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Many phenomena, both natural and human influenced, give rise to signals whose statistical properties
change under time translation, i.e., are nonstationary. For some practical purposes, a nonstationary time series
can be seen as a concatenation of stationary segments. However, the exact segmentation of a nonstationary
time series is a hard computational problem which cannot be solved exactly by existing methods. For this
reason, heuristic methods have been proposed. Using one such method, it has been reported that for several
cases of interest—e.g., heart beat data and Internet traffic fluctuations—the distribution of durations of these
stationary segments decays with a power-law tail. A potential technical difficulty that has not been thoroughly
investigated is that a nonstationary time series with a (scalefree) power-law distribution of stationary segments
is harder to segment than other nonstationary time series because of the wider range of possible segment
lengths. Here, we investigate the validity of a heuristic segmentation algorithm recently proposed by Bernaola-
Galvan et al. [Phys. Rev. Lett. 87, 168105 (2001)] by systematically analyzing surrogate time series with
different statistical properties. We find that if a given nonstationary time series has stationary periods whose
length is distributed as a power law, the algorithm can split the time series into a set of stationary segments
with the correct statistical properties. We also find that the estimated power-law exponent of the distribution of
stationary-segment lengths is affected by (i) the minimum segment length and (ii) the ratio R=0o_ /oy, where
o is the standard deviation of the mean values of the segments and o, is the standard deviation of the
fluctuations within a segment. Furthermore, we determine that the performance of the algorithm is generally
not affected by uncorrelated noise spikes or by weak long-range temporal correlations of the fluctuations within

segments.
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I. INTRODUCTION

A stationary time series has statistical properties that do
not change under time translation [1]. Interestingly, the time
series that arise in a large number of phenomena in a broad
range of areas—including physiologic systems, economic
systems, vehicle traffic systems, and the Internet [2-11]—
are nonstationary. Thus nonstationarity is a property common
to both natural and human-influenced phenomena. For this
reason, the statistical characterization of the nonstationarities
in real-world time series is an important topic in many fields
of research and numerous methods of characterizing nonsta-
tionary time series have been proposed [12].

One useful approach to quantifying a nonstationary time
series is to view it as consisting of a number of time seg-
ments that are themselves stationary. The statistical proper-
ties of the segments (i) can help us better understand the
overall nonstationarity of the time series and (ii) yield prac-
tical applications. For example, developing control algo-
rithms for Internet traffic will be easier if we understand the
statistical properties of these stationary segments [10].

In general, it is impossible to obtain the exact segmenta-
tion of a nonstationary time series because of the complexity
of the calculation. An exact segmentation algorithm requires
a computation time that scales as O(NN), where N is the
number of points in the time series [13]. Hence, such an
algorithm is not practical. For this reason, the segmentation
of a real-world time series must accomplish a trade-off be-
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tween the complexity of the calculation and the desired pre-
cision of the result.

Bernaola-Galvan and co-workers recently proposed a heu-
ristic segmentation algorithm [14] designed to characterize
the stationary durations of heart beat time series. In this al-
gorithm [14], the calculation cost is reduced by iteratively
attempting to segment the time series into only two seg-
ments. A decision to cut the times series is made by evalu-
ating a modified Student’s t-test for the data in the two seg-
ments [15].

The application of this segmentation algorithm reveals
that the distribution of the stationary durations in heart beat
time series decays as a power law [14]. Intriguingly, a recent
analysis of Internet traffic uncovered that the distribution of
stationary durations in the fluctuation of the traffic flow den-
sity also follows a power-law dependence [16]. Because
these signals have their origin in such diverse contexts, these
findings suggest that the power-law decay of the distribution
of the stationary period may be a common occurrence for
complex time series. Thus, the correct implementation and
interpretation of the results obtained by the segmentation al-
gorithm is essential in understanding the dynamics of the
system. In fact, there are many implementation issues con-
cerning the segmentation algorithm of Ref. [14] that have not
yet been addressed explicitly in the literature, especially
those concerning the proper estimation of the value of the
power-law tail’s exponent in the cumulative distribution of
stationary durations.

In this paper we systematically analyze different types of
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surrogate time series to determine the scope of validity of the
segmentation algorithm of Bernaola-Galvan and co-workers
[14]. In Sec. I, we briefly explain the segmentation algo-
rithm. In Sec. 111, we present results for the dependence of
the exponent of the power-law tail on the minimum length of
the segments in the distribution of the stationary durations.
In Sec. IV, we consider the effect of the amplitude of the
noise and the presence of spike-type noise. In Sec. V we
consider long-ranged temporally correlated noise. Finaly, in
Sec. VI, we summarize our findings.

II. IMPLEMENTING THE SEGMENTATION ALGORITHM
A. The algorithm

To divide a nonstationary time series into stationary seg-
ments [14], we move a diding pointer from left to right
along the time series and, at each position of the pointer,
compute the mean of the subset of the signal to the left of the
pointer wg and to the right wgy. For two samples of
Gaussian distributed random numbers, the statistical signifi-
cance of the difference between the means of the two
samples, u; and u,, is given by Student’s t-test statistic
[17],

(M1 M2
where
(Ni-Dsit (N~ D)sg| (1 1)%2
D™ N+ N,—2 N; N, @

isthe pooled variance[18], s;, S, are the standard deviations
of the two samples, and N, and N, are the number of points
in the two samples.

Moving the pointer along our time series from left to
right, we calculate t as a function of the position in the time
series. We use the statistic t to quantify the difference be-
tween the means of the left-side and right-side time series.
Larger t means that the values of the mean of both time
series are more likely to be significantly different, making
point t..., with the largest value of t, a good candidate as a
cut point.

We then calculate the statistical significance P(t,,,,). Note
that P(t) is not the standard Student’s t-test [18] because
we are not comparing independent samples. We could not
obtain P(t) in aclosed anaytical form, so that P(t5) iS
numerically approximated as [19]

Pltmad =~{1= Iy (6v,0)}7, (©))

where 7=4.19InN—11.54 and 6=0.40 are obtained from
Monte Carlo simulations [14], N is the length of the time
series to be split, v=N—2, and |,(a,b) is the incomplete
beta function.

If the difference in mean is not statistically significant—
i.e, if is smaller than a threshold (typically set to 0.95)—
then the time series is not cut. If the difference in means
between the left and right part of the time series is statisti-
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cally significant, then the time seriesis cut into two segments
as long as the means of the two new segments are signifi-
cantly different from the means of the adjacent segments. If
the time series is cut, we continue iterating the above proce-
dure recursively on each segment until the obtained signifi-
cance value is smaller than the threshold, or the length ¢ of
the obtained segments is smaller than an imposed minimum
segment length €. We will see that the value of € is one of
the parameters controlling the accuracy of the algorithm.

B. Surrogate time series

To investigate the validity of the algorithm, we analyze
surrogate time series x(t) generated by linking segments
with different means. As described in Sec. |, the cumulative
distribution of the stationary durations for some real-world
time series is characterized by a power-law decay in the tail,
so the probability of finding a segment of length larger than
m, i.e., the cumulative distribution of segment lengths in our
time series, is

y+1

+
mg*t

m~” for

P(>m)= msmy, 4

where m; is the minimum length of a segment.

We generate time series with a power-law distribution of
segment lengths by the following procedure.

(1) Draw from the interval [ mg, +] a sequence of seg-
ment lengths {m;} with distribution given by Eq. (4).

(2) Draw from the interval [0,1] a sequence of mean time
series values {x;} with uniform probability.

(3) Draw from the interval [ — /3o ,+/30 ] asequence of

fluctuation values {€;(k;)}, for ki=1,...,m;, with uniform
probability.
The resulting time series is given by

X(1) =+ €(k)), (5)
where i is such that

i—1

m<t<>, m, (6)

j=0 ]=0

and k; is such that
i—1

=0

To quantify the level of the noise, we define the ratio
R=—", ®

where o7 is the standard deviation of the mean of the seg-
ments and o, is the standard deviation of the fluctuations
within a segment. For x; uniformly distributed in the interval
[0,1], o5=0.3.
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FIG. 1. Surrogate time series constructed according to the pro-
cedure described in Sec. 11 B with parameters y= 1.0, my= 20, and
R=1. The time series is drawn in light gray, and the stationary
segments are represented by a dashed gray line. The black line
displays the output of the segmentation algorithm for €,=50. It is
visually apparent that the black line provides an adequate coarse-
grained description of the surrogate time series. Note also that the
agorithm cannot extract the smallest segments because of the re-
strictions on resolution for m<¢,.

For each set of parameters (v, my, R) we generate ten
time series, each with 50 000 data points. Note that knowing
a priori the value of mg in a rea-world time series is un-
likely, but in order to test the algorithm in a consistent way,
we consider in the following section my= 20 because that is
the resolution limit for the algorithm (see also Appendix A).

Figure 1 displays a surrogate time series, the correspond-
ing stationary durations, and the result of the segmentation
algorithm with €,=50 and my=20. The segments obtained
by the segmentation algorithm do not exactly match the sta-
tionary segments in the surrogate time series but the figure
strongly suggests that the algorithm provides the correct
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coarse-grained description of the time series. As expected,
the segmentation algorithm cannot extract segments with
length m<<¢{,,.

I11. ACCURACY OF THE SEGMENTATION ALGORITHM
A. Dependence on €, and m,

Figure 2(a) displays the cumulative distribution of seg-
ment lengths, which is the probability of finding a segment
with length larger than ¢ for a surrogate time series split for
different values of ¢,. The cumulative distributions of the
length of the stationary segments cut by the segmentation
algorithm for surrogate time series are well fit by a power-
law decay. For al cases, we find

Py mg(> )~ ¢ 7o) ©)

with the same exponent value y~ 1.0 [20], indicating that the
segmentation algorithm splits the nonstationary time series
into segments with the correct asymptotic statistical proper-
ties. However, the range of scales for which we observe a
power-law decay with y~y depends strongly on the selec-
tion of €.

For ¢ greater than about 5¢€, the tails of the distributions

are consistent with a power-law decay with y~ y=1.0. Ad-
ditionally, al P(>¢) track the surrogate data for € > 1000,
i.e., the algorithm correctly identifies the large segments in-
dependently of the selection of €. For €<5€, the distribu-
tions are not consistent with a power-law decay. The origin
of this behavior lies in the fact that (i) for €=20=0(m,),
there are not enough data points to reliably perform Student’s
t-test, so one cannot reasonably expect any statistical proce-
dure to be able to extract those short segments and (ii) for
£o>mg, one fails to extract the stationary segments with m
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FIG. 2. (a) Cumulative distribution P(>¢) of segment lengths larger than ¢ for surrogate time series with 50000 data points; y
=10, my=20, and R=1. The dotted line indicates the input segment length distribution for the surrogate time series. The slope of the line
is 1.0 for 20<m<<4000. The other curves show P(>¢) for different values of €. For £,=20, the curve is well described in the range
100< £ <4000 by a power law with y~ 1.0. The distribution does not decay as a power law for €< 100 due to the fact that the segmentation
algorithm cannot split a time series with a number of points insufficient to perform Student’s t-test. For €,=400, P(>{) decays as a power
law for 1000<¢<8000. The segmentation algorithm correctly splits all segments in the surrogate time series with length €>1000. (b)
Dependence of 5/ on {4 and my. The mean and the standard deviation of the exponent for the original time seriesis 1.05+0.24, shown by
the black solid and dotted lines. The error bars show the standard deviation of the estimates . For £,/my<5, we find y~1. Thus, the
algorithm accurately estimates exponents in this region. However, the values of the exponent are close to 1.3 for €,/my> 10, meaning that
my<<{, leads to an overestimation of 7y.
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TABLE I. Estimated exponent v, as defined by Eq. (5) for y=1.0. The mean and the standard deviation
of the exponents are calculated for the ranges indicated inside parentheses using Eq. (B1). The column
labeled “input” presents exponent estimates obtained from the segment lengths used to generate the surrogate

time series. We find y~y=1.0 for £,<5 m,.

o

mp 10 20 50 100 400 Input

20 1.1+0.3 1.1+0.3 1.2+0.3 1.3+04 1.3+0.3 1.1+0.3
(€>20) (¢>20) (£>50) (£>110) (€>1000)

50 1.0+0.3 1.0+0.3 1.0+0.3 1.1+0.3 1.1+05 1.0+0.2
(£>50) (€>50) (€>100) (€>110) (€>1000)

100 1.0+0.3 1.0+0.3 1.0+0.3 1.0+0.3 1.2+0.3 1.1+0.3
(€>100) (€>100) (€>100) (€>100) (€>1000)

<{,. The reason for the latter isthat the value of € isin this
case considerably larger than the length of the shortest seg-
ments in the time series, so the algorithm is forced to merge
a number of short segments into longer ones with length
greater than €. This process gives rise to a deficit in the
number of segments with length smaller than € ,. Hence the
slower initial decay of P(>{).

Table | shows the mean and standard deviation of the
estimated exponent value S/ calculated from surrogate time
series for several values of my and € (see Appendix B for
details on how to estimate 3/). Our results indicate that 3/
depends on both mg and ¢: If €,>my, y overestimates v,

while if €3~0(mg), the agorithm correctly estimates the
value of the exponent y; cf. Fig. 2(b).

B. Dependence on y

Next, we focus on the dependency of the accuracy of the
segmentation algorithm on the value of y. Figure 3(a) dis-
plays the cumulative distribution of segment lengths for sur-
rogate time series generated with y=2.0. A challenge for the

segmentation algorithm is that Eq. (4) indicates that the
probability of finding segments with Iength shorter than 4m,
is 90% for y=2.0, which can lead to the *‘aggregation” of
several consecutive segments of small length into a single
longer segment.

Aswe found for y=1, thetails of the distributions follow
power-law decays for large €, showing that the algorithm
yields segments with the proper statistical properties. In Fig.

3(b), we show the dependence of y on ¢, and m, for y
=2.0. We find that for £,/my<4 the algorithm extracts seg-
ments with distributions of lengths that decay in the tail as
power laws with exponents that are quite close to 2.0.

In Tables Il and IIl, we report the values of y for y
=2.0 and y= 3.0, respectively. We find that for small mq and
large vy, one overestimates y. Thus, we surmise that for y
>3.0, it becomes impractical to estimate y accurately, ex-
cept for extremely long time series. Thisfact is not as serious
alimitation as one may think because for large v it is dways
difficult to judge whether a distribution decays in the tail as
an exponential or as a power law with a large exponent.
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FIG. 3. (a) Cumulative distribution of segment lengths for y=2.0, my=20, and R=1. For £,= 20 and 100< £ <1000, the exponent y

of the power law is close to y. For £,=100, we also find y~y. However, for £,= 400, the algorithm fails to split the time series correctly
for £<1000. Moreover, note that even though the exponent estimate is correct, the algorithm yields segments that are longer than the ones

in the surrogate time series. (b) Dependence of 3/ on €4 and mg for y=2.0. For €,/my<4, the agorithm yields segments with the correct

statistical properties.
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TABLE Il. Estimated exponents 3/ for y=2.0. The mean and the standard deviation of the exponents are
calculated for the ranges indicated inside parentheses using Eq. (B1). The column labeled ““input” presents
exponent estimates obtained from the segment lengths used to generate the surrogate time series. We find

y~y=20 for €,<4 mq.

mg 10 20 100 400 Input

20 22*+06 22*+05 22*+05 24*0.7 3.8+0.7 22*+01
(¢£>100) (¢£>100) (¢>100) (¢£>200) (€>800)

50 22+06 22+06 22*+06 25+06 38x21 21+04
(€>100) (€>100) (€>100) (€>200) (€>1000)

100 19+05 19+0.6 19+0.6 20x05 24+04 20*+04
(€>100) (€>100) (€>100) (€>200) (€>1000)

IV. ROBUSTNESS OF THE ALGORITHM
WITH REGARD TO NOISE

A. Amplitude of fluctuations around a segment’s mean

Another factor that may affect the performance of the
segmentation algorithm of Bernaola-Galvan and co-workers
is the amplitude of the fluctuations within a segment. It is
plausible that greater noise amplitudes will increase the dif-
ficulty in identifying the boundaries of neighboring seg-
ments. Thus, we next analyze the effect of the amplitude of
the noise for surrogate time series.

Figure 4 demonstrates that for large R, the segmentation
algorithm yields few short segments. This result arises from
the concatenation of neighboring segments with means that
become statistically indistinguishable due to the large vaue
of o..

We show in Fig. 5 the cumulative distributions of segment
lengths for y=1.0, my=20, and for different values of R.

For large ¢ and R<3, we find Sw v, while for R=4 the
algorithm becomes ineffective at extracting the stationary
segments in the time series. It is visualy apparent that for
R=4.0 the fluctuations within a segment are so much larger
than the jumps between the means of the stationary segments
that the segmentation becomes unable to parse the different
segments; cf. Fig 4(d).

In Fig. 6, we show y for different values of R. For y
=1.0, we estimate y~y for 0<R<4. In contrast, for y

=2.0, we estimate y~y only for 0<R<1.5. When R in-
creases, the segmentation algorithm is unable to cut the seg-
ments because the greater amplitude of the fluctuations in-
side a segment decreases the significance of the differences
between regions of the time series. This effect yields very

large segments, which results in very small estimates of 5/
This effect is even stronger for y=3.0, for which we find

3,~ vy only for 0<<R<0.6.

B. Spike noise

In many data-collection situations, one obtains data with
spike noise. This type of noiseis typicaly due to instrumen-
tation failure or due to deficiencies of the algorithm used for
preprocessing the data, and in many situations it may be
impossible to fully clean the data of such noise. Due to its
ubiquity, it is important to quantify the performance of the
segmentation algorithm for signals with spike noise. Thus,
we next analyze the effect of spike noise on the performance
of the segmentation a gorithm.

We generate surrogate time series as before and then for
each t replace, with probability p, the original value of x(t)

TABLE I11. Estimated exponents ¥ for y=3.0. The mean and the standard deviation of the exponents are
calculated for the ranges indicated inside parentheses using Eq. (B1). The column labeled ““input” presents
exponent estimates obtained from the segment lengths used to generate the surrogate time series. For this
value of vy, one finds that a small mg leads to a clear underestimation of y. Note that the standard deviation
of y becomes larger, indicating the difficulty in obtaining y accurately. Also noteworthy is the fact that
because y is so large, the range of segment Iengths m drawn becomes much reduced. This implies that if one

sets €= 400 one is unable to properly estimate vy.

mg 10 20 100 400 Input

20 24+05 23+05 25+05 2705 43+14 3.1+£05
(£>100) (€>100) (€>100) (€>200) (¢ >1000)

50 3.0x£0.8 3.0£0.8 3.0x£0.9 34+06 59+13 3.0x£0.6
(£>100) (£>100) (£>100) (£>200) (¢ >1000)

100 2.8+0.9 2.8+0.8 2.8+0.9 2.8+0.8 52x17 29+0.7
(¢£>200) (¢£>200) (¢>200) (¢>200) (¢ >1000)
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FIG. 4. Surrogate time series for different amplitudes of the fluctuations within the segments. The surrogate time series were generated
with the same sequence of random numbers and with y=1.0, my=20, and (@) R=1.0, (b) R=2.0, (c) R=3.0, and (d) R=4.0. The
segmentation was performed with €,=20. It is visually apparent that the segmentation algorithm yields longer segments as R increases.
This fact arises from the fact that the statistical test cannot distinguish two neighboring segments whose difference in means is much smaller
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FIG. 5. Cumulative distribution of segment length obtained with the segmentation algorithm for different amplitudes of the noise. Asin
Fig. 1, the time series analyzed were generated with parameter for y=1.0, my=20, and (8) R=1.0, (b) R=2.0, (c) R=3.0, and (d) R
=4.0. For R<3, the tails of the distributions decay as power laws. For R=4.0, it is difficult to discriminate whether our the tails of
distribution conform to exponential or power-law decays. Note that as R increases, the dependence of the functional form of the distributions
on € decreases appreciably.
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segmentation was performed with €,=20. The different curves in each plot correspond to different values of o . For y=1.0, we find Y
=1.2 for 0<R<4.0, indicating that the algorithm is robust against increases in R. For y>1.0, we find that the impact of an increasing R

on the performance of the algorithm becomes more and more marked. Specifically, for y=2.0, we find Y~y for R<1.5, while for y

=3.0, we find y~ y for R<0.6.
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yields segments that, in a coarse-grained way, match well the segments in the surrogate data.
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FIG. 8. Cumulative distribution of segment lengths for surrogate time series with y=1.0, my= 20, R=1, and for different densities p of
the spike noise: (a) p=0.0, (b) p=0.01, (c) p=0.05, and (d) p=0.1. The value of x(t) is set at 2.0 for a spike. It is visually apparent that
even for p=0.1 all the distributions decay as power laws for € >200 and that the slopes in the log-log plots are similar to the slope of the
input distributions, i.e., the segmentation algorithm yields segments with the correct statistical properties even in the presence of strong spike
noise.

by x(t)=2. The effect of this procedure is illustrated in Fig. particularly important because real-world time series often
7 for four distinct values of p. The figure also suggests that  display long-range power-law decaying correlations.

the segmentation algorithm yields a good coarse-grained de-

scription of the surrogate time series for p as large as 0.1. A. Segmentation of correlated noise with no segments
This result suggests that the algorithm is robust to the exis-

tence of uncorrelated spike noise in the data (Fig. 8). We generate temporally-correlated noise whose power

spectrum decays as S(f)~f~# [21]. These surrogate time
series consists of 60000 points with mean zero. In Fig. 9, we
display the cumulative distribution of segment lengths for

In this section, we investigate the effect of long-range  time series generated with 8=0.3, 0.5, and 1.0. For uncor-
correlations in the fluctuations around the segment’'smeanon  related time series—i.e., 8= 0—we confirmed a single seg-
the performance of the segmentation algorithm. Thisstudy is  ment, as expected. For small but nonzero B, the agorithm

V. CORRELATED NOISE
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FIG. 9. Segmentation of Gaussian distributed long-range correlated noise with power spectrum S(f)~f~# for (a) 8=0.3, (b) B=0.5,
and (c) B=1.0. We generate time series with 60 000 data points according to the modified Fourier filtering method of Ref. [21]. We also
consider the case B=0 for which we find a single segment in the time series. It is visually apparent that as B8 increases, which indicates an
increase in the strength of the correlations, the distribution P(>¢) also decays more rapidly. Notably, the decay is never consistent with a
power-law dependence.
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FIG. 10. Segmentation of surrogate time series obtained according to the procedure described in Sec. 11 B but with {€;(k;)} having
long-range correlations. The fluctuations { €;(k;)} were generated with the modified Fourier filtering method of Ref. [21]. We show surrogate
time series obtained with y=1.0, my=20, R=1 and power spectra exponents. (a) 8=0.1, (b) 8=0.3, and (c) B=0.5. The segmentation
was performed with €,=20. For 8=0.1 and 0.3, the results of the segmentation algorithm closely track the segments in the surrogate time
series. For B=0.5, it is visualy apparent that short segments are identified correctly while long segments are cut multiple times, indicating
that the algorithm ““judges’ the noise within a segment as a honstationary time series. This is to be expected for large B8 since the correlated
noise in a segment is not stationary. Cumulative distributions of segment length for (d) 8=0.1, (e) 8=0.3, and (f) 8=0.5. The distributions

confirm the visual impression obtained from (a)—(c).

till identifies some very long segments, and one finds a dlow
decaying distribution of segment lengths. As the value of 8
increases, so does the strength of the correlations resulting in
nonstationary time series with regions of distinct means,
which the segmentation algorithm is able to identify. Thus,
as B increases the distribution of segment lengths decays
more rapidly.

We have not attempted to determine the functional form
of P(>¢) as afunction of 8. The important result to retain
from this portion of our analysis is that correlations lead to
nonstationarity of the time series, which in turn result in
there being regions with different means that the segmenta-
tion algorithm is able to identify. Notably, the decay of
P(>¢) isnever consistent with a power-law dependence for
the values of B considered.

B. Segmentation of a time series with segments with different
means and correlated fluctuations

A question prompted by the results presented in Sec. V A
is: ““What happens if the time series has correlated fluctua-
tions superimposed on a nonstationary sequence of seg-
ments?’ In order to answer this question, we analyze surro-
gate time series obtained according to the process described
in Sec. Il B, but in which €;(k;) has long-range correlations.

We show in Figs. 10(a)—10(c) typical surrogate time se-
ries generated with y=1.0, my=20, R=1.0, €,=20, and
different tempora correlations: (a) 8=0.1, (b) 8=0.3, and

(c) B=0.5. The figure suggests that the segmentation algo-
rithm can correctly parse the short segments but that long-
segments get cut multiple times, especially for 8=0.5. This
result is to be expected because the strong correlations in the
noise lead to marked changes in the mean.

In Figs. 10(d)—10(f), we plot the cumulative distributions
of segment lengths for 3=0.1, 0.3, and 0.5. The data con-
firm quantitatively the visual impression given by Figs.
10(a)—10(c)—i.e., longer segments get cut multiple times. In
particular, for 8=0.5 the distributions clearly deviate from
the a power-law decay, independent of the selection of €.
Note that this fact should not be interpreted as a shortcoming
of the algorithm; for large B, correlated noise inside a long
segment is nonstationary, so that the algorithm is cutting a
nonstationary signal.

V1. DISCUSSION

In this paper we analyzed nonstationary surrogate time
series with different statistical properties in order to investi-
gate the validity of the segmentation algorithm of Bernaola-
Galvan and co-workers [14]. Our results demonstrate that
this heuristic segmentation algorithm can be extremely effec-
tive in determining the stationary regions in a time series
provided that a few conditions are fulfilled. First, one must
have enough data points in the time series to yield a large
number of segment lengths, otherwise one will not be able to
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reach the asymptotic regime of the tail of the distribution of
segment lengths.

Second, the ratio of the amplitude of the fluctuations
within a segment to the typical jump between the means of
the stationary segments must be relatively small (less than
about 0.6) in order for one to trust the output of the segmen-
tation algorithm. This concern contrasts with the case of
spike noise in the data which affects the performance of the
segmentation algorithm only weakly.

Finally, if there are long-range temporal correlations of
the fluctuations around the mean of the segment, then the
segmentation algorithm correctly cuts the time series into the
stationary segments for small 8. However, for 8>0.3 the
fluctuations inside long segments become nonstationary,
which results in the algorithm detecting many *‘ stationary™
durations inside these long segments.

Our analysis provides a number of clear guidelines for
using the segmentation algorithm of Bernaola-Galvan et al.
[14] effectively.

(1) One must perform the segmentation for a number of
different values of €, in order to identify the region for
which the tails of the distributions of segment lengths reach
the asymptotic scaling behavior. (Note: If  is large, then the
estimation error can be quite considerable, especially if mg is
small.)

(2) One must calculate the ratio between the standard
deviation of the mean value of the segment and the standard
deviation of the fluctuations within a segment after perform-
ing the segmentation. If the R>0.6, then there is the possi-

bility that vy is considerably underestimating .
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APPENDIX A: PERFORMANCE OF THE ALGORITHM
FOR FIXED SEGMENT LENGTHS

In order to quantify the dependence of the performance of
the segmentation algorithm on the parameter €, and to iden-
tify the algorithm’s length resolution, we analyze time series
comprising segments of fixed length. We concatenate seg-
ments with constant length mg with aternating means of 0.0
and 1.0. We then add fluctuations to those segments with a
standard deviation of 0.3. We define the fraction of success-
fully split segments,

# of segments correctly identified by the algorithm
# of segmentsin surrogate data

Q

(A1)

where Q= 1.0 corresponds to perfect segmentation.

In Fig. 11, we plot Q as a function of m, for segmenta-
tions performed with different values of €, . For my<<20, the
segmentation algorithm does not yield the correct segments

PHYSICAL REVIEW E 69, 021108 (2004)
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FIG. 11. Algorithm’s resolution with regard to €, and m. We
generate surrogate time series which are constructed by the alter-
nated concatenation of two types of segments with length my: one
with mean 0.0 and standard deviation 0.3 and another with mean
1.0 and standard deviation 0.3. We plot Q, which is defined in Eq.
(A1), as a function of mq for different values of €,. Our results
indicate that the segmentation algorithm works best when my>20
and 10<€y<m,.

in the surrogate time series even though the segment’s means
are quite different. This result suggests that the resolution of
the segmentation algorithm is ~20. We aso find that for
€,="5, the algorithm splits the time series into too many
segments. These results suggest that for optimal performance
10<€y=<m;.

APPENDIX B: ESTIMATION OF y

To estimate the exponent y characterizing the power-law
decay of the tail of P(>¢), we first calculate local estimates
for segment lengths around ¢,,,

. _IN[P(>€,,)]=In[P(>€,)]
)= e )= In(ey)

(B1)

This expression is a generalization of the Hill estimator [22],
for which 7=1. In our analysis, we have used 7=5. In Fig.

12 we present the local estimates 3/(6,1) for the data shown in
Fig. 2(a). The black lines indicate the values of the exponent
for segment lengths around €, while the dashed lines indicate
the values of the exponent of the power law in the distribu-
tion of the surrogate time series.

We then estimate y by calculating the mean of al local
estimates in the region where y(¢,,) is approximately con-
stant. That is, we omit the values in the regions correspond-
ing to the initial exponential decay of the distribution and
those corresponding to the truncation due to finite sample
size.
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FIG. 12. Local estimate of the exponent y characterizing the power-law decay of the distribution P(>¢) for (a) €4= 20, (b) €,=50, (c)
€,=100, and (d) €,=400. These results are obtained for surrogate time series generated with parameters y= 1.0, my=20, and R=1.0. The

local estimate of :y is calculated using Eq. (B1). We indicate the local estimate of 3/ by the full black line and the loca estimate of the

exponent in the surrogate data y by the dotted gray line. For €,=20 and ¢ > 100, S/(€n) closely tracks y(¢€,)) and both curves have averages
close to one. For ¢,=100 and 400, the segmentation results track the properties of the surrogate data only for €>€,, while for smaller ¢

the segmentation results overestimate the value of 7.
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