ ksB
*/ksB given by

γ = p g p( ), (6)c A c

which is valid for all of the internal failure rules.
The pc value depends on γ in this limit because when 〈ksX〉 → ∞ the functions WsB(β) and ZsB(β) become step 

functions equal to 0 for β < γ and to 1, otherwise. Note that γ only relates to the external properties of network B, 
but that the value of pc depends solely on the topology of network A. This is because network B is intact above pc, 
but when p < pc all the supply-demand links maintaining the integrity of network B fail and the entire structure 
crumbles. Thus here the topology of network B does not affect the final state of the system. See Supplementary 
Information: section Asymptotic properties of the functions Ws and Zs for the derivation of Eq. (6).

Figure 7 shows the behavior of Eq. (6) for each internal rule of functionality and for several values of internal 
connectivity zA in network A when it has an internal degree distribution PA(k) = δk,zA. Note that all curves go to 
pc = 1 when γ → 1, i.e., k ksB sB

⁎ ∼ , and thus even a small perturbation can cause a system breakdown. In contrast, 
curves with higher zA values have lower pc values because increased connectivity means increased resilience. In 
addition, when γ → 0 then ⁎

k ksB sB, rendering the influence of network B on network A insignificant. Here 
network A behaves as an isolated system. We see this in the giant component rule [see Fig. 7a] in which pc → 1/
(zA − 1) as γ → 0, a value that corresponds to the critical threshold of node percolation43,44 in isolated RR net-
works. Similarly, for the “mass” rule we find that pc → 0 when γ → 0 because when there is an initial attack 1 − p 
on an isolated network there are always components of varying masses in the thermodynamic limit (with an 
infinite number of nodes). Thus for any size h there are always surviving components when p > 0.

If there is a Poisson internal degree distribution in network A, i.e., PA(k) = exp[−〈k〉A]〈k〉A
k/k! where 〈k〉A is 

the mean connectivity, we can write a closed-form expression for pc for the giant component rule,

γ
γ

=
− − 〈 〉

.p
exp k1 [ ] (7)c

A

Note that pc does not depend on the internal degree distribution of network B. The derivation of Eq. (7) is sup-
plied in the Supplementary Information: section Asymptotic properties of the functions Ws and Zs. On the other 
hand, if the system is bipartite then from Eq. (6) the critical value is simply pc = γ.

Figure 6.  Order parameter of network A as a function of the initial failure for a bipartite system and for a 
threshold function rsX(j, ksX) = 3(j/ksX)2 − 2(j/ksX)3. The supply-demand distribution is single valued with ksX = 3 
(▲), ksX = 5 ( ), ksX = 7 ( ), ksX = 8 ( ) and ksX = 10 ( ). For ks ≥ 8 there is a discontinuous transition. The 
curves were obtained from the equations.
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Discussion
We have analyzed the cascading failure process in a system of two interdependent networks in which nodes 
within each network have multiple connections, or supply-demand links, with nodes from their counterpart 
network. In this model each node must have at least a given number of supply-links leading to functional nodes 
in the other network to remain active. We call this number the supply threshold and we call this condition the 
external functionality rule. We have studied the process under three internal functionality rules, (I) nodes must 
belong to the giant component in their own network, (II) nodes that belong to a finite component survive with 
a probability determined by the mass of the component, and (III) an internal version of the external function-
ality rule, known as heterogeneous k-core percolation. In addition, we have studied a system in the absence of 
any internal functionality rule, which is equivalent to a bipartite network. Our system is a generalization of the 
models of interdependent networks11,13 that represent a particular case of our model with PsX(k) = 0 for k > 1 and 
a giant component rule of internal functionality. Our model shows a rich behavior for various parameter values 
that is characterized by the appearance of discontinuous first order transitions. In some cases, multiple first order 
transitions can be observed, a situation impossible in the original models11,13.

We have found that for all the internal functionality rules the system is more robust when the supply threshold 
is lower. Under internal rules I and III there is a discontinuous transition at a collapse threshold p = pc. The main 
difference between our model and the previously studied models11,13 is that in the case of multiple supply links the 
initial attack on network A does not immediately affect network B, and it remains more functional than network 
A for any p > pc. This makes the transition, when it occurs in network B, more abrupt than in network A. These 
sudden breakdowns can come without warning. In some catastrophic events, e.g., an earthquake of sub-threshold 
strength, the damage to network B may be minor and the development of precautions or recovery strategies thus 
deemed of minor importance. This becomes problematic when the strength of an earthquake exceeds a certain 
threshold and causes a total breakdown in network B. In contrast, in “mass” rule II for ks

* = 1 the transition can be 
continuous depending on the probability that components of size h = 2 remain functional and on the number of 
supply-demand links. For each value of ks there is a critical probability q(2) below which the transition becomes 
discontinuous.

When the model is applied to a bipartite system, the behavior is determined by function rsX. In particular, 
when this function is polynomial there is no transition in ksX ≤ 7, but when ks increases this curve breaks and 
becomes discontinuous.

Finally we have studied the asymptotic limit value of the number of supply-demand links, and find that when 
rsB is a step function there is an exact relationship between the ratio γ = ksB

*/ksB and the collapse threshold pc. We 

Figure 7.  Critical threshold pc as a function of γ = ksB
*/ksB for different values of zA, the internal connectivity of 

network A, where its internal degree distribution is RR. The curves represent different values of zA: zA = 3 (─), 
zA = 5 ( ) and zA = 10( ). Panel (a) corresponds to the Giant Component rule. Panel (b) corresponds to the 
“mass rule”, with q(h) = 1 for h = 1,2,3, and panel (c) to the k-core rule with kX

* = 2 Note that in panel (b) pc ~γ1/4 

when γ → 0, and thus corresponding curves appear finite even for very small γ > 0.
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also find that in this limit the resilience of the interacting system is enhanced up to the point at which the critical 
threshold pc is solely dependent on the topology of network A.

Methods
For the stochastic simulations we use for both networks a system size of N = 106 to compute the steady state and 
N = 108 for the temporal evolution close to the critical threshold (See Fig. 2). We use the Molloy-Reed Algorithm45 
for the construction of the networks. The simulation results are averaged over 1000 network realizations.

For model II, the “mass” rule, a finite component of size h survives with probability 1 − q(h). In the stochastic 
simulations if a finite component remains after the internal failure at a step of the cascade, then in the following 
steps of the cascade this component only can fail due to the external rule of functionality.

In our theoretical analysis, to calculate the values of the order parameters at the steady state we iterate the 
temporal evolution Eqs (3)–(5) until the condition μA ≡ μA,n = μA,n − 1 is satisfied. At this stage the magnitudes of 
all order parameters reach a steady state and no longer change.
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