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predicted abundance ratios for all stable r-process elements in a
neighbouring range of mass numbers should be identical to those
observed in the star and in the Solar System*'®. The accuracy of a
predicted ratio depends both on the adopted nuclear physics model
and on the degree to which different production sites yield similar
results. The latter has generally been found to be the case for
previously studied r-process enhanced stars, but further work is
needed to verify it in detail for CS31082—001.

Both theoretical and observational uncertainties should be mini-
mal for elements as close as possible to each other in atomic number.
Thus, Os and Ir should be the best stable reference elements in
CS31082-001 for the radioactive species **Th and ***U (any **U
has decayed to insignificance long ago). From the half-lives of ***Th
and 2*U (14.05 and 4.468 Gyr, respectively), At as a function of the
logarithmic decay of Th and U is:

At = 46.7[log(Th/r), — log(Th/r) ] (1)
At = 14.8[log(U/r)y — 1og(U/1)gs] )
At = 21.8[log(U/Th), — log(U/Th),,] 3)

where At is expressed in Gyr, r is a stable third-peak r-process
element (here Os or Ir), and the terms such as (Th/r), are the initial
production ratios for each pair of species.

Equations (1) and (2) highlight the importance of adding U to the
battery of Galactic chronometers: an error of 0.1 dex in a Th
abundance propagates as a time equal to the age of the Solar
System, neglecting other sources of error. But equation (3) shows
that U and Th can be used in concert, with little loss in formal
precision but with important overall advantages: the initial produc-
tion ratio (U/Th), is in principle much less affected" by theoretical
uncertainties than any of the individual (U/r), because of the
proximity of the two elements in their mass numbers. We note
that the observational accuracy of (U/Th) is better than for U or Th
alone, because errors coming from the choice of model atmosphere
parameters largely cancel out.

The observed value of log(U/Th) in CS31082—001 is —0.74 =+
0.15. Here our error estimate includes 0.1 dex reflecting astro-
physical observational errors, and 0.12 dex for the uncertainty on
the oscillator strength of the Un 385.96-nm line. We only have to
introduce an estimate of log(U/Th), in equation (3) to derive the
age of CS31082—001. This is done in Table 1, where we have given
the reference used for the value of the production ratio. We have also
explored the use of the ratio of U to stable elements. As explained
above, it is safest to choose a reference element as heavy as possible
(that is, close in mass number to U and Th). Table 1 gives the
corresponding results using production ratios for Os and Ir from
ref. 4. Any age between 11.1 and 13.9 Gyr is compatible with the
various determinations associated with their error bars. We con-
sider the median value 12.5 Gyr as our best present estimate for the
age of CS31082—-001, with a conservative standard error of 3 Gyr.
When increased by 0.1-0.3 Gyr (refs 14, 15), these values give the
age of the Galaxy, which is in turn a lower limit to the age of the
Universe.

The accuracy of this uranium dating technique is at present
limited by incomplete knowledge of a few critical physical data, in
particular oscillator strengths and production ratios of the elements
produced by the r-process. Further laboratory and theoretical
work should enable progress on both these issues, as should the
detection of additional stars with enhanced abundances of r-process

Table 1 Ages derived for CS31082-001 as a function of production ratios

Element pair log (production ratio) Ref.  log (observed ratio)  Derived age (Gyr)
U/Th -0.255 4 -0.74 £ 015 10.6 + 3.3
U/Th -0.10 17 -0.74 = 0.15 14.0 £ 3.3
U/Os -1.27 4 -2.19+0.18 13.6 2.7
U/lr -1.30 4 -2.10+ 0417 11.8+25
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elements, similar to CS31082—001. Such work, already in progress,
should allow the full potential of the uranium chronometer to be
realized. O
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Recent experimental results' indicate that phosphorus—a single-
component system—can have a high-density liquid (HDL) and a
low-density liquid (LDL) phase. A first-order transition between
two liquids of different densities’ is consistent with experimental
data for a variety of materials*, including single-component
systems such as water’, silica’ and carbon'’. Molecular dynamics
simulations of very specific models for supercooled water>',
liquid carbon' and supercooled silica”® predict a LDL-HDL
critical point, but a coherent and general interpretation of the
LDL-HDL transition is lacking. Here we show that the presence of
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a LDL and a HDL can be directly related to an interaction
potential with an attractive part and two characteristic short-
range repulsive distances. This kind of interaction is common to
other single-component materials in the liquid state (in particu-
lar, liquid metals>'*?"), and such potentials are often used to
describe systems that exhibit a density anomaly’. However, our
results show that the LDL and HDL phases can occur in systems
with no density anomaly. Our results therefore present an experi-
mental challenge to uncover a liquid-liquid transition in systems
like liquid metals, regardless of the presence of a density anomaly.

Several explanations have been developed to understand the
liquid-liquid phase transition. For example, the two-liquid
models* assume that liquids at high pressure are a mixture of two
liquid phases whose relative concentration depends on external
parameters. Other explanations for the liquid—liquid phase transi-
tion assume an anisotropic potential®''~">. Here we shall see that
liquid-liquid phase transition phenomena can arise solely from an
isotropic pair interaction potential with two characteristic lengths.

For molecular liquid phosphorus P, (as for water), a tetrahedral
open structure is favoured at low pressures P and low temperatures
T, but a denser structure is favoured at high P and high T (refs 1, 6,
8). The existence of these two structures with different densities
suggests a pair interaction with two characteristic distances. The
first distance can be associated with the hard-core exclusion
between two particles and the second distance with a weak repulsion
(soft core), which can be overcome at large pressure. Here we will
use a generic three-dimensional (3D) model composed of particles
interacting through an isotropic soft-core pair potential. Such
isotropic potentials can be regarded as resulting from an average
over the angular part of more realistic potentials, and are often used
as a first approximation to understand the qualitative behaviour of
real systems™'*"?. For Ce and Cs, a potential with nearest-neighbour
repulsion and a weak long-range attraction was proposed”. By
means of an exact analysis in one dimension (1D), two critical
points were found", with the high-density critical point interpreted
as a solid—solid transition. Then analytic calculations'®, simu-
lations' and the 1D exact solution (ref. 18) of the structure factor
for a model with a soft-core potential were found to be consistent
with experimental structure factors for liquid metals such as Bi. The
structure factor for liquid metals was also the focus of a theoretical
study of a family of soft-core potentials by mean-spherical
approximation'. More recently, the analysis of the solid phase of
a model with a soft-core potential® was related to the experimental
evidence of a liquid-liquid critical point in the K,Cs metallic alloy™.
Moreover, for simple metals, soft-core potentials have been derived
by first-principle calculations' and computed from experimental
data’. Soft-core potentials are important in the context of super-
cooled liquids®?, and the analysis of experimental data for water
gives rise to a soft-core potential®.

The isotropic pair potential considered here (Fig. 1a, inset) has a
hard-core radius a and a soft-core radius b > a. For a <r < b the
particles repel each other with energy Uy > 0; for b <r < ¢ they
attract each other with energy — U, < 0. For r > ¢ the interaction
is considered negligible and is approximated to zero. The potential
has three free parameters: b/a, ¢/a and Ug/U,.

To select the parameters for the molecular dynamics (MD)
simulations is not easy, and MD is too time-consuming to study a
wide range of parameter values. Hence we first perform an integral
equation analysis”’, whose predictions we can calculate very rapidly
and efficiently. In this technique, one derives the phase diagram by
studying the static pair distribution function—which measures the
probability of finding a particle at a given distance from a reference
particle, and thereby quantifies the correlation between pairs of
particles. Mathematically, this function can be written as the sum of
an infinite series of many-dimensional integrals, over particle
coordinates, involving the pair interaction potential. Because this
exact expression is intractable, approximations must be made. Here
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we use the hypernetted-chain approximation, which consists of
neglecting a specific class of these integrals, leading to a simplified
integral equation that can be solved numerically. In the tempera-
ture—density (T—p) phase diagram, the region where the simplified
equation has no solutions is related” to the region where the system
separates into two fluid phases. Thus this technique allows us to
estimate the parameter range where two critical points occur, and
hence to find useful parameter values for the MD simulations:
bla = 2.0, c/la = 2.2 and Uy/U, = 0.5. We also use several addi-
tional parameter sets in the MD calculations.

Specifically, we perform MD simulations in 3D at constant
volume V and number of particles N = 490 and 850. We use
periodic boundary conditions, a standard collision event list
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Figure 1 Pressure-density isotherms, crystallization line and spinodal line from the
molecular dynamics simulations for the isotropic pair potential in three dimensions. Inset to
a, the pair potential energy Ur) as a function of the distance r between two particles.
Distance ais the hard-core radius, bis the soft-core radius, ¢is the cut-off radius. Energy
Uy is the attractive energy and Lk is the repulsive energy. a, Several isotherms (bottom to
top) for T = 0.57, 0.59, 0.61, 0.63, 0.65 and 0.67. All quantities are in reduced units:
length in units of a, temperature in units of Uy/kg, pressure in units of U/a, (number)
density in units of 1/a°. Diamonds represent data points and lines are guides for the eyes.
The solid line connecting local maxima and minima along the isotherms represents the
spinodal line. The two maxima of the spinodal line (squares) represent the two critical
points C; and C». To determine the crystallization line (grey line)—below which the fluid is
metastable with respect to the crystal—we place a crystal seed, prepared at very low T, in
contact with the fluid, and check, for each (T,p) pair, whether the seed grows or melts after
10° MD steps. The spontaneous formation (nucleation) of the crystal is observed, within
our simulation times (~10°MD steps), only for p = 0.27. We use the structure factor
S(Q)—the Fourier transform of the density—density correlation function for wave vectors
(0—to determine when the nucleation occurs. Indeed, at the onset of nucleation, S(Q)
develops large peaks at finite Q(Q = 12a~" and Q = 6a~"). For each p, we quench the
system from a high-T configuration. After a transient time for the fluid equilibration, we
compute P(T,p), averaging more than 10°-108 configurations generated from up to 12
independent quenches, making sure that the calculations are done before nucleation takes
place. b, Enlarged view of the region around the gas—LDL critical point C; for T = 0.570,
0.580, 0.590, 0.595, 0.600, 0.610, 0.620 and 0.630.
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algorithm®, and a modified Berendsen method to control T
(ref. 28). We find, for each set of parameters, the appearance of
two critical points (Fig. 1).

A critical point is revealed by the presence of a region, in the
pressure—density (P—p) phase diagram, with negative-slope
isotherms. In MD simulations this region is related to the
coexistence of two phases’. The (local) maximum and minimum
along an isotherm correspond to the limits of stability of the
existence of each single phase (supercooled and superheated
phase, respectively). By definition, these maxima and minima are
points on the spinodal line for that temperature. Because the
spinodal line has a maximum at a critical point, one way to
locate a critical point is to find this maximum. In our simulations
(Fig. 1), we find two regions with negatively sloped isotherms and
the overall shape of the spinodal line has two maxima, showing the
presence of two critical points, C; and C,. Using the Maxwell
construction in the PV plane?, we evaluate the coexistence lines
of the two fluid phases associated with each critical point (Fig. 2).
Considering both the maxima of the spinodal line and the maxima
of the coexistence regions in the P—p and P-T planes, we estimate
the low-density critical point C; at T, = 0.606 %= 0.004,
P, =0.0177 £ 0.0008, p, =0.11 = 0.01 and the high-density
critical point C, at T, =0.665* 0.005, P, = 0.10 = 0.01,
0, = 0.32 £0.03. Temperatures are in units of Ux/kp (where kg
is the Boltzmann constant), pressures in units of Up/a®, and
(number) densities in units of 1/a’. Critical point C, is at the end
of the phase-transition line separating the gas phase and the LDL
phase, while critical point C, is at the end of the phase-transition
line separating the gas phase and the HDL phase. Their relative
positions resemble the phosphorus phase diagram, except that, in
the experiments, C, has not been located’, but is expected at the end
of the gas—HDL transition line.

Our phase diagram (Fig. 2) shows the following fluid phases. At
high T > T,, the only fluid phase is the gas. At T, < T < T,, we
find—depending on p—the gas alone, or the HDL alone (turquoise

region), or the HDL coexisting with gas (black line in Fig. 2a and
green region in Fig. 2c). Below Ty, the LDL phase appears alone
(blue region), or in coexistence with the HDL (orange line in Fig. 2b
and orange region in Fig. 2d), or in coexistence with the gas (red line
in Fig. 2b and red region in Fig. 2d). The point where the gas—LDL
coexistence line merges with the LDL-HDL coexistence line is the
triple point. Below the pressure and temperature of the triple point,
the LDL is not stable and separates into gas and HDL.

For phosphorus the liquid—liquid transition occurs in the stable
fluid regime'. In contrast, for our model, it occurs in the metastable
fluid regime (see Fig. 1). We therefore wish to understand how to
enhance the stability of the critical points with respect to the crystal
phase. We find that by increasing the attractive well width (c — b)/a,
both critical temperatures T; and T, increase, and hence both
critical points move toward the stable fluid phase, analogous to
results for attractive potentials with a single critical point™*. For
example, for attractive well width (¢ — b)/a = 0.2, both C; and C,
are metastable with respect to the crystal, whereas for
(¢ — b)la> 0.7 we find C, in the stable fluid phase.

The phase diagram also depends sensitively on the relative width
of the shoulder b/a and on its relative height Ur/U,. By decreasing
b/a or by increasing Ug/U,, T, decreases and becomes smaller than
T). This means that, in these cases, the high-density C, occurs below
the temperature of the gas—liquid critical point, that is, C, is in the
liquid phase and represents a LDL-HDL critical point, as in
supercooled water®”!!,

The soft-core potential with the parameter sets we use displays no
‘density anomaly’ (9V/dT)p < 0. This result is surprising at first
because soft-core potentials have often been used to explain the
density anomaly (see, for example refs 2 and 24). To understand this
result, we consider the entropy S (the degree of disorder in the
system) and the thermodynamic relation — (aV/9T), = (9S/0P); =
(0S/0V)1(0V/dP)r. As, of necessity, (9V/9P); <0, (dV/IT), <0
implies (4S/0V); <0, that is, the density anomaly implies that
the disorder in the system increases for decreasing volume. For
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Figure 2 The phase diagrams, with coexistence lines and critical points resulting from MD
simulations. a, b, P—T phase diagram. b is an enlargement of a in the vicinity of G;.
Circles represent points on the coexistence lines: open circles are for the gas—LDL
coexistence, filled circles for the gas—HDL coexistence. Lines are guides for the eyes. The
solid black ling is the gas—HDL coexistence line. The red line is the gas—LDL coexistence
line. The solid red line is stable, and the dashed red line is metastable, with respect to the
HDL phase. The orange line is the LDL—HDL coexistence line. The triangle represents the
triple point. The projection of the spinodal line is represented in a and b by diamonds with
dashed lines. The spinodal line is folded in this projection, with two cusps corresponding
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to the two maxima in Fig. 1. Critical points occur where the coexistence lines meet these
cusps. The critical point C; is for the gas—LDL transition, and G, is for the gas—HDL
transition. ¢, d, P-p projections of a and b. The colours, symbols and patterns of
coexistence lines, triple and critical points are the same as in a and b. Dashed blue, black
and orange lines schematically represent isotherms at the temperatures of C;, G, and of
the triple point, respectively. Both gas—LDL and gas—HDL coexistence lines show a
local maximum, representing the estimates of C; and G, respectively. In all the panels,
where not shown, the errors are smaller than the symbol size. Units of P, Tand p are as in
Fig. 1.
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example, this is the case for water. This is consistent with the
negative slope dP/dT of the crystal-liquid transition line for water,
that implies that AS/AV <0 since, according to the Clausius—
Clapeyron equation, dP/dT = AS/AV, where AS and AV are the
entropy and volume differences between the two coexisting phases.

For our system, we expect the reverse: (9V/0T), >0 so
(dS/0V'); > 0, consistent with the positive slope of the LDL-HDL
transition line dP/dT (see Fig. 2b). We confirm that (9S/0V); > 0 by
explicitly calculating S for our system by means of thermodynamic
integration.

Our results show that the presence of two critical points and the
occurrence of the density anomaly are not necessarily related,
suggesting that we might seek experimental evidence of a liquid—
liquid phase transition in systems with no density anomaly. In
particular, a second critical point may also exist in liquid metals that
can be described by soft-core potentials. Thus the class of experi-
mental systems displaying a second critical point may be broader
than previously hypothesized. O
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Aerosols affect the Earth’s temperature and climate by altering the
radiative properties of the atmosphere. A large positive compo-
nent of this radiative forcing from aerosols is due to black
carbon—soot—that is released from the burning of fossil fuel
and biomass, and, to a lesser extent, natural fires, but the exact
forcing is affected by how black carbon is mixed with other
aerosol constituents. From studies of aerosol radiative forcing,
it is known that black carbon can exist in one of several possible
mixing states; distinct from other aerosol particles (externally
mixed'~) or incorporated within them (internally mixed"“*’), or a
black-carbon core could be surrounded by a well mixed shell’. But
so far it has been assumed that aerosols exist predominantly as an
external mixture. Here I simulate the evolution of the chemical
composition of aerosols, finding that the mixing state and direct
forcing of the black-carbon component approach those of an
internal mixture, largely due to coagulation and growth of aerosol
particles. This finding implies a higher positive forcing from black
carbon than previously thought, suggesting that the warming
effect from black carbon may nearly balance the net cooling effect
of other anthropogenic aerosol constituents. The magnitude of
the direct radiative forcing from black carbon itself exceeds that
due to CH,, suggesting that black carbon may be the second most
important component of global warming after CO, in terms of
direct forcing.

This work was motivated by studies'~” that found different black-
carbon (BC) forcings when different BC mixing states were
assumed. In one study’ the mixing state was found to affect the
BC global direct forcing by a factor of 2.9 (0.27 Wm™ for an external
mixture, +0.54 Wm™ for BC as a coated core, and +0.78 Wm™ for
BC as well mixed internally). Because BC is a solid and cannot
physically be well mixed in a particle, the third case was discarded as
unrealistic, and it was suggested that the real forcing by BC probably
fell between that from an external mixture and that from a coated
core. Here I report simulations that were performed among multiple
aerosol size distributions to estimate which of these two treatments, if
either, better approximates BC forcing in the real atmosphere.

The global model that I used was GATOR-GCMM, which treated
gas, aerosol, radiative, meteorological and transport processes (see
Supplementary Information for details). Aerosol processes included
emissions, homogeneous nucleation, condensation, dissolution,
coagulation, chemical equilibrium, transport, sedimentation, dry
deposition, and rainout among 18 aerosol size distributions, 17 size
bins per distribution, one number concentration, and an average of
seven mole concentrations per bin per distribution. The 18 distribu-
tions (Supplementary Information) consisted of four ‘primary’ size
distributions (sea spray (A), soil (B), black carbon (E1) and organic




