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Motivated by recent empirical studies of business firm growth, we develop a dynamic percolation model
which captures some of the features of the economical system—i.e., merging and splitting of business firms—
represented as aggregates on a d-dimensional lattice. We find the steady-state distribution of the aggregate size
and explore how this distribution depends on the model parameters. We find that at the critical threshold, the
standard deviation of the aggregate growth rates, �, increases with aggregate size S as ��S�, where � can be
explained in terms of the connectedness length exponent � and the fractal dimension df, with �=1/ �2�df�
�0.20 for d=2 and 0.125 for d→�. The distributions of aggregate growth rates have a sharp peak at the center
and pronounced wings extending over many standard deviations, giving the distribution a tent-shape form—the
Laplace distribution. The distributions for different aggregate sizes scaled by their standard deviations collapse
onto the same curve.
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I. INTRODUCTION

The distributions of the size and growth rates of business
firms is an important topic in economics �1–39�. The size
distribution of the firms can be characterized by a power law
PS�S��S−� �40–42�, the standard deviation of firm growth
rates scales with firm size as a power law with a scaling
exponent of approximately −1/6, and the distribution of
growth rates conditional on firm size collapses onto a
Laplace distribution �43–47�.

The empirical findings about the statistical properties of
firm growth merit an explanation, and the challenge is how
to go about doing so. Coase �3,48,49� introduced the domi-
nant framework now used in economics to understand busi-
ness size. While his discussion of the problem was static, he
suggested a framework for introducing dynamics �3�. He
suggested that economic activity can be conceived of as a set
of concentric circles, with each ring representing an industry.
Firms could start out in one industry and expand until no
further opportunities are available and then expand into an
adjacent industry. The size of the firm would be represented
by the area in the circles it covers; the growth of firms would
be represented by the change in size as firms went about a
process of exploring new activities to undertake.

The approach followed here is to start with this broad
framework suggested by Coase and to then translate it into
the types of models physicists have used to understand criti-
cal phenomena. The power-law behavior observed in the data
on firm growth is the hallmark of critical phenomena �50�.
While critical phenomena are not entirely absent from the
economics literature �51,52�, economists in general do not
look for evidence of them and conventional economic mod-
els do not seek to explain either their existence or their prop-
erties.

Using models from physics to capture this conceptual
framework poses a number of problems, some mechanical
and some more broadly conceptual. Not surprisingly, the

former are easier to solve. The set of concentric circles
Coase used to illustrate his ideas imply a two-dimensional
space of activity. Coase did not provide a mathematical rep-
resentation of his framework; nor has anyone since. A lattice
provides a more natural framework for understanding two-
dimensional �2D� �and higher-dimensional� spaces, which is
the standard approach in physics. Within this lattice frame-
work, each row can represent a product and each column can
represent a consumer. A cell is a �potential� transaction—i.e.,
the sale of a specific product to a specific customer. We can
then think of firms as collections of cells, with the size of the
firm being the number of cells. As a firm expands along a
row, it sells a particular product to more customers �53,54�.
As it expands along a column, it sells more products to the
same customer.

The broad conceptual question is what the lattice dimen-
sion represents. The industrial dimension in particular should
not be understood as a measurable, physical quantity. Rather,
modeling economic activity in this fashion captures the no-
tion that each industry is more closely related to some other
industries than it is to others. The implication is that when-
ever a firm operating in one industry chooses to diversify
into another, it has natural candidates to consider. As an ex-
ample, in the 1980s, two tobacco companies, Phillip Morris
and RJ Reynolds, found that their cigarette businesses gen-
erated more cash than could profitably be reinvested in the
cigarette business. As a result, they both sought to move into
new lines of business. Both chose food companies: Phillip
Morris purchased General Foods and RJ Reynolds purchased
Nabisco. Neither went into the petroleum, pharmaceutical, or
computer software industries. The similarity of the choices
likely was not a coincidence. Thus, without being specific
about what makes cigarettes and food processing close to
each other, there must be some sense in which they are.

While, as a rule, firms seem to diversify into industries
that are related to their existing businesses in some way,
there remain some conglomerate firms that operate in a wide
variety of industries. A prominent example is General Elec-

PHYSICAL REVIEW E 74, 036118 �2006�

1539-3755/2006/74�3�/036118�7� ©2006 The American Physical Society036118-1

http://dx.doi.org/10.1103/PhysRevE.74.036118


tric which, for example, operates the television network
NBC and builds jet engines. Ultimately, we would like to
understand how it is possible for such firms to evolve. With-
out a model in which some industries are far removed from
others, it is not possible to address the question of how firms
evolve in such a way that some firms are engaged in diverse
activities.

The model described below is a step in adapting formal
models from statistical physics to capture the essential fea-
tures of Coase’s theory. It successfully reproduces some of
the key statistical properties of firm size and growth. Specifi-
cally, we show that if a dynamic percolation model is tuned
to its critical state, the distribution of aggregate sizes is
power law, mean growth rates are independent of firm size,
and the distribution of growth rates conditional on initial size
collapse onto a single curve. The results do differ from the
empirical findings in some important respects. While the
standard deviation of firm growth rates scales with firm size,
the scaling exponent is positive rather than the −1/6 found in
the empirical data. The model does not, however, embody all
of the essential features of Coase’s theory. We believe that
this is a first step toward a richer model that captures the
spirit of Coase and more accurately reproduces the empirical
data.

As a first step to understand the growth rates of business
firms in the more complicated model, a comparison with the
growth rates of aggregates in a standard dynamic percolation
model is warranted. However, the distribution of the growth
rates of aggregates has not previously been studied. Thus, the
primary purpose of this paper is to establish a benchmark set
of properties for the growth rates of aggregates in a standard
model of dynamic percolation.

II. THE MODEL

Here we introduce a variant of a dynamic percolation
model �55–62�. The model is based on a d-dimensional pe-
riodic Ld hypercubic lattice �L is the number of cells on one
side of the lattice�. Each cell has 3d−1 other cells which are
adjacent to this cell at least by one point.

Following Refs. �55,57�, we define two probabilities B
� �0,1� and D� �0,1�. B is the probability for each inactive
cell to become active �“birth”�, and D is the probability for
each active cell to become inactive �“death”� during one time
step of the model. At time t=0, each cell of the lattice is
assigned to be active with probability B / �B+D� and inactive
with probability D / �B+D�. Note that this initial condition
corresponds to the steady state of the model, so the fraction
of active cells remains �B / �B+D� at any time step t. At t
=0, aggregates are defined to be equivalent to active cells.
Thus initially the size of each aggregate is equal to unity. As
time progresses, aggregates can merge, split, appear, and dis-
appear according to the rules of the model. Note that the
aggregate in our model is not equivalent to a static percola-
tion cluster. A percolation cluster is defined as an equiva-
lency class of all active cells connected via paths that go
from each active cell to all its active neighbors. In our model,
the aggregate must be connected, but does not necessarily
include all the active cells which are connected to it via static

percolation paths. Thus the aggregates in our model are usu-
ally smaller than the clusters of static percolation. We as-
sume that at the time step of its creation, each aggregate is
given an identity �label� that remains with it until it
disappears—either because it is absorbed into another aggre-
gate or because all its cells become inactive. Thus each ag-
gregate is represented by its label and a list of its cells.

Each time step consists of three stages: merging, random-
ization, and splitting. Merging characterizes the natural ten-
dency of firms to capture new business opportunities. In
practice, the process by which firms seek out new business
opportunities takes time and is an ongoing process. Our fo-
cus on aggregates �as opposed to percolating clusters� is in-
tended to capture this feature. Randomization characterizes
the natural evolution of markets. Some business opportuni-
ties die out or become unprofitable while new ones emerge.
The splitting stage represents the tendency of firms to divest
activities when they judge that certain components of the
firm would be more profitable when organized as separate
firms �63�.

The size Si�t� of aggregate i at time step t is determined as
the number of its cells after the splitting stage. At the merg-
ing stage, we first create a randomized list of all the aggre-
gates. Then, starting at the top of this list, each aggregate
explores its neighbors for absorption and thus becomes a
“predator.” For each cell taken in the sequential order from
the list of cells of the predator, we examine whether any of
its 3d−1 neighboring cells belongs to a different aggregate,
which we immediately include in the list of “preys” aggre-
gates. Next all the prey aggregates whose size is not larger
than the current size of the predator are being absorbed by
the predator one by one �64�. The cells of all the absorbed
preys are included in the list of cells of the predator. The
absorbed preys as well as the current predator are excluded
from the randomized list of aggregates, and we select the
next predator from the top of this list until the list is empty.

In the randomization stage, we apply a birth and death
process to every cell of the lattice; i.e., each active cell be-
comes inactive with probability D and each inactive cell be-
comes active with probability B. A new active cell is consid-
ered an independent aggregate with a new identity. The
inactive cells are excluded from the lists of cells of the ex-
isting aggregates, and the aggregates with no cells cease to
exist and lose their identities.

Finally, at the splitting stage, we examine each aggregate
for connectivity. If the death of an active cell causes an ag-
gregate to become disconnected, the aggregate splits into
several component aggregates. The largest of these retains
the identity of the original aggregate and the rest are given
new identities.

At the end of each time step, we calculate the growth rates
for each aggregate i which existed at time steps t and t−1:

gi � ln�Si�t�/Si�t − 1�� . �1�

We then start a new time step by returning to the merging
stage. For the first t0=Ld time steps, we discard the size and
growth statistics. This time is several orders of magnitude
larger than the relaxation time of the system tr, which we
determine as the maximal age of a finite aggregate.
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�The percolating aggregate which always exists above the
percolation critical point never dies, and thus its age is equal
to the total simulation time�. We found that tr is of the same
order of magnitude as 1/D—i.e., the average survival time
of each individual active cell. In our simulation, it is unrea-
sonable to make D�1/Ld because otherwise no dynamics
will be observed in one time step. Thus to be on the safe side
we select t0=Ld, which is always larger than tr even for very
small D. Thereafter, we analyze the statistics of the sizes and
growth rates of all recorded aggregates. We have tested
whether t0 time steps are sufficient for the system to reach its
steady state, after which the properties of the system remain
stable. In order to do this we fit the averages of a quantity of
interest as a function of time as a−b / t�, where a, b, and �
are parameters of the fit, and check that b / t0

��	, where 	 is
the error bar of this quantity averaged for t0� t�10t0.

For simplicity, we study 2D lattices, but we expect that
the growth rate distributions will be of the same functional
form in any dimension if one replaces the 2D values of the
critical exponents by the corresponding values of the critical
exponents of the d-dimensional static percolation.

III. SIMULATION RESULTS

A. Distribution of aggregate sizes PS„S…

We first choose a large size lattice of 800
800 to de-
crease the finite-size effect. In order to find the critical state,
we first fix B and vary the value of D from 10−4 to 0.5. We
next plot the probability density of the aggregates of various
sizes in double-logarithmic scale and find D for which the
graph has the best straight line fit. We have applied this cri-
terion since it is known that, at the critical point of static
percolation, the cluster size distribution follows the power
law PS�S��S−� up to the largest possible cluster, which can
occupy up to Ldf cells of the lattice, where df =91/48=1.89
and �=1+d /df =187/91=2.05 for d=2. For lattice size of
L=800, the largest cluster can thus occupy up to 50% of all
the active lattice cells. In fitting the graph, we also disregard
the aggregates of sizes 1 and 2. As Fig. 1 shows, the best fit
for B=0.002 is achieved when D is around 0.0029. We find
that the exponent � is around 2.05±0.02 which coincides
with the value for the static percolation �65�. In the follow-
ing, we will use Bo and Do to denote the values of B and D

at the point of the best power-law fit which we postulate to
coincide with the critical point.

If D is smaller than Do, the system is above the percola-
tion threshold, which implies that there are some giant ag-
gregates which do not break apart in splitting process. While
if D is larger than Do, the system is below the percolation
threshold and the distribution PS�S� acquires the exponential
cutoff, with no aggregates above a certain size.

Next we confirm the existence of a critical state by testing
the value of � for different lattice sizes. As shown in Fig. 2,
for different lattice sizes �L=100, 200, 400, and 800�, we
obtain the same value of � :�=2.05±0.02.

The pair of values �Bo ,Do� determines the critical line in
the phase diagram of the system. From Fig. 3, we see that Do
increases as Bo increases. When Bo is smaller than 0.05, the
relationship between Bo and Do is nearly linear, but when Bo
is larger than 0.1, the curve acquires a significant negative
curvature and practically levels at Do=0.42 for Bo�1.

The phase diagram obtained can be well explained since
the size distribution of the aggregates is measured after the

FIG. 1. The probability density function �PDF� of aggregate size
S, PS�S�, with the same birth probability B=0.002 but different
death probabilities D for the lattice size L=800. With D=0.0029,
the PS�S� is best fit by a power law with exponent �=2.05±0.02.

FIG. 2. The probability density function of aggregate size S,
PS�S�, at the critical state �Bo=0.002 and Do=0.0029� for different
lattice sizes L. The critical states with the same power-law expo-
nents �=2.05±0.02 are obtained using the same Bo and Do, which
implies that the critical states are very stable. For clarity, the curves
L=100, L=200, and L=400 are offset by e−15, e−10, and e−5,
respectively.

FIG. 3. The critical line �the relation between Do and Bo� on the
phase diagram of the model. The upper part of the curve means that
the system is below percolation threshold, and lower part suggests
that the system is above percolation threshold. The curve �for small
Bo region� can be well fit by Eq. �2�. When using Eq. �2� where the
Pc is replaced by Pc+�Bo ��=0.04�, the whole curve is well fit.
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splitting stage of the time step, at which the number of cells
in the merged aggregates is decreased by factor of 1−Do and
the new active cells which appear at the randomization stage
have not yet participated in merging. Thus the effective frac-
tion of the cells which are responsible for the connectivity of
large clusters is �1−Do�Bo / �Bo+Do�. Since we are at the
critical point, this effective fraction should coincide with the
critical probability Pc for static percolation. This condition
yields

Do �
Bo�1 − Pc�

Bo + Pc
. �2�

As Fig. 3 shows, the above expression fits well the phase
diagram of the model for small Bo. Here Pc=1−0.593
=0.407 which is the cell percolation threshold for square
lattices with eight neighbors �66�.

However, the argument above is not appropriate to ex-
plain the curve for large Bo. The reason is the difference
between the speeds of the merging and splitting process. For
large Do, the aggregate immediately splits into many small
clusters, some of which may not be neighbors, while during
each merging step an aggregate can merge only with its
neighbors. Thus the splitting cannot be repaired in the next
merging stage and the value of Do computed using Eq. �2�
overestimates the actual value of Do corresponding to the
critical state.

This effect can be taken into account by assuming that at
criticality the fraction of the cells responsible for connectiv-
ity must be larger than Pc by a small correction term �Bo,
where � is a proportionality coefficient which can be found
by fitting the simulation results. Fig. 3 also shows the fitting
curve with �=0.04.

To avoid the difficulties in the analytical treatment of the
model, we also study a simplified version of the model in
which aggregates exactly coincide with the clusters of the
static percolation at any given moment of time. In this
model, each elementary time step consists of moving a ran-
domly chosen active cell from one place of the lattice to
another and determining whether such a move results in
splitting of the cluster to which this active cell has belonged
before the move and merging of the clusters adjacent to the
new location of this active cell. In this model, Pc coincides
with static percolation concentration of the active cells, but
the properties of distribution of the aggregate growth rates
coincide with those discussed in the following section for our
original model.

B. Distribution of aggregate growth rates Pg„g…

Figure 4 shows the probability density function �PDF�
Pg�g �S� of the growth rates g for aggregates of sizes 2k−1

�S�2k for k=1,2 ,3 , . . ., L=800, Bo=0.002, and Do
=0.0029. We see that, for the aggregates of medium sizes,
Pg�g �S� has a central peak and pronounced wings. For small
aggregates, such as size 1 or 2, we cannot see the left part of
the PDF since the minimum value of S is 1. In the most
extreme case, one aggregate with size 1 can grow 256 times
in one merging cycle. This happens if it has eight neighbor-
ing aggregates of size 1, 2, 4,…, 128, and they are selected

for merging in the ascending order of their size. Thus gmax
=ln�256/1��5.54. In contrast, the Pg�g �S� for large S nearly
misses the right part because due to finite-size effects, large
aggregates cannot grow larger than the entire lattice. Thus
the average growth rate ḡ�S� is positive for small S, is close
to zero for intermediate S, and is negative for large S �Fig. 5�.

Figure 4 also suggests that at the critical state, the stan-
dard deviation ��S� of the distribution Pg�g �S� increases
with S. In other words, the larger aggregates are more vola-
tile and less stable than the small aggregates. This observa-
tion is confirmed by Fig. 6. Moreover, we see that for large
systems at the critical state,

��S� � S�, �3�

with ��0.20.
Figure 7 shows the growth rate distributions scaled by

��S�. One can see that the scaled distributions collapse on a
single master curve: Pg�g �S�= Pg(g /��S�) /��S�. This obser-
vation suggests that at the critical state the growth process is
universal for aggregates of different sizes.

We can explain Eq. �3� using the concept of “red” bonds,
which is frequently used in percolation theory �67�. The red

FIG. 4. The probability density function of aggregate growth
rates, Pg�g�, for different aggregate sizes S at the critical state �Bo

=0.002 and Do=0.0029� for the lattice L=800. The shapes of Pg�g�
for intermediate S are very similar with central peak and broad
wings. For clarity, the Pg�g� for S=20–21 is offset by a factor of e3

and the one for S=218–219 by a factor of e−5.

FIG. 5. The relation between mean growth rate of aggregates ḡ
and aggregate size S at the critical state �Bo=0.002 and Do

=0.0029� on different lattice sizes L. As it shows, ḡ is approxi-
mately independent of S at the critical state.
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bonds are defined as such that their removal destroys the
connectivity of a cluster. It is known that the fractal dimen-
sion of the red bonds dred=1/�, where � is the correlation
length exponent, �=4/3 for d=2 �68�. If D is small, the
probability of the aggregate splitting is proportional to the
number of the red bonds in this aggregate. Typically the ag-
gregate splits into two approximately equal parts. Analo-
gously, the probability to merge is proportional to the num-
ber of red bonds in the aggregate perimeter, which at the
percolation threshold is proportional to the mass of the ag-
gregate itself. The linear size of the aggregate, R�S1/df,
where df is the fractal dimension of the percolation cluster,
df =91/48 for d=2 �69,70�. Thus the number of the red
bonds in the aggregate and its perimeter scales as Rdred

�Sdred/df. Accordingly, the probability p of the cluster to split
and to merge in one cycle scales as p�Sdred/df. The probabil-
ity that the size of the aggregate remains roughly unchanged
in one cycle of the model is thus 1−2p. Let us assume that in
the event of a merger or splitting the aggregate size changes
by factor of 2 �Fig. 8�. Indeed, this assumption is corrobo-
rated by the shape of Pg�g �S� which has a sharp peak near

g=0 and two symmetric wings which abruptly drop near g
� ±0.7� ±ln 2 �Fig. 4�. If our assumption is valid, then the
variance of the growth rates can be estimated as

�2 = p�ln 2�2 + �1 − 2p�0 + p	ln
1

2

2

,

=2p�ln 2�2.

Accordingly, ���p�Sdred/2df. Thus �=dred /2df. In d=2, we
have �=18/91�0.198, in excellent agreement with our
simulation results. In higher dimensions which may be more
appropriate for modeling the economy, we can predict the
value of � using the known values of dred and df for static
percolation. Specifically for d�6 �which is the upper critical
dimension for percolation� we have dred=1 and df =4. Thus,
for d�6, one can expect �=1/8.

Note that ��0.20 is only valid for small Bo because the
simple probabilistic arguments presented above are valid
only if the average number of red bonds created or destroyed
per cluster in one cycle of the model is relatively small. The
mapping of our model onto a static percolation is also valid
only for small Bo. Indeed, Fig. 9 shows a pronounced de-
crease of � for increasing Bo.

IV. DISCUSSION AND CONCLUSION

We explored the statistical properties of aggregate growth
rate in a percolation model. Our principal findings are as
follows: �i� there exists a critical state in our model for which
the PDF of aggregate size is a power law, �ii� the distribution
of aggregate growth rates at the critical state has a central
peak with broad wings and the mean growth rate of aggre-
gates is practically independent of size, �iii� the standard de-
viation of aggregate growth rates is power-law related, with a
positive exponent, to the aggregate size, and �iv� the distri-
bution of growth rates conditioned on aggregate size col-

FIG. 6. The relationship between standard deviation of aggre-
gate growth rates, ��S�, and aggregate size, S, best fit by a power
law ��S��S� for different lattice sizes L at the same critical state
�Bo=0.002 and Do=0.0029�. Each curve gives ��0.20. For clarity,
the curves L=100, L=200, and L=400 are offset by e−1.5, e−1.0, and
e−0.5, respectively.

FIG. 7. The rescaled probability density function of aggregate
growth rates, ��S�Pg�g �S�, for different aggregate sizes S at the
critical state �Bo=0.002 and Do=0.0029� for the lattice L=800. For
intermediate aggregate sizes, the Pg�g �S� are collapsed onto a
single curve, which implies that the Pg�g �S� may follow the same
functional form.

dnob der detcennocsid si dnob der eht fi

detcennoc si dnob der eht fi

p ytilibaborp htiw

p ytilibaborp htiw

dnob der

FIG. 8. Schematic explanation of ��0.20 for small Bo by a
typical growth pattern for a sample aggregate. We assume that each
circle is of the same size. If there is a red bond connecting two
components of an aggregate with probability p, the red bond is
disconnected and the aggregate decreases its size by factor of 2. If
a disconnected red bond is connected between two separated aggre-
gates with probability p, the aggregate increases its size by factor of
2.
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lapses onto a single curve, which is consistent with the pos-
sibility that a universal functional form exists to express the
PDF of aggregate growth rate at the critical state.

The model represents a preliminary attempt to incorporate
principles of economics into models of critical phenomena in
order to explain the statistical properties of the growth of
business firms. We have demonstrated that the growth rates

of aggregates—the quantities in the model that are natural to
interpret as business firms—have some but not all of the key
features observed in the data on firm growth. At this stage of
the research, the differences between the model and the data
do not cast doubt on the validity of the approach because
there are other additional economic factors that can be incor-
porated into the model. In particular, the economics literature
stresses that there is a cost to coordinating additional activi-
ties within a single firm and that different activities should
not coexist within a single firm if the gains from coordina-
tion do not outweigh the costs. In our model, adjacent active
cells always merge, which implicitly embodies the assump-
tion that the gains from coordination always outweigh the
costs. By moving from a two-state to a three-state Potts
model, it should be possible to make assumptions that more
readily reflect economic reality.
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