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We investigate the phase behavior of a single-component system in three dimensions with spherically-
symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive
soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to poten-
tials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed @Nature
~London! 409, 692 ~2001!# that, even with no evidence of the density anomaly, the phase diagram has two
first-order fluid-fluid phase transitions, one ending in a gas–low-density-liquid ~LDL! critical point, and the
other in a gas–high-density-liquid ~HDL! critical point, with a LDL-HDL phase transition at low temperatures.
Here we use integral equation calculations to explore the three-parameter space of the soft-core potential and
perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase
diagram, we analyze the structure of the crystal phase and find that, within the considered range of densities,
the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by
explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We
suggest that this absence is related to the presence of only one stable crystal structure.
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I. INTRODUCTION

Soft-core potentials have been widely used to study a va-
riety of systems such as liquid metals, metallic mixtures,
electrolytes, and colloids, as well as anomalous liquids, such
as water and silica @1–15#. In these models, the specific
structural characteristic at the molecular ~or atomic! level is
neglected and the molecules ~or atoms! are represented by
simple spheres. Quantum effects ~such as the quantum nature
of chemical interactions! and classical effects ~such as the
Coulomb interaction! are modeled through a phenomeno-
logical isotropic pair potential. The advantages of this ap-
proach are that while these potentials are simple enough to
be treated analytically @16#, they still allow a qualitative
comparison with the experiments. Moreover, they can be
studied by means of numerical simulations less time con-
suming than those of realistic models @17#.

We consider an off-lattice model in three dimensions ~3D!
@11# related to the soft-core potentials studied by Hemmer
and Stell @2# for solid-solid critical points. Our model shows
a phase diagram with two fluid-fluid phase transitions, a fea-
ture recently seen in experiments on phosphorus @18# and
confirmed by specific simulations @19#. In Ref. @11# we
showed that both first-order fluid-fluid phase transitions end
in critical points, a low-density critical point C1 and a high-
density critical point C2. For the considered potential, both
transitions occur in the supercooled phase with respect to the
crystal phase.

The hypothesis of a second critical point has been pro-
posed @20# as a way to rationalize the density anomaly—i.e.,
the expansion upon isobaric cooling—in network-forming
fluids, such as water @1,20,21#, carbon @22#, silica @23# and
silicon @24#. Consequently, both the experimental @25–29#
and the theoretical @7–10,13–15,30,31# investigations about
the possibility of a second critical point have been focused
on systems with the density anomaly @Fig. 1~a!#. However,
the results of Ref. @11# have shown that the presence of the
critical point C2 does not necessarily induce the density
anomaly, indicating that the quest for simple liquids with two
critical points is not restricted to systems with densities ex-
hibiting anomalous behavior @Fig. 1~b!#. In this paper we
push forward the analysis, by studying the equilibrium phase
diagram and showing that the system introduced in Ref. @11#
has one stable crystalline phase, in the range of considered
densities, suggesting that the absence of density anomalies is
related to the presence of only one stable crystal structure.

To reach this goal we organize the work in the following
way. After the definition of our soft-core potentials ~Sec. II!,
~i! we describe in detail the integral equations in the hyper-
netted chain ~HNC! approximation ~Sec. III A! and ~ii! we
perform additional calculations using different assigned pa-
rameters for the pair potential, thus establishing a bridge be-
tween the potential studied in Ref. @11# and the potential
investigated in Refs. @10,15# and rationalizing how—in ad-
dition to the critical point C1—the critical point C2 arises as
a function of the parameters of the pair potential ~Sec. III B!.
Then, ~iii! we describe in detail the molecular dynamics
~MD! simulations, studying the equilibrium phase diagram
and finding that the only stable crystal structure, in the range
of simulated densities, has two characteristic lattice distances
~Sec. IV A!. ~iv! By MD simulations we analyze also the

*Present address: SMC, Dipartimento di Fisica, Università ‘‘La
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supercooled liquid phase and the metastable fluid-fluid phase
transition ~Sec. IV B!; ~v! in order to construct an accurate
phase diagram and to study the finite size effect, we perform
some extra MD simulations in addition to the calculations
presented in Ref. @11# ~Sec. IV C!. Hence, ~vi! we study the
radial distribution function, comparing the HNC predictions
with the MD results and analyzing the composition of the
system within the fluid-fluid coexisting regions ~Sec. V!. Fi-
nally, ~vii! we address the density anomaly issue by present-
ing the explicit thermodynamic calculation, based on the MD
phase diagram, that allows us to exclude the presence of the
density anomaly ~Sec. VI!. We give our conclusions in Sec.
VII.

II. SOFT-CORE POTENTIALS

Among the isotropic potentials, much attention has been
devoted to soft-core potentials, which have a finite ~soft-
core! repulsion added to the infinite ~hard-core! repulsion.
The infinite repulsion is due to the impenetrability of the
spheres. The finite repulsion represents the combination of
all the quantum and classical repulsive effects averaged over
the angular part. It has been shown @4# that a weak effective
repulsion can be derived by a first-principles calculation for
liquid metals @3#. To understand the possibility of the solid-
solid critical point in such material as Ce and Cs, Hemmer
and Stell @2# proposed a soft-core potential with an attractive
interaction at large distances, performing an exact analysis in
1D. Over the past 30 years, several other soft-core potentials

with one or more attractive wells were proposed and studied
with approximate methods, or numerical simulations in 2D,
to rationalize the properties of liquid metals, alloys, electro-
lytes, colloids, and the water anomalies @1–8,10–15#. It has
been recently shown @11#, in 3D with MD, that an appropri-
ate soft-core potential with an attractive well is able to show
two supercooled liquids of different densities, with two criti-
cal points. Similar results have been reported for a soft-core
potential with a linear repulsive ramp by Monte Carlo simu-
lations @14#.

Following Ref. @11#, we define the isotropic pair potential
U(r), as a function of the pair distance r ~inset in Fig. 2!:

U~r !55
` for r,a ,

UR for a<r,b ,

2UA for b<r,c ,

0 for c<r ,

~1!

where a is the hard-core distance and b is the soft-core dis-
tance. For a<r,b , the spheres interact with a finite ~soft-
core! repulsive energy UR . For b<r,c , the pair’s interac-
tion is attractive with energy 2UA,0. The distance c is the
cutoff radius beyond which the pair’s interaction is consid-
ered negligible. For sake of comparison with Refs. @10,15#,
we will consider both UR.0 and UR,0.

The steplike shape in Eq. ~1! has the advantage of being
defined by only three parameters: the width of the soft core
in units of the hard-core distance wR /a[(b2a)/a , the
width of the attractive well in the same units wA /a[(c
2b)/a , and the soft-core energy in units of the attractive
well energy UR /UA . To explore the phase diagram of the
model as a function of these three parameters in an approxi-
mate, yet fast, way we use the integral equations in the HNC
approximation.

FIG. 1. Schematic pressure-temperature P-T phase diagrams
with two critical points. Solid lines represent first-order phase tran-
sition lines, circles represent critical points. ~a! Phase diagram with
critical point C between the gas and the uniform liquid phase at
high T and low P and critical point C8 between the low-density
liquid ~LDL! and the high-density liquid ~HDL! at low T and high
P. This phase diagram has been proposed for water and has been
shown to be consistent with the density anomaly. ~b! Phase diagram
with critical point C1 between the gas and the LDL at low T and
low P and the critical point C2 between the gas and the HDL at high
T and high P. Increasing P at constant temperature Ta below C1

~dashed line at Ta), the system undergoes a first-order phase tran-
sition between the gas and the LDL phase, followed by a first-order
phase transition between the LDL and the HDL phases. Increasing
the pressure at constant temperature Tb above C1 but below C2

~dashed line at Tb), the system undergoes only a first-order phase
transition between the gas and the HDL. The square represents the
gas-LDL-HDL triple point. This phase diagram has been found in
Ref. @11# and shows no evidence of the density anomaly.

FIG. 2. Instability line of the HNC equations in 3D in the r-T
plane for the pair potential in Eq. ~1!, with wR /a50.4, wA /a
50.3, and ~from top to bottom! UR /UA520.5, 0.0, 0.5. For
UR /UA520.5, the pair potential recovers that studied in 1D and
2D in Refs. @10,15#. The symbols represent the calculations and the
lines are guides for the eye. Inset: the isotropic pairwise-additive
potential U(r) as a function of the interparticle distance r; a is the
hard-core distance, b is the soft-core distance, c is the maximum
attractive distance, 2UA,0 is the attractive energy, and UR is the
repulsive energy.
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III. THE INTEGRAL EQUATIONS IN THE HYPERNETTED
CHAIN APPROXIMATION

In this section we present details of the integral equations
and the HNC approximation adopted in Ref. @11# and in this
work. The radial distribution function g(r) plays a central
role in the physics of fluids @16#. This quantity is propor-
tional to the probability of finding a particle at a distance r
from a reference particle and is the ratio of local to bulk
density at distance r, with

g~r ![
n~r !

4pr2r
, ~2!

where n(r) is the number of particles at a distance between r
and r1dr from the reference particle and r is the number
density, assumed to be independent of r ~uniform system!.
The radial distribution function goes to 1 for large r and is
always 1 for a random spatial distribution of particles. To
represent deviations from randomness, the total pair correla-
tion function h(r)[g(r)21 is introduced.

These functions are relevant because they are directly
measurable by radiation scattering experiments and are re-
lated to the thermodynamic properties of the fluid. A funda-
mental relation between structure and thermodynamics is
given by

kBTrKT511rE h~rW !drW , ~3!

where KT[(]r/]P)T /r is the isothermal compressibility, P
is the pressure, and kB is the Boltzmann constant. Provided
that the particles interact through pairwise-additive forces,
other thermodynamic properties of the fluid—such as the
internal energy—can be expressed using integrals over the
pair correlation function.

The function h(r) is the result of the interaction of all the
particles in the system. Formally, h(r) can be decomposed
into ~i! the contribution coming from the direct interaction
between two particles at distance r, called c(r), and ~ii! the
contribution due to the indirect interaction propagated
through any other particle in the system. This second contri-
bution is written in turn as an integral convolution of direct
correlations and total pair correlation.

This decomposition, for uniform systems, is expressed by
the Ornstein-Zernike relation

h~r !5c~r !1rE c~r8!h~ urW2rW8u!drW8. ~4!

Equation ~4! is also the formal definition of c(r). Both h(r)
and c(r) in Eq. ~4! are unknown functions, thus to solve this
equation, one needs another relation ~closure! between these
two functions. This relation is provided by the diagrammatic
expansion of g(r) @16#, which, after formal summation,
yields the functional relation

g~r !5exp@2bU~r !1h~r !2c~r !1d~r !# , ~5!

where U(r) is the interparticle potential, b[1/(kBT) and
d(r) is the sum over a specific class of diagrams ~bridge
diagrams! @16#. Since d(r) cannot be calculated exactly, one
resorts to approximate expressions. The simplest approxima-
tion assumes d(r)50 ~HNC closure! @32#. One expects this
approximation to work better at lower r , where the direct
correlation function c(r) is more relevant than the correla-
tion propagated through the other particles. However, our
results ~see Sec. V! will show that this intuitive observation
is not straightforward, at least for soft-core potentials.

A. The iterative procedure

The solution of the integral equations ~4!,~5! with the
HNC closure is obtained through a numerical iterative pro-
cedure whose essential scheme is the following. Under the
assumption d(r)50, one can write g(r) as

g~r !5exp@2bU~r !1u~r !# , ~6!

where the function u(r)[h(r)2c(r) has the remarkable
property of being a continuous function of r, even for dis-
continuous potentials ~as in this paper!. From the definitions
of h(r), u(r) and Eq. ~6!, one can derive the equation

c~r !5exp@2bU~r !1u~r !#2u~r !21. ~7!

By using the Fourier transform f̂ (qW )[* f (rW)exp(iqW•rW)drW de-
fined for a generic function f (rW), from Eq. ~4! we obtain

ĥ~q !5 ĉ~q !1r ĉ~q !ĥ~q !. ~8!

Or, using the definition of u(r), we have

û~q !5r
ĉ2~q !

12r ĉ~q !
. ~9!

The numerical iteration is based on Eqs. ~7! and ~9!.
We start by choosing an initial guess for u(r). A reason-

able input, at least at high temperatures, is the u(r) of a fluid
of hard spheres with diameter a. In fact, at high temperatures
our potential can be approximated with a simple hard-core
repulsion. We can calculate the corresponding u(r) by mak-
ing use of the Percus-Yevick integral equation @16#, which
for hard spheres can be solved analytically. Next, at constant
r , we decrease the temperature of dT and we perform cal-
culations at fixed r and T by using as input the u(r) obtained
as a solution at r and T1dT .

From the chosen guess of u(r) we calculate c(r) by using
Eq. ~7!. Its Fourier transform ĉ(q) is used in Eq. ~9! to
calculate û(q). Its inverse Fourier transform provides a new
u(r) that is used as a new input for the next cycle. We
evaluate the functions on M52048 discrete points rm
5mdr , with m51, . . . ,M and dr50.01a . Successive itera-
tions of the elementary cycle define a succession u (k)(r),
where k51,2, . . . is the number of the iteration. If the dif-
ference between two consecutive elements of this succession,
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D[F 1

M (
m

M

@u (k11)~rm!2u (k)~rm!#2G 1/2

, ~10!

decreases for increasing k, the succession converges towards
a u*(r) that is the solution of our integral equations. The
iteration process is stopped when D<1027.

Based on this iterative procedure, different algorithms can
be used to improve the accuracy and rapidity of convergence
of the numerical solution of HNC equations. However, inde-
pendent of the algorithm used, there exists a region in the
r-T plane where no solution can be found, i.e., for any r ,
there is a T below which the numerical algorithm does not
converge, defining an instability line in the r-T plane.

B. The HNC instability line

The nature of the locus of instabilities of the HNC equa-
tion and its relationship with the spinodal line of the fluid
was investigated for a hard-core potential plus an attractive
Yukawa tail in a number of papers @33,34#. These studies
showed that the isothermal compressibility does not diverge
as the temperature is lowered and the instability region is
approached from above. This conclusion was definitively as-
sessed through extensive numerical calculations @35# both for
the hard-core Yukawa fluid and other model potentials,
showing that this behavior is directly correlated to the exis-
tence of multiple HNC solutions. The analysis developed
was based on a careful treatment of the low-k behavior of the
Fourier transforms of the correlation functions required by
the iterative procedure. A further theoretical support to these
results was given by an analysis @36# on models for an ionic
fluid and a monoatomic Lennard-Jones fluid.

In the light of the above mentioned studies, an identifica-
tion of the instability line of the HNC equation with the
spinodal line of the fluid, which is characterized by a diverg-
ing compressibility, is not possible. Keeping in mind this
limitation, one can nevertheless observe that for a large num-
ber of simple fluid pair potentials the shape of the instability
line qualitatively resembles the region of spinodal decompo-
sition of the fluid. Also for our potential the comparison of
the HNC calculations with the MD results ~Sec. V! shows
that the HNC instability line is qualitatively consistent with
the spinodal line @37#. Thus, studying the modifications of
the instability line as the potential parameters are varied can
yield some approximate, yet useful, information on the phase
behavior of the fluid.

C. The results

First, we calculate the instability line of the HNC equa-
tions for the potential investigated in Refs. @10,15#. The cor-
responding parameters are wR /a50.4, wA /a50.3, and
UR /UA520.5. In this case, the soft core is given by two
attractive wells with different depths. Calculations in 1D and
2D @10,15# have shown a waterlike density anomaly. There-
fore, it is interesting to analyze the phase diagram in 3D.
However, the instability line for this case ~Fig. 2! is similar
to the spinodal line usually exhibited by a simple fluid, e.g.,
interacting via a Lennard-Jones potential with the maximum

of the spinodal line corresponding to the liquid-gas critical
point. Upon increasing UR /UA to 0.5 ~Fig. 2!, the only evi-
dent change of the instability line is a shift toward a lower T
as a result of the overall decrease of the interparticle attrac-
tion, with no hints of a second critical point. A small shift to
lower r is also seen. This behavior is more evident for larger
wR .

Next, we consider a potential with a larger wR(wR /a
50.7, wA /a50.3). The instability line is calculated for
several values of UR /UA ~Fig. 3!. Upon increasing UR /UA ,
we now find not only the shift to a lower T, but also an
evident shift of the maximum of the line ~i.e., the critical
point, assuming that the instability line represents the behav-
ior of the spinodal line! to a lower r . This result can be
rationalized by observing that, passing from UR,0 to UR
.0, the soft core becomes more and more difficult to pen-
etrate and the system passes from a potential with a hard core
a and an effective attractive range wA1wR to a potential
with an effective hard core b, for UR /UA large enough, and
an attractive range wA . As a consequence of the increase of
the effective hard core, the critical density decreases and, as
a consequence of the decrease of the effective overall attrac-
tion, the critical temperature decreases.

Comparing Figs. 2 and 3, we notice an important differ-
ence. In the case of larger wR ~Fig. 3!, as UR /UA increases,
the temperature of the instability line does not decrease with
increasing r , but becomes rather flat. This result suggests
that the instability line might develop a second maximum at
larger values of r for even larger wR .

We thus consider a potential with wR /a51.0 and wA /a
50.2. The results ~Fig. 4! show that for 0.4<UR /UA<0.6,
the instability line has two well-distinct local maxima, sug-
gesting the possibility of two critical points in the phase
diagram for the fluid phases @38#. For UR /UA<0.3 or
UR /UA>0.7, the instability line shows just one maximum,
similar to the typical spinodal line of a fluid of hard spheres
with diameter a or b, respectively, attracting via a square
well of width wA . As a consequence of this analysis, we
choose wR /a51, wA /a50.2, and UR /UA50.5 as the set of
parameters for the potential used in the MD calculations in
3D @11#.

FIG. 3. Instability lines, as in Fig. 2, for the pair potentials with
parameters wR /a50.7, wA /a50.3, and ~from top to bottom!

UR /UA520.5, 0.0, 0.5, 0.7, 1.0.
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IV. THE MOLECULAR DYNAMICS APPROACH

In this section we give extensive details on the MD
method and extend the analysis performed in Ref. @11#, in-
cluding calculations for the crystal phase, the crystal nucle-
ation process, and the metastable phases. We perform MD
simulations at a constant number of particles N of unit mass
m, at constant volume V, with periodic boundary conditions,
and at a constant average temperature T. We present the re-
sults for N5490, 720 and N51728. The average tempera-
ture is set by coupling the system to a thermal bath at the
assigned T, with a thermal exchange coefficient per particle
between the system and the bath equal to k
50.015 (UA /m)1/2kB /a . We use a standard collision event
list algorithm @39# to evolve the system and a modified Be-
rendsen method to achieve the desired T @40#.

The pressure is calculated by using the virial expression
for a step potential @17#,

P5

m

3V K (
i

N

v i
2
1

1

Dt ( 8
i , j

DvW i•~rW i2rW j!L , ~11!

with ( i , j8 being the sum over the particle pairs (i , j) under-
going a collision in the time interval Dt[(105ma2/UA)1/2,
hereafter used as unit of time, and with DvW i[v

W
i82v

W
i , where

v
W

i and v
W

i8 are the velocities of the particle i at position rW i

before and after the collision with particle j at position rW j .

A. The crystal

First, to locate the equilibrium crystal line, we simulate a
crystal seed surrounded by the gas. We prepare a crystal seed
by cooling at T50.45UA /kB a gas configuration with density
r50.018/a3.

The crystal ~Fig. 5! is the effect of the competition be-
tween the hard-core repulsion at distance r5a and the at-
traction at distance r5b . The resulting structure is reminis-
cent of the close packing of hard spheres with diameter a or
b, but the competition gives rise to new symmetries ~Fig. 5!.
The minimum in the interparticle interaction potential at b
<r,c would induce a face-centered-cubic crystal with lat-

tice space ranging from b to c and a characteristic sixfold
symmetry on one projection plane with seven particles to
form a triangular lattice. However, due to the soft core, the
system can allocate particles at the hard-core distance a
5b/2. This induces a 12-fold symmetry, placing an average
number of 12, almost on-plane, nearest neighbor ~NN! par-
ticles at a distance 1<r/a&1.2 from each other to form a
dodecagon around two particles. These two NN particles are
next nearest neighbors to the dodecagon, at a distance 2
<r/a<2.2, and are placed on a line almost perpendicular to
the plane individuated by the dodecagon @Fig. 5~b!#. This
structure is distorted in such a way to form nonclosed chains
of NN particles that wrap along another axis to give rise to
an eightfold symmetry @Fig. 5~c,d!#.

By analyzing the crystal structure obtained from the MD
simulations, we conclude that the position of the particles in
the crystal can be described by rW5i•aW 1 j•bW 1k•cW1rWm ,
where rWm , for m51, . . . ,10, are the coordinates, with re-
spect to the center of the cell, of the ten particles forming a
crystal cell, aW , bW , and cW are the lattice vectors describing the
position of the center of the cell, and i, j, and k are integers
such that i1 j1k is even. We estimate the lattice vectors

FIG. 4. Instability lines, as in Fig. 2, for the pair potentials with
parameters wR /a51.0, wA /a50.2, and ~from top to bottom!

UR /UA50.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. The full symbols cor-
respond to the set of parameters selected for the MD calculations.

FIG. 5. The MD configuration equilibrated at kBT/UA50.45
and a3r50.018. Darker particles are farther away from the obser-
vation point. ~a! The crystal, with defects, surrounded by the gas.
Bonds connect particles at distance 1<r/a<1.2. The radius of the
particles is not in scale with the distances. A typical ring of eight
particles ~octagon! is plotted with a larger radius. ~b! A section of
the crystal. Bonds connect particles at distance 2<r/a<2.2. The
radius of the particles is in scale with the distances. Note, in the
upper part of the panel, a ring of 12 NN particles ~dodecagon!,
connected by bonds to two central particles. ~c! The same 12 par-
ticles of the section in ~b! are plotted with a larger radius with
respect to the other particles. Bonds are like in panel ~a!. ~d! A
rotation of 40 ° around a central horizontal axis of the section in ~c!

reveals the eightfold symmetry observed in ~a!.
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~Table I! and the coordinates of the particles forming the cell
~Table II! after an equilibration time 102Dt at T
50.03UA /kB for an artificial crystal placed in vacuum ~Fig.
6!. The resulting density of the crystal is a3r.0.39.

Surface effects could be responsible for the tilt that can be
seen in Fig. 6~d!. In a system with N5720, this tilt disap-
pears when the sample is equilibrated at higher T ~Fig. 7!.

We compare the g(r) ~Fig. 8! of the MD crystal in Fig. 5
and of the artificial crystal in Fig. 6, both equilibrated at T
50.48UA /kB . Both functions show peaks located at the
same distances, with two large peaks at r/a51 and r/a
52, consistent with the presence of the two characteristic
distances a and b in the potential. The comparison confirms
that the proposed crystal is a good representation of the crys-
tal structure generated by the MD simulation. The slightly
different intensities of the peaks of the g(r) of the two sys-
tems are probably due to the defects of the MD crystal.

The validity of the artificial crystal as a good description
of the real crystal structure is confirmed also by the evolution
of the potential energy per particle ~inset in Fig. 8! when

the MD crystal and the artificial crystal are heated, from
the configuration equilibrated at T50.48UA /kB to
T50.60UA /kB . Both samples equilibrate to the same en-
ergy. The starting potential energy is, as expected, in both
cases greater than the ground state energy U0 /N5

FIG. 6. The artificial crystal configuration equilibrated for a
time 102Dt with a MD simulation at T50.03UA /kB . Bonds con-
nect particles at distance r/a<1.2. The radius of the particles is not
in scale with the distances. Greater particles are closer to the obser-
vation point. The configuration contains 15 cells. The central cell is
emphasized by darker bonds. ~a! Each cell has four particles at the

corners of a rectangle (rWm with m51, . . . ,4 in Table II!, whose
long sides form two triangles, with two particles on the same plane

(rWm with m55,6 in Table II!, and the short sides form two tetrahe-

dra, each with two more particles (rWm with m57, . . . ,10 in Table
II!. ~b! The crystal configuration rotated by p/4 around a central
horizontal axis shows the eightfold symmetry seen in Figs. 5~a! and
5~d!. ~c! A further rotation of p/4 around the same axis shows the
dodecagons seen in Figs. 5~b! and 5~c!. ~d! A rotation of p/2 around
a central vertical axis shows again the octagons seen in Figs. 5~a!

and 5~d!.

TABLE I. The coordinates of the lattice vectors as obtained after
an equilibration time 102Dt at T50.03UA /kB of the artificial crys-
tal ~Fig. 6! proposed to describe the crystal structure found in the
MD simulations ~Fig. 5!. The errors on the parameters are on the
last decimal digit and decrease as the square root of the time of
averaging.

x y z

aW /a 1.95 0.00 0.11

bW /a 0.00 3.41 0.00

cW /a 0.00 0.00 1.94

TABLE II. The coordinates rWm5(xm ,ym ,zm) for m
51, . . . ,10 of the ten particles forming a crystal cell, with respect
to the center of the cell, as obtained after an equilibration time
102Dt at T50.03UA /kB of the artificial crystal ~Fig. 6!. The char-
acteristic distances, with an error on the last decimal digit, are
l1 /a50.53, l2 /a50.59, l3 /a50.07, l4 /a51.43, l5 /a50.05,
l6 /a50.03, l7 /a51.40, l8 /a50.52. The errors decrease as the
square root of the time of averaging. For each particle m of the cell,
we denote with nm

sc the number of particles in the crystal at a dis-
tance r<b ~in the soft core! and with nm

aw the number of particles at
a distance b,r<c ~in the attractive well!.

m xm ym zm nm
sc nm

aw

1 l1 l2 l3 6 15
2 2l1 l2 2l3 6 15
3 2l1 2l2 2l3 6 15
4 l1 2l2 l3 6 15
5 2l4 0 2l5 3 24
6 l4 0 l5 3 24
7 2l6 2l7 2l8 4 21
8 l6 2l7 l8 4 21
9 2l6 l7 2l8 4 21

10 l6 l7 l8 4 21

FIG. 7. The artificial crystal configuration for N5720 particles
equilibrated with a MD simulation at T50.10UA /kB ~a! and at T
50.52UA /kB ~b!. Bonds connect particles at distance r/a<1.2.
The radius of the particles is not in scale with the distances. The
crystal seeds are in equilibrium with the gas phase and show many
defects. The tilt present at the lower T in ~a! disappears at the higher
T in ~b!.
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28.45UA , calculated from the number of particles at dis-
tance a<r,b and at distance b<r,c ~Table II!, due to
surface effects. We find analogous results for the evolution of
the kinetic energy.

To test if the system has more than one crystal structure as
a function of the density, we cool at T50.6UA /kB a fluid
configuration equilibrated at T50.8UA /kB and r
50.267/a3, and compare the resulting g(r) with the case of
the crystal seeds at T50.45UA /kB and r50.018/a3, finding
no relevant differences ~Fig. 9!. At the same time, the at-
tempt of finding alternative artificial crystal structures has

revealed, after an appropriate equilibration, that the only
stable structure is that presented in Fig. 6. We therefore as-
sume that the system, at least for this choice of the poten-
tial’s parameters, has one single-crystal structure indepen-
dent of r , within the considered range of densities.

Starting from a configuration with the crystal seed de-
scribed above, we equilibrate the system at different densi-
ties and temperatures. We define the system to be in the solid
phase if, after a time 106(ma2/UA)1/2.33103Dt , the crys-
tal seed is growing, or we consider it in a fluid phase if the
seed is melting. The cases in which the trend is not clear
within the simulation time are considered as belonging to the
first-order transition region @41#. The crystallization pressure
rapidly increases with r and T, giving a first-order transition
line ~in the thermodynamic limit! that separates the equilib-
rium P-r phase diagram in a high-T fluid and a low-T crys-
tal ~Fig. 10! @11#.

FIG. 8. The radial distribution functions g(r) for the MD crystal
~solid line! and the artificial crystal ~dotted line!, both equilibrated
at T50.48UA /kB , are very close to each other. Inset: the potential
energy density U/N for the MD crystal ~solid line! with N5490
and the artificial crystal ~dotted line! with N5720, both equili-
brated at T50.60UA /kB , starting from a configuration equilibrated
at T50.48UA /kB , as a function of the time divided by the number
of particles N.

FIG. 9. Comparison of the radial distribution function g(r) cal-
culated for two MD configurations obtained by cooling the system
at different densities: the solid line is for the configuration at
kBT/UA50.60 and a3r50.267, the dashed line for the configura-
tion at kBT/UA50.45 and a3r50.018. The two functions are very
close to each other for distances r/a<4, showing that the crystal
structure is the same at both densities. The difference between the
two functions is consistent with the presence of defects and of the
surrounding gas.

FIG. 10. The MD P-r phase diagram. The thick dashed line is
the gas-crystal first-order transition line at the equilibrium. The cal-
culations in the region below this line are for the metastable fluid
states. Main panel: the diamonds ~full and open! are the MD calcu-
lations for ~bottom to top! kBT/UA50.570, 0.580, 0.590, 0.600,
0.610, 0.620, 0.630, 0.640, 0.650, 0.660, 0.670, 0.675, 0.685, 0.700.
The dotted lines are the isotherms calculated by polynomial inter-
polations of the points at constant T and, at the same time, of the
points at constant r . The circle at r50.1/a3 is the gas-LDL critical
point C1. The square at r50.306/a3 is the gas-HDL critical point
C2. The solid thick lines connecting the local minima and maxima
along the isotherms are the spinodal lines associated with each criti-
cal point and the shaded regions are the associated mechanically
unstable regions. The dashed lines, passing through the critical
points, are the coexistence regions associated with each critical
point. The meeting point of the gas-HDL coexistence line with the
gas-LDL coexistence line gives the possible triple point ~full tri-
angle at r.0.12/a3). Where not shown, the errors are smaller than
the symbols. Inset: enlarged view around C1. Symbols are as in the
main panel. The diamonds are the MD calculations for ~bottom to
top! kBT/UA50.580 0.590, 0.595, 0.600, 0.603, 0.606, 0.609,
0.620, 0.630, 0.640, 0.660.
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B. The supercooled liquids

At equilibrium, there is no ~stable! liquid phase. A phase
diagram without an equilibrium liquid phase is expected
@42,43# for systems with an interparticles potential with a
narrow attractive part, such as the one we are considering
here. However, the liquid is present as a metastable ~super-
cooled! phase with respect to the crystal phase @11#. To study
the metastable phase diagram, we equilibrate the system for
each r from a gas configuration at T50.70UA /kB and then
rapidly cool it to the desired T>0.57UA /kB , calculating
P , g(r), and the total potential energy U[( i, j

N U(ur i

2r ju).
We find that the supercooled fluid phase has a lifetime

longer than 33103Dt ~the standard length of our simula-
tions! for r&0.20/a3 at T'0.57UA /kB , for r&0.27/a3 at
T'0.65UA /kB , and for r&0.34/a3 at T'0.70UA /kB . The
system is equilibrated in the fluid phase for t>20Dt , after
which we average P, g(r), and U over the time. We calculate
each state point by averaging the configurations for 3
3102Dt<t<33103Dt . We estimate the errors by dividing
the configurations into 90 nonoverlapping intervals of 30Dt ,
which we assume to be independent.

For larger r , the system spontaneously crystallizes ~ho-
mogeneous nucleation process!. Thus, we only average over
configurations that occur before nucleation. To be certain that
our estimates are carried out in the fluid phase, we study

S~qW ,t ![
1

N K (
j ,k

N

e iqW •[rW j(t)2rWk(t)]L , ~12!

where rW j(t) is the position of particle j at time t and qW is the
wave vector. At equilibrium, the average of S(qW ,t), over the
time and the wave vectors with the same module, is the
structure factor S(q), describing the spatial correlation in the
system. Therefore, S(qW ,t) describes the time evolution of the
spatial correlation along the wave vector qW . In particular, for
a crystal-like configuration, with a long-range order, there is
at least one wave vector such that S(qW ,t);O(N), while for
a fluidlike configuration, it is S(qW ,t);O(1) for all qW .

The time evolution of S(qW ,t) for a typical simulation in-
side the nucleation region is presented in Fig. 11. To limit the
computational effort, we consider 93104 wave vectors with
modulus q<100/a , which is much larger than the wave vec-
tors of the largest peak of the crystal structure factor, q
'2p/(a/2), corresponding to the hard-core radius @Fig.
11~c!#. Three different regimes can be distinguished in the
example in Fig. 11.

~i! A short-time regime A, in which S(qW ,t);O(1) for any
q@q51/a and q'12/a'4p/a are shown in Figs. 11~a,b!#.
Averaged on this interval @curve A in Fig. 11~c!# the S(q) is
fluidlike.

~ii! An intermediate-time regime B, in which S(qW ,t) for
q51/a has an increase, but has no increase for q'4p/a .
Averaged on this interval @curve B in Fig. 11~c!# the S(q) is
fluidlike, but with an increase for q→0. This increase indi-
cates an increase of KT , according to the equation

kBTrKT5 lim
q→0

S~q !, ~13!

where we use Eq. ~3! and the definition S(qW )[11r ĥ(qW ).
The increase of KT is associated with the phase separation
into two fluids with different densities. To help visualize the
phase separation, in Fig. 12 we show the three planar projec-
tions of the three dimensional configuration corresponding to
the largest peak in the time interval B for q51/a @Fig. 11~a!#.
By dividing the box into two equal parts, the histograms of
the number of particles in each part ~Fig. 12! show a sepa-
ration in density approximately at half the box length, corre-
sponding to q54p(r/N)1/3'1/a for r50.27/a3 and N
5490, in agreement with the peak at q51/a for curve B in
Fig. 11~c!. In each projection, it is possible to see regions of
high density and low density ~Fig. 12!. To better quantify the
phase separation occurring in the configuration in Fig. 12, we
present ~main panel in Fig. 12! the histogram of the number
of pairs of particles at a relative distance r i,r<r i11, where
r i112r i5a/10. The histogram has a broad maximum
around the distance r/a51.2 in the soft-core range, showing
that there exists a subset of the pairs of particles that are at a
preferred distance 1.1,r/a<1.2. This subset is the HDL

FIG. 11. MD calculations. ~a! Time evolution of the structure

factor S(qW ,t) at T50.62UA /kB and r50.27/a3, for wave vectors
with modulus q51/a and for a time t/Dt53000; in the time inter-

val A with 200Dt<t<500Dt , it is S(qW ,t);O(1) for any qW ; in the
time interval B with 700Dt<t<1800Dt , for six wave vectors there
is an increase in S(q51/a ,t); in the interval C with 2100Dt<t
<3000Dt , for the same six wave vectors there is a larger increase.
~b! As in ~a! but for q'12/a'4p/a; in this case there is a large
increase in S(q'12/a ,t), more than one order of magnitude, only
in the time interval C for several wave vectors, revealing the for-
mation of a crystal seed. ~c! The structure factor S(q), given by the
average over the dimensionless wave vectors aq with the same
modulus and the average over the time intervals A, B, and C of

S(qW ,t). The curves for B and C are offset by 1.5 and 3, respectively.
All the curves go to 1 for large q. In the interval A , S(q) is liq-
uidlike. In the interval B , S(q) is still liquidlike but with an in-
crease for q→0, while in the interval C it is solidlike, with two
large peaks at q'2p/(b/2)52p/a and q'2p/(a/2), correspond-
ing to the soft-core radius and the hard-core radius, respectively,
and a large value for q→0.
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that has a nonuniform distribution over space @Fig. 13~b!#,
consistent with the phase separation.

~iii! A long-time regime C, in which is S(qW ,t);O(N) for
q'4p/a , revealing the crystal nucleation process. The S(q)
averaged over this time interval @curve C in Fig. 11~c!# is
solidlike. In the same interval, S(qW ,t) for q51/a has a large
increase, corresponding to the increase of KT@S(q) increases
for q→0], which is consistent with the phase separation be-
tween the fluid and the crystal. As an example, in Fig. 14 we
show the last configuration of the time series in Fig. 11,
where the crystal structure, already observed in Fig. 5, is
clearly seen.

The example in Fig. 11~b! shows the formation of a high-
density fluid phase within the time interval B, followed by
the nucleation of the crystal phase. The onset of the nucle-
ation is marked by a large increase of S(qW ,t) for all the wave
vectors corresponding to the peaks in the crystal S(q) and by
a large steplike decrease of energy.

C. The phase diagram and the finite size effect

By repeating the analysis described above for all the
simulations inside the region with nucleation—and discard-
ing the data corresponding to the formation of the

nucleus—it is possible to calculate the state points corre-
sponding to the metastable fluid phase. The phase diagram in
Fig. 10 is based on averages over a total of 105 –106 configu-
rations in the fluid phase, accumulated in independent runs.

For completeness we recall here the main features of the
phase diagram in Fig. 10 and presented in Ref. @11#. The
~mechanically unstable! region at high r for T
&0.67UA /kB , where P decreases for increasing r , denotes
the coexistence of the gas and HDL. The unstable region at

FIG. 12. Inset: projections of the three-dimensional configura-
tion of N5490 particles in a system of size V1/3

512.25a and cor-
responding to the largest peak in the time interval B in Fig. 11~a!.
The projections are ~from left to right! Z vs Y , Z vs X, and X vs Y.
The histograms of a number of particles as functions of the abscissa
are superimposed on each projection. Projections and histograms
are shifted for clarity. Each histogram bin corresponds to half of the
box size. The dashed line shows the average number of particles in
each bin for a uniform configuration (N/25245). The largest de-
viation from the average is 40.AN'22, i.e., twice the statistic
fluctuation for a random distribution of particles. Main panel: the
number of pairs of particles at a relative distance r i,r<r i11 for
the MD configuration in the inset, with r050, r1 /a51, and r i11

2r i5a/10 for i.1. The histogram shows a large maximum corre-
sponding to the attractive range 2<r/a,2.2, a broad maximum
around r/a51.2, and a small number of pairs at the hard-core dis-
tance r5a . Therefore, the preferred relative distance for pairs of
particles within the soft-core range 1<r/a,2 is, for this configu-
ration, r/a.1.2.

FIG. 13. Spatial distribution of pairs of particles at various dis-
tances for the MD configuration shown in Fig. 12. The radius of the
particles is not in scale with the distances. In ~a! the darker particles
are farther away from the observation point. Bonds connect par-
ticles at the hard-core distance 1<r/a,1.1 in panel ~a!, at distance
1.1,r/a<1.2 in panel ~b!, at distance 1.3,r/a<1.4 in panel ~c!,
at distance 1.5,r/a<1.6 in panel ~d!. The nonuniform distribution
of bonds is clearly seen in panel ~b!.

FIG. 14. The last MD configuration in the time series in Fig. 11.
A crystal nucleus surrounded by gas is clearly seen. Bonds connect
particles at distance r/a<1.1. The 3D perspective is given as in
Fig. 5. The radius of particles is not in scale with the distances.
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low r for T&0.603UA /kB ~inset in Fig. 10! denotes the co-
existence of the gas and LDL. The coexistence lines are ob-
tained by using the Maxwell construction of the equal areas
@1#, suggesting the presence of a gas-LDL-HDL triple point.

By definition, the spinodal lines ~limit of stability of each
phase with respect to the coexisting phase! meet the coexist-
ence lines at a critical point. Therefore, by interpolation we
estimate the gas-LDL critical point C1 at kBT1 /UA50.603
60.003, a3r150.1060.01, a3P1 /UA50.017160.0005,
and the gas-HDL critical point C2 at kBT2 /UA50.665
60.005, a3r250.30660.020, a3P2 /UA50.1060.01.
These values are consistent with the linear interpolations of
the MD isotherms ~Fig. 10!.

The phase diagram resulting from the MD calculations is,
as expected, in agreement with the time-dependent analysis
of the structure factor presented above. For example, the case
presented in Fig. 11 corresponds to a state point inside the
gas-HDL coexistence region at a density higher then the
crystal nucleation density for T50.62UA /kB . The nucle-
ation of the ~metastable! HDL phase is thus followed by the
crystal nucleation.

To estimate the finite size effect in our calculations, we
compare the results for N5490 and N51728 for an isotherm
below both critical points ~Fig. 15!. The calculations do not
show any relevant finite size effect, suggesting that the MD
results for N5490 are reliable.

V. THE RADIAL DISTRIBUTION FUNCTION ANALYSIS

The interpretation of the HNC instability line is qualita-
tively consistent with the MD spinodal line for the corre-
sponding set of the potential’s parameters. The projection of
the MD spinodal line in the T-r plane ~not shown! has the

same characteristics as the HNC instability line, with two
local maxima and one local minimum. In both approaches,
the high-r local maximum occurs at a temperature higher
then the temperature of the low-r maximum and the pres-
ence of a triple point is suggested by the presence of the local
minimum.

The quantitative HNC predictions for the locations of the
two critical points are, as expected, only partially consistent
with the MD results. It is remarkable that the HNC estimates
of the density of the low-r local maximum (r'1/a3) and
the temperature of the high-r local maximum (T
'0.65UA /kB) of the instability line are close to the corre-
sponding MD results for C1 and C2, respectively.

An estimate of the agreement between the two methods
can be evaluated by comparing the calculations for g(r)
within the two approaches ~Fig. 16!. In contrast with what
could be suggested by the nature of the HNC
approximation—i.e., the underestimate of the indirect
correlation—the agreement is better at intermediate r than at
low r ~Fig. 16!. In particular, at low r the HNC approxima-
tion underestimates the probability of a particle penetrating
the soft core or entering the attractive well. At higher r ,
instead, the estimates of the g(r) within the two approaches
are almost indistinguishable.

The g(r) of the low-r fluid is characterized by a large
peak at r5b corresponding to the shortest attractive dis-
tance. As a consequence of the increase of the density, the
peak at the hard-core distance r5a increases while the peak
at r5b decreases, and additional peaks at r/a53,4, . . . ap-
pear. In Fig. 17 we present the calculation of g(r) for the gas
phase, the gas-HDL coexisting region, and the HDL phase.
In particular, by combining the radial distribution functions
evaluated in each pure phase, we can estimate the composi-
tion of the mixed phase. For example, at T50.64UA /kB the
radial distribution function calculated at r050.302/a3 is

FIG. 15. Comparison between MD simulations for N5490 ~full
diamonds! and N51728 ~circles! at kBT/UA50.595. The results
for the two sizes are very close. For comparison, we include also
the calculations for N5490 at kBT/UA50.60 and 0.59 ~upper open
diamonds and lower open diamonds, respectively! and the interpo-
lation at kBT/UA50.595 ~dashed line! between these two iso-
therms, showing the presence of two regions with negatively sloped
isotherms. The points calculated for N51728 are also consistent
with this interpolation, suggesting that the finite size effect between
N5490 and N51728 is small. Errors, where not shown, are smaller
than the symbols.

FIG. 16. Comparison between the g(r) calculated in the HNC
approximation ~dotted line! and by MD simulations ~solid line!. As
an example, we present the calculations at T50.64UA /kB for den-
sities ~from top to bottom! a3r50.066, 0.154, 0.267. For clarity a
constant value is added to the first two curves ~6.5 and 3, respec-
tively!. The two independent calculations are very close at interme-
diate densities. At large r all the curves go to 1.
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g0(r).X1g1(r)1X2g2(r), where g1(r) and g2(r) are the
radial distribution functions at the same T and at r1
50.223/a3 and r250.349/a3, respectively, with X150.3
and X250.7 ~Fig. 18!, revealing that the system is composed
approximately by 30% gas and 70% HDL.

From Eq. ~2!, by using the g(r) calculated from the MD
simulations, we evaluate the average number of particles
N(r)5*dN(r) within a sphere of radius r ~Fig. 19!. This
analysis reveals that the number of particles DN within the
repulsive range and within the attractive range increases lin-
early with r ~inset of Fig. 19!, and that the increase is faster

within the attractive range ~Fig. 19! for the densities we stud-
ied. In particular, the number of particles within the attractive
range b<r,c increases from 2.5 to 9!(m51

10 nm
aw/10519.2

estimated for the artificial crystal ~Table II!.

VI. ABSENCE OF A DENSITY ANOMALY

In Ref. @11# it has been noted that the possibility of a
second fluid-fluid critical point is not necessarily restricted to
systems with a density anomaly, at least from a theoretical
point of view. Here we present the explicit thermodynamic
calculations for this result.

The defining relation for the density anomaly is given by

]V

]T U
P

,0 ~14!

or

]S

]V U
T

]V

]PU
T

.0 ~15!

for the Maxwell relation

]V

]T U
P

52

]S

]PU
T

, ~16!

where S is the entropy. Since

FIG. 17. The radial distribution function g(r) calculated from
the MD results at T50.64UA /kB for densities a3r50.066, 0.100,
0.132, 0.154, 0.186, 0.223, 0.267, 0.302, 0.322, 0.333, 0.349, 0.358.
With increasing r , the peak at r5a increases and the peak at r
5b decreases, while more peaks appear at larger r.

FIG. 18. The radial distribution function calculated from the
MD simulations at T50.64UA /kB and r50.302/a3 ~open circles!
is compared with the composition X1g1(r)1X2g2(r) ~solid line!,
where g1(r) is the radial distribution function for the pure gas
phase ~at r50.223/a3) and g2(r) is for the pure HDL phase ~at r
50.349/a3) at the same T, with X150.3 and X250.7.

FIG. 19. Inset: the MD results at T50.64UA /kB for the cumu-
lative number of particles DN within the repulsive range r,b
~circles! and within the attractive range b<r,c ~squares!, increas-
ing linearly with r in this range of densities; the linear fit of the data
gives a slope 20.260.5 for the solid line and a slope 22.160.6 for
the dashed line. Main panel: the data in the inset plotted one versus
the other to show that within the mechanically unstable region (r
.0.267/a3), DN increases approximately in the same way with r
both within the attractive and within the repulsive range ~the dashed
line is a linear fit of all the data with slope 1.0860.06) and in-
creases faster within the attractive range at lower densities ~the solid
line is a quadratic fit!.

METASTABLE LIQUID-LIQUID PHASE TRANSITION . . . PHYSICAL REVIEW E 66, 051206 ~2002!

051206-11



]V

]P U
T

,0 ~17!

holds for a mechanically stable phase, Eq. ~15! can be rewrit-
ten as

]S

]V U
T

,0. ~18!

From the differential expression of the thermodynamic
potential at constant T, we know that

TdS5dE1PdV , ~19!

where E[U1K is the total energy, with U and K being the
total potential and kinetic energy, respectively. Therefore, it
is

]S

]V U
T

5

1

T

]U

]VU
T

1

P~V ,T !

T
~20!

at constant T and we can rewrite the density anomaly condi-
tion in Eq. ~18! as

]U

]V U
T

1P~V ,T !,0 ~21!

at constant T.
To calculate the left-hand side of Eq. ~21!, we need to

evaluate (]U/]V)T . In Fig. 20, we show our MD calculation
for U(r) at constant T. All the MD points can be fitted with
a third-degree polynomial in r . The fitting parameters are
given in Table III and are used to calculate the derivative
(]U/]V)T , shown in Fig. 21. Our calculations show a po-
tential energy U increasing with V ~inset of Fig. 21!, with a

derivative always positive, thus wherever P is positive, the
condition in Eq. ~21! is not satisfied and there is no density
anomaly.

In the region where P,0 ~at low T and small V), the
derivative (]U/]V)T rapidly increases in such a way that Eq.
~21! is never satisfied. Particularly, in the range of volumes
considered, it is always (]U/]V)T20.025UA /a3

.0, where
P520.025UA /a3 is the minimum pressure, reached for T
50.6UA /kB and V/N53.31a3 ~Fig. 10!. These results sug-
gest that the density anomaly is ruled out for this choice of
parameters. At this stage it is not clear if it is ruled out for
any choice of parameters for our potential in 3D ~see Ref.
@15#!.

VII. SUMMARY AND CONCLUSIONS

We analyzed the phase diagram of a soft-core potential,
similar to potentials used in systems such as protein solu-
tions, colloids, melts, and in pure systems such as liquid

FIG. 20. The potential energy density U/N , calculated by MD
simulations, as a function of the density r for temperatures ~bottom
to top! kBT/UA50.60, 0.61, 0.63, 0.64, 0.66, 0.67, 0.70. The sym-
bols represent the MD calculations, with errors smaller than the
symbol’s size. The lines represent the cubic fit of the calculations
with the parameters in Table III.

TABLE III. Parameters for the cubic fit U/N5a01a1r1a2r2

1a3r3 of the MD calculations for the potential energy density U/N
in Fig. 20 for different temperatures. The errors on the fitting pa-
rameters are on the last decimal digit.

kBT/UA a0 a1 a2 a3

0.60 -0.2309 -20.46 39.64 -56.90
0.61 -0.2228 -19.74 36.52 -51.11
0.63 -0.1279 -21.38 49.64 -76.71
0.64 -0.1098 -20.24 44.19 -65.17
0.66 -0.0458 -20.48 48.08 -70.72
0.67 -0.0733 -21.50 52.43 -75.20
0.70 -0.0446 -18.18 37.39 -49.14

FIG. 21. The derivative (]U/]V)T calculated by using the cubic
expression in Fig. 20, with the parameters in Table III, as a function
of the specific volume V/N for temperatures ~top to bottom!

kBT/UA50.60, 0.61, 0.63, 0.64, 0.66, 0.67, 0.70. The derivative, in
the considered range of V/N , is always larger than 0.025UA /a3

~bottom horizontal line!. Inset: the same MD results in Fig. 20 for
U/N plotted as a function of V/N . The symbols are the same as in
Fig. 20.
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metals. We use two independent numerical methods, integral
equations in the HNC approximation and MD simulations.
The comparison of the HNC results with previously pro-
posed soft core potentials suggests that the system has two
fluid-fluid phase transitions for an appropriate choice of
parameters—energy and width—of the repulsive soft core.
We select a set of potential parameters with a narrow attrac-
tive well that gives a HNC instability line with two maxima
and suggests the presence of two critical points.

The MD analysis shows, in agreement with the previous
results for potentials with a short range attraction @42#, a
phase diagram with no stable liquid phase. We analyze the
crystal structure, characterized by the competition between
the attractive interaction at distance r5b and the repulsive
interaction at r5a,b . We show that the crystal, with eight-
fold and 12-fold symmetries, is independent on the density,
within the considered range of densities.

Hence, we study the metastable liquid phase at tempera-
tures above and below the line of spontaneous crystal nucle-
ation. We find two liquids in the supercooled phase, the LDL
and the HDL, with two fluid-fluid transitions ending in two
critical points, the gas-LDL critical point C1 and the gas-
HDL critical point C2, as already shown in Ref. @11#. Here
we improve our estimate of the phase diagram and verify the
absence of relevant finite size effects in the MD results.

We compare these results with the HNC calculations, con-

cluding that the HNC approximation underestimates the ef-
fect of the attractive interaction and overestimates the effect
of the repulsive interaction at low r , and is in good agree-
ment with the MD results at intermediate r .

Finally, by explicit calculation, we show that the condi-
tion for the density anomaly is never satisfied in the range of
T and V considered here, as announced in Ref. @11#. Our
results suggest that the density anomaly is always ruled out
for this choice of potential parameters.

In conclusion, the results of this paper evoke an intriguing
relation between the absence of the density anomaly and the
presence of a single crystalline phase, with higher density
than the liquid phases, in systems with two fluid-fluid phase
transitions. This relation, which deserves greater investiga-
tion, is consistent with the fact that the substances with the
density anomaly, and a hypothesized second liquid-liquid
critical point, have more than one crystal structure, as in the
case of water or carbon or silica.
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