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Insights into bootstrap percolation: Its equivalence with k-core percolation and the giant component
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K-core and bootstrap percolation are widely studied models that have been used to represent and understand
diverse deactivation and activation processes in natural and social systems. Since these models are considerably
similar, it has been suggested in recent years that they could be complementary. In this manuscript we provide a
rigorous analysis that shows that for any degree and threshold distributions heterogeneous bootstrap percolation
can be mapped into heterogeneous k-core percolation and vice versa, if the functionality thresholds in both
processes satisfy a complementary relation. Another interesting problem in bootstrap and k-core percolation is
the fraction of nodes belonging to their giant connected components P∞b and P∞c, respectively. We solve this
problem analytically for arbitrary randomly connected graphs and arbitrary threshold distributions, and we show
that P∞b and P∞c are not complementary. Our theoretical results coincide with computer simulations in the limit
of very large graphs. In bootstrap percolation, we show that when using the branching theory to compute the
size of the giant component, we must consider two different types of links, which are related to distinct spanning
branches of active nodes.
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I. INTRODUCTION

Threshold models have been used to theoretically describe
processes of contagion in social, financial, and infrastructure
networks [1–4]. Unlike the classic or simple epidemic models
used to describe the spread of infectious diseases, thresh-
old models require a node to have multiple transmissions
from neighbors before changing from an inactive-susceptible-
dysfunctional state to an active-infected-functional state, or
vice versa. These processes exhibit propagation of states as
cascades that lead to a first-order transition of differing magni-
tudes [5–8]. We can use these models to describe the spread of
innovation, information, and behavior among nodes because
they tend to change their state or behavior after interacting
with not one, but a group of other nodes [4,9,10]. For example,
Centola showed in an online social network experiment that
an individual tends to adopt a behavior after several neighbors
exhibit the same behavior [11]. A threshold model is an
activation process when the number of active nodes increases
with time and a deactivation process when it decreases.

*mdimuro@mdp.edu.ar

K-core percolation is one of the simplest threshold models
used to study the deactivation process [12]. In k-core perco-
lation all nodes are initially active. A fraction 1 − p of nodes
then becomes inactive or dysfunctional. The fraction of active
nodes after the initial failure, p, is the control parameter of the
model. Then a recursive rule is applied: if an active node i has
fewer than k∗

c active neighbors, it becomes inactive. If k∗
c is the

same for all nodes, then the process is called homogeneous
k-core percolation, if not, then it is called heterogeneous k-
core percolation [13]. In the k-core process, when all nodes
have a number of active nodes greater than or equal to the
threshold k∗

c , the process reaches a steady state. At this stage
the order parameter of k-core is the fraction of active nodes
or the fraction of nodes that belong to the largest connected
cluster or giant component (GC).

Dorogovtsev et al. [12] demonstrated that in the homoge-
neous k-core process the giant component equals the fraction
of active nodes, and that it exhibits a first-order transition
when computed for several values of initial failure p. In
addition, Baxter et al. [14] found that for heterogeneous k-core
there are finite clusters of active nodes at the steady state,
indicating that the fraction of nodes belonging to the GC is
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lower than the total fraction of active nodes. They also found
that for the same set of parameters the process can exhibit
simultaneously a continuous and a discontinuous transition
not observed in homogeneous k-core.

Bootstrap percolation is a simple threshold model often
used to study activation processes [15,16]. In this model all
nodes are initially inactive, except for a fraction f of nodes
that activate spontaneously. Then each inactive node becomes
active if it has at least k∗

b active neighbors. Analogous to
k-core, when k∗

b is the same for all nodes, the process is
homogeneous bootstrap percolation, and when it is not, the
process is heterogeneous bootstrap percolation. This acti-
vation process continues recursively until a steady state is
reached. Baxter et al. [14,16] found that the total fraction of
active nodes Sb exhibit a first-order transition at a critical value
fc1. Using a generating function formalism [17–20] they also
proposed equations for computing the fraction of active nodes
belonging to the GC, P∞,b, as a function of f , but they did
not compare their results with those of stochastic simulations.
We perform simulations of the bootstrap percolation process,
and find that the equations in Refs. [14,16] underestimate
the fraction of nodes that belong to the giant component.
Using the generating function formalism, we find the correct
solution for P∞b and show that Refs. [14,16] disregard some
activation events when the giant component is computed.

Although there are several variants for activation and deac-
tivation models, such as the Watts threshold model and gen-
eralized epidemic models [5,21–23], we here focus only on
the “canonical” processes of k-core and bootstrap percolation
explained above. For an extensive description of these models
see Refs. [24,25].

Baxter et al. [14] compared heterogeneous k-core and boot-
strap percolation and found that they have different structures
of active nodes, which suggests that these processes cannot
map each other. Miller [26] indicates that the two processes
are complementary because the behavior of active nodes in
heterogeneous k-core percolation is the same as that of inac-
tive nodes in heterogeneous bootstrap percolation. Miller pro-
poses that when mapping the two processes the relationship of
the node thresholds in k-core and bootstrap percolation must
be k∗

b = k − k∗
c + 1, where k is the node degree or the number

of node connections. In addition, Janson proves the relation
between these processes in random regular graphs [27]. How-
ever, this relation has not been proven mathematically for a
complex network of any degree distribution P(k), and for any
distribution of the activation-deactivation thresholds.

We here use a generating function formalism to examine
the bootstrap process theoretically and compare our results
with those from stochastic simulations. In Sec. II we describe
the equivalence between k-core and bootstrap percolation
for any degree distribution. In Sec. III we present equations
for computing the GC for bootstrap percolation that include
activation events not taken into account in Ref. [14]. Our
analytical results fully agree with our stochastic simulations.
Finally, in Sec. V we present our conclusions.

II. EQUIVALENCE BETWEEN BOOTSTRAP
AND K-CORE PERCOLATION

In a k-core percolation process, k∗
c is the threshold number

of active or functional neighbors below which an active node

becomes inactive. We assume that this threshold follows a
cumulative probability distribution rc( j, k) = P(k∗

c ! j | k)
[28], where k is the degree of the node and k∗

c is its functional-
ity threshold in k-core percolation. The function rc( j, k) is the
probability that a node with degree k has a threshold k∗

c lower
than or equal to j. We assume that at the beginning of the
k-core process, the threshold of any node is not larger than its
degree. Thus, initially, the system is stable, which is different
from the original definition of k-core [12]. We assume that as
a result of the initial attack, a fraction f = 1 − p of nodes are
destroyed and this initiates the process of cascading failures
at the end of which only the fraction of active nodes Sc(p) is
left.

To connect k-core and bootstrap percolation, we first de-
scribe how to use the generating function formalism to calcu-
late the fraction of active nodes in the k-core process.

When the process is in a steady state, if we follow a
randomly chosen link in one direction we will end up at a node
which we will call “target”, while in the opposite direction
we will reach a node which we will define as “root”. In
k-core percolation we then define Zc to be the probability of
reaching a target node with at least k∗

c − 1 outgoing active
neighbors when following a link chosen at random. Here an
outgoing neighbor node of the target node is any neighbor
node other than the root node. Note that root is assumed to
be in the active state, otherwise the node with k∗

c − 1 outgoing
active neighbors must fail according to the rules of the k-core
percolation. Following Ref. [28], the fraction of active nodes
Sc in the steady state for an initial failure of a fraction of 1 − p
nodes is

Sc = p!c(Zc, 1 − Zc). (1)

Here !c(Zc, 1 − Zc) is the probability that a random node
has a number of active neighbors greater than or equal to its
threshold. As a function of two arguments, x, and y, !c(x, y)
is defined as

!c(x, y) =
∞∑

k=0

P(k)
k∑

j=0

(
k
j

)
rc( j, k)x jyk− j . (2)

The parameter Zc satisfies a recursion equation,

Zc = p"c(Zc, 1 − Zc), (3)

and

"c(x, y) =
∞∑

k=1

kP(k)
⟨k⟩

k−1∑

j=0

(
k − 1

j

)
rc( j + 1, k)x jyk− j−1,

(4)
where ⟨k⟩ =

∑∞
k=1 kP(k) is the average degree of the

network.
On the other hand, in the bootstrap percolation process

a fraction f of nodes becomes active at the beginning of
the process. We call these nodes that activate spontaneously
the “seed” nodes, because they trigger the activation cascade
of the inactive nodes, forming extensive branches of active
nodes. Naturally, we define nodes that were not activated
initially as “non-seed”.

After the initial activation, a non-seed node with a degree k
becomes active if the number of its active neighbors j satisfies
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FIG. 1. Bootstrap and k-core percolation processes developed on a randomly generated network. The bootstrap threshold for a node with
degree k is k∗

b = ⌊k/2⌋ + 1, where ⌊x⌋ denotes the integer part of x. If we set the seed nodes in bootstrap as initially failed nodes in k-core,
then if k∗

c = k − ⌊k/2⌋, according to Eq. (5), then both process are complementary. All non-seed nodes activated in bootstrap coincide with
deactivated nodes in k-core, and all non-seed nodes that were not activated in bootstrap are the same as those that remained active in the k-core
process. The numbers indicate the thresholds corresponding to each process. Figure adapted from Ref. [26].

j " k∗
b , where k∗

b is the bootstrap functionality threshold.
Similar to k-core percolation, the cumulative distribution of
the bootstrap activation threshold is rb( j, k) = P(k∗

b ! j|k).
It can be shown that the process of activation of nodes

in the bootstrap percolation with the fraction of seeds f is
equivalent to deactivation of nodes in the complementary k-
core percolation process, in which the initial failure destroyed
a fraction 1 − p = f of nodes, if their thresholds are comple-
mentary. Thus, the seed nodes in bootstrap play the role of
initially failed nodes in k-core. Furthermore, this implies that
the nodes that are active in bootstrap percolation are inactive
in k-core and vice versa. We will call such nodes b-active
and c-inactive and b-inactive or c-active, respectively. Fig. 1
illustrates that bootstrap and k-core are complementary, when
both process develop on the same graph with complementary
thresholds.

It can be shown that Zc = 1 − Zb, where Zb is the prob-
ability of reaching, following a random link, a seed node or
a non-seed with k∗

b outgoing links leading to activated nodes.
Analogously, it can be shown that Sb = 1 − Sc, where Sb is the
fraction of the active nodes in the bootstrap percolation. We
will provide a rigorous proof of this equality by deriving the
equations of bootstrap percolation using the k-core equations.
For this purpose we have to connect first the thresholds
distributions rc( j, k) and rb( j, k).

We have established that the activation of b-inactive nodes
is equivalent to the deactivation of c-active nodes. The con-
dition of activation is that the number of b-active neighbors,
jb of a b-inactive node with degree k satisfies jb " k∗

b . From
the point of view of the k-core percolation, this node has jc =
k − jb c-active neighbors, and the condition of its deactivation
is that jc = k − jb < k∗

c , or jb > k − k∗
c or jb " k + 1 − k∗

c .

Since this last inequality must coincide with jb " k∗
b , then,

k∗
b = k + 1 − k∗

c . (5)

This simple equality shows how the thresholds of both
process are related depending on the degree of the nodes.
Note that this relation indicates that in non-regular graphs, the
complementary process of homogeneous bootstrap percola-
tion is heterogeneous k-core percolation. Likewise, homoge-
neous k-core percolation is the complement of heterogeneous
bootstrap percolation.

Now we are in conditions to establish a connection be-
tween the threshold distributions of both processes. Using
Eq. (5),

rc( j, k) = P(k∗
c ! j|k),

rc( j, k) = P(k + 1 − k∗
b ! j|k),

rc( j, k) = P(k∗
b " k + 1 − j|k),

1 − rc( j, k) = P(k∗
b < k + 1 − j|k),

1 − rc( j, k) = P(k∗
b ! k − j|k) ≡ rb(k − j, k).

Thus, we obtain the relation between the threshold
distributions,

rc( j, k) = 1 − rb(k − j, k). (6)

We will show that when the threshold distributions for
k-core and bootstrap percolation satisfy Eq. (6) then both
processes are complementary.

Finally, we will derive the equations for the bootstrap
percolation using Eqs. (4), (2) and (6) using the k-core per-
colation as a starting point. Note that Eq. (3) can be rewritten
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using Eq. (6) as

Zc = (1 − f )

⎛

⎝1 −
∞∑

k=1

kP(k)
⟨k⟩

k−1∑

j=0

(
k − 1

j

)
rb(k − j − 1, k)

× Z j
c (1 − Zc)k− j−1

)

(7)

Introducing new summation index i = k − ( j + 1) and
using the symmetry of binomial coefficients, we see, that this
equation is equivalent to

1 − Zc = f + (1 − f )
∞∑

k=1

kP(k)
⟨k⟩

k−1∑

i=0

(
k − 1

i

)
rb(i, k)

× Zk−i−1
c (1 − Zc)i (8)

Introducing

"b(x, y) =
∞∑

k=1

kP(k)
⟨k⟩

k−1∑

i=0

(
k − 1

i

)
rb(i, k)xiyk−i−1, (9)

we arrive at the following recursive equation

1 − Zc = f + (1 − f )"b(1 − Zc, Zc). (10)

If we denote Zb = 1 − Zc, then we can write Eq. (10) as

Zb = f + (1 − f )
∞∑

k=1

kP(k)
⟨k⟩

k−1∑

j=0

(
k − 1

j

)
rb( j, k)

× Z j
b (1 − Zb)k− j−1, (11)

or

Zb = f + (1 − f )"b(Zb, 1 − Zb), (12)

which is the generalization for the analogous equation for the
homogeneous bootstrap percolation [14].

Note that the meaning of Zb = 1 − Zc is the probability of
a link to connect any (active or inactive) root to an already
b-activated node, while Zc is the probability of a link to
connect a c-active node to a c-active nodes. Indeed, there are
three types of links: those connecting b-active with b-active
nodes, those connecting c-active and b-active nodes and those
connecting c-active and c-active nodes. Since the last category
constitute the probability Zc, the first two together constitute
the probability Zb = 1 − Zc. Thus, we conclude that Zb and Zc
are complementary. The difference in the meaning of Zc and
Zb is also reflected in the structure of the functions "b and "c
in which the former has a term rb( j, k) while the latter has a
term rc( j + 1, k).

Using the same techniques as we use for the derivation of
Zb = 1 − Zc, it is straightforward to show that Sb = 1 − Sc
and then obtain the final equation for the active nodes in the
bootstrap percolation:

Sb = f + (1 − f )!b(Zb, 1 − Zb), (13)

where

!b(x, y) =
∞∑

k=0

P(k)
k∑

j=0

(
k
j

)
rb( j, k)x jyk− j . (14)

This concludes the proof of the complementary of the k-core
percolation and bootstrap percolation with complementary
threshold distributions.

III. GIANT COMPONENT EQUATION FOR
BOOTSTRAP PERCOLATION

In this section, we will generalize the equations for the
size of the giant component (GC) in heterogeneous k-core
and bootstrap percolation presented in Refs. [14,16] using a
different notation, and then we show that for the bootstrap
percolation, their equations underestimate the size of the GC.
The source of this discrepancy is the difference in the meaning
of Zb and Zc as we have shown in the previous section. In
the k-core percolation, we denote as αc the probability that a
randomly selected link, originating at an active node, leads to
the GC of active nodes, and obviously this probability is less
than or equal to Zc. The probability that a link coming from
an active root node lead to an active target node but not to the
GC is Zc − αc. Thus, the probability that a target node with a
degree k and j outgoing links leading to active neighbors, is
not connected to the GC is

(
k − 1

j

)
(Zc − αc) j (1 − Zc)k− j−1. (15)

Summing up all these terms for different k and k∗
c and after

taking into account the probability of reaching a node with
degree k through a random link and the distribution of the
thresholds rc, we conclude that the total probability that any
node to which we arrive by a random link is active but not
connected to the GC is

Zc − αc = p"c(Zc − αc, 1 − Zc). (16)

This equation can be solved together with Eq. (3) for any
initial survival probability p. Note that if rc(1, k) = 0 for
any k > 0, this system of equations always have a solution
α = Zc because if rc(1, k) = 0, each term of Eq. (16) has a
factor (Zc − αc), and, thus, the first argument of the function
"c(Zc − αc, 1 − Zc) can be factored out. The final equation
for the size of the GC, P∞,c, can be written as the probability
of randomly choosing an active node, Sc, minus the proba-
bility of choosing at random an active node with no links
connected to the GC, which is p!c(Zc − α, 1 − Zc). Thus

P∞,c = Sc − p!c(Zc − α, 1 − Zc). (17)

Therefore, if there are no nodes with k∗
c = 1 and no au-

tonomous nodes (k∗
c = 0), we have P∞,c = Sc, which means

that all active nodes are part of the GC.
Now we will turn to the derivation of the equation for

the giant component in the bootstrap percolation. For brevity
we will drop subscript b in all the equations. Naively, one
could expect that the same equations (16) and (17) with small
modifications would work for the bootstrap:

Z − α = f G1(1 − α) + (1 − f )"(Z − α, 1 − Z ) (18)

and

P∞ = S − [ f G0(1 − α) + (1 − f )!(Z − α, 1 − Z )], (19)
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FIG. 2. Schematic representation of some configurations when reaching a target node following a random edge, in a random 6-regular
network and for a threshold k∗ = 3. Solid edges lead to an “already active node”, which has nact = k∗ active outgoing neighbors (enclosed by
a solid line). We say these links are of type I. Dashed edges connect to a node with less than nact = k∗ active outgoing neighbors (enclosed by
a dashed line), and we call them links of type II. On the other hand, dotted lines are edges of type I that lead to the GC, which we call type
A links, while dash-dotted lines are type II edges that lead to the GC, called type B links. Note that a type B link is connected to an active
node if two conditions are fulfilled: it must lead to a target node with exactly nact = k∗ − 1 active outgoing neighbors (if nact > k∗ − 1 it would
be a type A link), and also the root node must be active. In panel (a) we differentiate two types of links: I (top) and II (bottom). In panel (b)
we show different configurations that lead to the GC for each type of link. On top we show a link of type A that leads with probability α to
a target node connected to the GC, because one of its outgoing links is of type A (top-left) or of type B (top-right). These configurations are
considered in Eq. (22). On the bottom, we show a link of type B that leads with probability β to a target node connected to the GC, since one
of its outgoing links is of type A (bottom-left) or of type B (bottom-right). These configurations are considered in Eq. (23).

where G0(x) and G1(x) are the standard generating functions
of the network degree distribution [19]:

G0(x) =
∞∑

k=0

P(k)xk (20)

G1(x) =
∞∑

k=1

kP(k)
⟨k⟩

xk−1 (21)

The meaning of the terms involving G1 and G0 is the special
treatment of the seed nodes, which are active by default.
Thus for them the classical percolation equations are applied.
Our computer simulations for a random regular network with
degree k = 3 and activation thresholds 2 and 3 (k = 3 and
k∗ = 2, k∗ = 3) do not agree with these equations (see Fig. 3).

To understand the origin of this discrepancy, we need to
recall the definition of Z in bootstrap percolation, which is
the probability of connecting a root node with a seed node,
or with an already active non-seed node. By “already active
node” we mean a node, whose activation was triggered by its
outgoing neighbors, or what is the same, that at least k∗ of
its outgoing links lead to active nodes. Thus, the activation of
the target node does not depend on the root node, unlike in
the k-core percolation, where the root must be always active.
Nevertheless, if the target non-seed node has j = k∗ − 1
outgoing links leading to active neighbors and also the root

is active, the target should be also active, and this possibility
has not been considered in [16].

Thus the outgoing links leading to the giant component can
be of two types, A or B. The A type include links leading to
seed nodes or to non-seed nodes with j " k∗ active outgoing
neighbors. The B type include links leading to nodes with j =
k∗ − 1 outgoing active neighbors, which can be activated only
if the root is active. Note that A is the subset of a broader
type of links that we will call links of type I, connecting any
root to b-active nodes which have probability Z . In contrast,
links of type B are the subset of nodes of type II which is
the complement of type I and, hence has the probability 1 −
Z (see Fig. 2). We denote the probabilities that a link of the
A and B type lead to the GC by α and β respectively. Thus
α ! Z while β ! 1 − Z . The total probability that a randomly
selected link leads to the GC is X = α + β. Fig. 2 illustrates
different cases in which the chosen edge is linked to the GC,
with probability α or β for a random regular network with
degree k = 6 and threshold k∗ = 3.

Since it is sufficient that at least one of the outgoing links
of the target node leads to the giant component, it will be more
convenient to handle the probability that none of the outgoings
links lead to the GC. Thus, we will use the probability that the
link of type I does not lead to the GC, which clearly is Z − α,
and also the probability that the link of type II does not lead to
the giant component, which is 1 − Z − β. Note that since we
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have two types of links, we will need to solve a system of two
recursive equations to compute the GC.

The recursive equation for α can be obtained by looking
at the status of the target. Indeed, if a target is a seed with
probability f , the probability that it is not connected to the GC
by the outgoing links is the same as in classical percolation
theory f G1(1 − X ). If the target is not a seed node with
probability 1 − f , the probability that it is not connected to
the GC is (1 − f )"(Z − α, 1 − Z − β ), which differs from
the analogous term for the k-core percolation in Eq. (16) by
the replacement of 1 − Z by 1 − Z − β. This is because the
links leading to nodes with threshold less than the activation
threshold, whose probability is 1 − Z , can still lead to the GC
with probability β. Thus, α satisfies the recursive relation,

Z − α = f G1(1 − X ) + (1 − f )"(Z − α, 1 − Z − β ). (22)

Note that this equation coincides with the old Eq. (18) with
a correction term β, replacing 1 − α by 1 − X and 1 − Z by
1 − Z − β.

The recursive relation for β can be obtained by the follow-
ing arguments. Suppose that the random link leads to a target
node with threshold j = k∗ − 1, which could be activated
by the root. The probability of this event for given degree
k and threshold k∗ is the jth term of Eq. (11), with x = Z ,
y = 1 − Z and j = k∗ − 1. The probability that this node is
not connected to the GC is given by the same term with
x = Z − α and y = 1 − Z − β. Thus, we can compute the
probability that such a node is connected to the GC as the
difference between these two probabilities. After summing up
all the contributions from different k and k∗ and taking into
account the degree and threshold distributions, we have

β = (1 − f )[%"(Z, 1 − Z )−%"(Z − α, 1 − Z − β )], (23)

where

%"(x, y) =
∞∑

k=1

kP(k)
⟨k⟩

k−1∑

j=0

(
k − 1

j

)
[rb( j + 1, k)

− rb( j, k)]x jyk− j−1. (24)

Here rb( j + 1, k) − rb( j, k) is the probability that k∗ = j + 1,
which is equivalent to j = k∗ − 1. Thus, each term corre-
sponds to a node that is just one active outgoing neighbor short
of being activated, which will be active if the root is active.
To derive the final equation for the fraction of nodes in the
GC, we use a slightly modified Eq. (19) with the correction
term β:

P∞ = S − [ f G0(1 − X ) + (1 − f )!(Z − α, 1 − Z − β )].

(25)

Recall that X = α + β is the probability of choosing a random
link that leads to the GC.

As a simple example we will illustrate these equations
for a random regular network with k = 3 and k∗ = 2. For
this network P(3) = 1, rb(0, 3) = rb(1, 3) = 0 and rb(2, 3) =
rb(3, 3) = 1. Accordingly, we have a system of two algebraic
equations:

α = Z − f (1 − X )2 − (1 − f )(Z − α)2,
(26)

β = (1 − f )2[Z (1 − Z ) − (Z − α)(1 − Z − β )],

which can be solved for any fraction of seed nodes f using
Eq. (12),

Z = f + (1 − f )Z2, (27)

from where we easily obtain Z = f /(1 − f ).
For a random regular network with k = 3, Eq. (25) is

reduced to

P∞ = f + (1 − f )[Z3 + 3Z2(1 − Z ) + 3Z (1 − Z )2]

− f (1 − X )3 − (1 − f )[(Z − α)3

+ 3(1 − Z − β )(Z − α)2]. (28)

We verified Eq. (25) by simulations for the case of a complex
rb( j, k) and for a random regular network.

Note that for the percolation critical point, α = β = 0, the
Eqs. (26) turn into identities with the equation for α turning
into Eq. (12). To find the critical point we can present the
system Eq. (26) in a symbolic recursive form

x = A(x), (29)

where x ∈ R2 (x1 = α, x2 = β ) and A(x) is a nonlinear opera-
tor representing the right-hand side of the system of Eqs. (26).
A sufficient condition of the attractive point x = 0 is |A(x)| <
|x|(1 − ϵ), where ϵ is a small positive constant, which in the
vicinity of zero is equivalent to the condition that the matrix
of partial derivatives ∂Ai/∂x j |x=0 has absolute values of all
its eigenvalues smaller than 1. The critical point should be
right at the border of the converging and diverging behavior,
so it should satisfy the condition λmax( f , Z ) = ±1. Together
with Eq. (12), it gives the value of the critical parameter
fc2. For example, for a random regular network with k = 3
and k∗ = 2, this condition together with Z = f /(1 − f ) is
equivalent to

det
[

4 f − 1 2 f
2(1 − 2 f ) 2 f − 1

]
= 0, (30)

which gives f = 1/2 and f = 1/8. For f = 1/2, the second
eigenvalue is 2, so the iterations do not converge, while for
f = 1/8 the second eigenvalue is −1/4, so the iterations do
converge. Thus, the critical value for the continuous transition
denoted as fc2 is fc2 = 1/8. On the other hand, the old
equation (18), which neglects β, gives fc2 = 1/4 (Fig. 3),
predicting a GC much more fragile. A similar treatment can
be applied for k∗ = 3, which gives fc2 ≈ 0.344.

IV. STOCHASTIC SIMULATIONS

We perform stochastic simulations using networks with
N = 106 nodes, to assure a small statistical noise and a negli-
gible probability of loops, so that finite networks can be well
approximated by the theoretical results obtained in the limit
of infinitely large networks. The networks were generated as
randomly connected graphs with a given degree distribution
by the Molloy-Reed algorithm [29].

Figure 3 compares the simulation results with Eqs. (25) and
with Eq. (19) corresponding to Ref. [16]. Note that Eq. (25)
exhibits a good agreement with our stochastic simulations,
while Eq. (19) strongly underestimates the size of GC because
it neglects the probability β.
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FIG. 3. P∞,b as a function of the fraction of seeds f for a random
regular network with k = 3, and thresholds k∗ = 2 (circles, dashed
line) and k∗ = 3 (squares, dash-dotted line). The symbols represent
the stochastic simulations with N = 106 and the solid lines are the
prediction of our theory [see Eq. (25)]. The discontinuous lines
represent the results from Eq. (19), which underestimate the size of
the GC. We can see that there is an excellent agreement between the
simulations and our equations.

To test the theoretical equations for the most general
case of heterogeneous k-core and bootstrap percolation, we

generate networks with the Poisson degree distribution with
⟨k⟩ = 8 and a distribution of the thresholds that satisfy the
complementary condition of Eq. (6). The form of the cu-
mulative distribution of bootstrap and k-core percolation are
given by rb( j, k) = Fγ ( j/k), rc( j, k) = 1 − F1−γ (1 − j/k),
where Fγ (x) is a fourth-order polynomial of x monotonically
increasing from Fγ (0) = 0, to Fγ (1) = 1, has a minimum at
x = 0, a maximum at x = 1 and an inflection point at x = γ
if 1/3 ! γ ! 2/3:

Fγ (x) = x2(18γ 2 − 12γ ) + x3(4 − 12γ 2) + x4(6γ − 3)
6γ 2 − 6γ + 1

.

(31)

Note that Fγ (x) is invariant under the transformation
1 − F1−γ (1 − x). For nodes with k = 0, we assume Fγ (0) =
1, which means that isolated (autonomous) nodes are always
active. Figure 4 shows the results of computer simulations for
the k-core and bootstrap percolation for different values of γ .
Depending on the position of the inflection point, we can ob-
serve the emergence of the first order phase transition in both
k-core and bootstrap percolation. We also observe a predicted
complementary of the k-core and the bootstrap percolation
Sc(p) = 1 − Sb(1 − p) = 1 − Sb( f ). In all cases we see
excellent agreement with simulations. Despite the fraction of
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FIG. 4. (a, c) the fraction of active nodes, Sc (circles, squares, solid lines), and the fraction of nodes in the GC, P∞,c (triangles, diamonds,
dashed lines), for the heterogeneous k-core percolation as a function of the fraction of nodes that survived the initial failure p. (b, d) the
fraction of active nodes, Sb (circles, squares, solid lines), and the fraction of nodes in the GC, P∞,b (triangles, diamonds, dashed lines), for
the heterogeneous bootstrap percolation as function of the fraction of the seed nodes f . In the insets we plot the same in log-linear scale. The
symbols represent stochastic simulations while the lines are the results from Eqs. (13) and (25). All simulations were performed for Erdős
Rényi graphs with ⟨k⟩ = 8 and threshold distribution functions rc( j, k) = Fγ ( j/k), rb( j, k) = 1 − F1−γ (1 − j/k), which are polynomials of
the fourth power with an inflection point at x = γ : (a) γ = 0.5, (b) γ = 0.6, (c) γ = 0.4, (d) γ = 0.5. Note that Fγ (x) = 1 − F1−γ (1 − x),
satisfying Eq. (6) for complementary of the k-core and bootstrap thresholds. Accordingly, the graphs on the diagonal pairs of panels (a–d) and
(b–c) are complementary, that is, Sc(p) = 1 − Sb(1 − p) = 1 − Sb( f ).
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active nodes of both processes satisfy a complementary
relation, it is clear that the continuous thresholds of the giant
components of these processes do not complement each other.
However, the giant component of inactive nodes in bootstrap
percolation corresponds to the giant component of active
nodes in the complementary k-core percolation process and
vice versa.

V. CONCLUSION

We have provided theoretical insights into the bootstrap
percolation process. We prove mathematically that the het-
erogeneous bootstrap percolation is the complement of the
heterogeneous k-core percolation for complex networks with
any degree distribution in the thermodynamic limit, as long
as the thresholds of the nodes in both processes complement
each other. In particular, in nonregular graphs we can map
a homogeneous bootstrap percolation onto a heterogeneous
k-core percolation, and likewise, k-core homogeneous per-
colation onto a heterogeneous bootstrap percolation, because
the inactive nodes in k-core–bootstrap behave the same as the
active nodes in bootstrap–k-core.

We also develop the equations for the size of the giant com-
ponent (GC) in the most general cases of heterogeneous k-
core and bootstrap percolation and confirm them by stochastic
simulations. Our equations for heterogeneous k-core percola-
tion coincide with the equations for a special case of hetero-
geneous k-core derived in Ref. [14]. However, our equations
representing the size of the GC in the bootstrap percolation
disagree with the equations presented in Refs. [14,16]. The
disagreement comes from the fact that Refs. [14,16] disregard
some branches of active nodes when analyzing the GC in
bootstrap percolation with the generating function formalism.
More precisely, when following a random link that connects
a root node and a target node with degree k and activation
threshold k∗, it is not strictly necessary that at least k∗ of the
k − 1 outgoing neighbors of the target be active to ensure its
activation. Another possibility is that only k∗ − 1 outgoing
neighbors of the target node be active, and the root node is also

active, it will trigger the activation of the target node. We show
that the probability of activation of the target by the root must
be explicitly taken into account in order to obtain the correct
equation for the GC in bootstrap percolation. Nevertheless, to
calculate the fraction of active nodes Sb, this activation should
not be taken into account since the root and the target could
not mutually depend on each other to be active. Thus, the
equations that represent Sb in Refs. [14,16] are correct.

In the k-core theoretical approach, both the root and the
target nodes are assumed to be active, thus, the root always
acts as a stabilizing neighbor and therefore, the equations from
Ref. [14] predict correctly the size of the GC.

We also found that unlike the fraction of active nodes,
the fraction of nodes belonging to the giant component in
both processes do not satisfy a complementary relation, since
these processes generate different topological structures of
active nodes. Indeed, active nodes in the k-core percolation are
inactive in the complementary bootstrap percolation. How-
ever, the giant component of inactive nodes in the bootstrap
coincides with the giant component of active nodes in the
complementary k-core and vice versa.

Our results and theoretical equations here presented can be
extended into networks with multiple layers and can be used
to describe the evolution of the GC of active nodes during this
dynamical process.
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