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According to classical concepts of physiologic control, healthy
systems are self-regulated to reduce variability and maintain
physiologic constancy. Contrary to the predictions of homeostasis,
however, the output of a wide variety of systems, such as the
normal human heartbeat, fluctuates in a complex manner, even
under resting conditions. Scaling techniques adapted from statis-
tical physics reveal the presence of long-range, power-law corre-
lations, as part of multifractal cascades operating over a wide
range of time scales. These scaling properties suggest that the
nonlinear regulatory systems are operating far from equilibrium,
and that maintaining constancy is not the goal of physiologic
control. In contrast, for subjects at high risk of sudden death
(including those with heart failure), fractal organization, along
with certain nonlinear interactions, breaks down. Application of
fractal analysis may provide new approaches to assessing cardiac
risk and forecasting sudden cardiac death, as well as to monitoring
the aging process. Similar approaches show promise in assessing
other regulatory systems, such as human gait control in health and
disease. Elucidating the fractal and nonlinear mechanisms involved
in physiologic control and complex signaling networks is emerging
as a major challenge in the postgenomic era.

A hallmark of physiologic systems is their extraordinary
complexity. The nonstationarity and nonlinearity of signals

(Fig. 1) generated by living organisms defy traditional mecha-
nistic approaches based on homeostasis and conventional bio-
statistical methodologies. Recognition that physiologic time
series contain ‘‘hidden information’’ has fueled growing interest
in applying concepts and techniques from statistical physics,
including chaos theory, to a wide range of biomedical problems
from molecular to organismic levels (1, 2).

This presentation describes one area of investigation that has
engaged our collaborative attention, namely, fractal analysis of
physiologic time series in health and disease. The discussion will
focus primarily on certain features of the human heartbeat, one
important example of complex physiologic fluctuations. The
dynamics of another physiologic control system—human gait—is
also briefly discussed. Recognizing that this topic represents only
one selected aspect of the broad and rapidly expanding appli-
cations of complexity theory to biomedicine (Table 1), readers
are referred to a number of useful reviews and references therein
(1, 3–10).

A motivating problem for our work is depicted in Fig. 1, which
presents a dynamical self-test. Shown are 30-min heart rate time
series from four subjects. Only one is from a healthy individual;
the other three are from patients with life-threatening forms of
heart disease. The problem is to identify the normal record. The
(perhaps nonintuitive) answer to this ‘‘test’’ is given in the figure
caption. Beyond its obvious diagnostic import, the problem of
classifying temporal assays of integrated cardiac physiology has
implications for understanding and modeling basic signaling
and regulatory networks. These representative time series in

health and disease illustrate two major themes of this review
(11–16): (i) The output of healthy systems, under certain critical
parameter conditions, reveals a type of complex variability
associated with long-range (fractal) correlations, along with
distinct classes of nonlinear interactions. (ii) Multiscale, nonlin-
ear complexity appears to degrade in characteristic ways with
aging and disease, reducing the adaptive capacity of the indi-
vidual. Further, these ‘‘syndromes’’ of fractal�nonlinear break-
down may be quantified, with potential applications to diagnostic
and prognostic assessment.

We begin, therefore, by defining the fractal concept. We then
describe certain aspects of fractal scaling in health, followed by
illustrations of the breakdown of fractal complexity in aging and
disease. To catalyze progress in the applications of fractals, and
complexity science in general, to biomedicine, we conclude with
a plea for open-source data and algorithms.

Fractal Anatomies and Self-Similar Dynamics
The concept of a fractal is most often associated with irregular
geometric objects that display self-similarity (refs. 3, 13, and
17–19; ref. 19 available at www.physionet.org�tutorials�fmnc�).
Fractal forms are composed of subunits (and sub-sub-units, etc.)
that resemble the structure of the overall object (Fig. 2 Left). In
an idealized model, this property holds on all scales. The real
world, however, necessarily imposes upper and lower bounds
over which such scale-invariant behavior applies. Many non-
Euclidean structures in nature, such as branching trees, wrinkly
coastlines, and the rough surfaces of mountains, are fractal. A
number of complex anatomic structures also display fractal-like
geometry (3, 12, 13, 18, 20). Examples include arterial and
venous trees and the branching of certain cardiac muscle bun-
dles, as well as other networks such as the tracheobronchial tree
and the His-Purkinje conduction system. These self-similar
cardiopulmonary structures subserve at least one fundamental
physiologic function: rapid and efficient transport over complex,
spatially distributed networks. Fractal geometry also appears to
underlie important aspects of cardiac mechanical function (21).
A variety of other organ systems contain fractal-like structures
that facilitate information dissemination (nervous system), nu-
trient absorption (bowel), as well as distribution, collection, and
transport (biliary ducts, renal calyces, choroidal plexus, and
placental chorionic villae). With aging and disease, fractal
anatomic structures may show degradation in their structural

This paper results from the Arthur M. Sackler Colloquium of the National Academy of
Sciences, ‘‘Self-Organized Complexity in the Physical, Biological, and Social Sciences,’’ held
March 23–24, 2001, at the Arnold and Mabel Beckman Center of the National Academies
of Science and Engineering in Irvine, CA.

Abbreviations: DFA, detrended fluctuation analysis.

†To whom reprint requests should be addressed at: Cardiovascular Division, GZ-435, Beth
Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215. E-mail:
agoldber@caregroup.harvard.edu.

2466–2472 � PNAS � February 19, 2002 � vol. 99 � suppl. 1 www.pnas.org�cgi�doi�10.1073�pnas.012579499



complexity (11, 12). Examples include loss of dendritic arbor in
aging cortical neurons (11) and vascular ‘‘pruning’’ in primary
pulmonary hypertension.

The fractal concept can be applied not just to irregular
geometric forms that lack a characteristic (single) scale of length,
but also to certain complex processes that lack a single scale of
time (17, 19, 22, 23). Fractal processes generate irregular fluc-
tuations across multiple time scales, analogous to scale-invariant
objects that have a branching or wrinkly structure across multiple
length scales. A qualitative appreciation for the self-similar
nature of fractal processes can be obtained by plotting their
f luctuations at different temporal resolutions. For example, Fig.
2 Right displays a heart rate time series from a healthy subject on
three different time scales. Each graph has an irregular appear-
ance, reminiscent of a mountain range. The irregularity seen on
different scales is not readily distinguishable, suggesting statis-
tical self-similarity. A more rigorous representation of the
temporal self-similarity of the healthy heartbeat is provided by
wavelet analysis (Fig. 3; refs. 24 and 25).

An important methodologic challenge is how to detect and
quantify the scaling and correlation properties of physiologic
time series, which are typically not only irregular, but also
nonstationary (i.e., their statistical properties change with time).
To help deal with the ubiquitous biologic ‘‘complication’’ of
nonstationarity, we have introduced a modified rms analysis of
a random walk—termed detrended fluctuation analysis (DFA;
refs. 19 and 26–29). To illustrate the DFA algorithm briefly,
consider the cardiac interbeat series shown in Fig. 4A. First, the
original time series is integrated, and then divided into boxes of
equal length, n. For each box of length n, a least squares line
(representing the trend in that box) is fit to the data (Fig. 4B). For
a given box size n, the characteristic size of the fluctuations,
denoted by F(n), is then calculated as the rms deviation between
y(k) and its trend in each box. This computation is repeated over
all time scales (box sizes). Typically, F(n) will increase with box
size n. A linear relationship on a log-log graph indicates the
presence of scaling (self-similarity), such that fluctuations in
small boxes are related to the fluctuations in larger boxes in a
power-law fashion. The slope of the line relating log F(n) to log
n determines the fractal scaling exponent, � (Fig. 4C). This
exponent provides a measure of the ‘‘roughness’’ of the original
time series: the larger the value of �, the smoother the time
series. In this context, 1�f-like noise (� � 1) can be interpreted
as a ‘‘compromise’’ between the complete unpredictability of
white noise (� � 0.5) and the much smoother ‘‘landscape’’ of
Brownian noise (� � 1.5; ref. 19).§

To test whether heartbeat time series exhibit fractal behavior
and to determine their correlation properties, we can apply the
DFA algorithm and other scaling techniques to long-term heart
rate recordings. Fig. 5A compares the scaling analysis of the
interbeat interval time series from a representative healthy
young adult with its randomized time series as a control. For the
healthy subject, DFA shows scaling behavior with exponent � �

§A detailed description of the DFA algorithm with source code is available at www.
physionet.org.

Fig. 1. Representative heart rate recordings in health and disease, presented
as four unknowns. One record is normal; the other three represent severe
pathologies. Can you identify which is normal? Answers: A and C are from
patients in sinus rhythm with severe congestive heart failure. D is from a
subject with a cardiac arrhythmia, atrial fibrillation, which produces an erratic
heart rate. The healthy record, B, far from a homeostatic constant state, is
notable for its visually apparent nonstationarity and ‘‘patchiness.’’ These
features are related to fractal and nonlinear properties. Their breakdown in
disease may be associated with the emergence of excessive regularity (A) and
(C), or uncorrelated randomness (D). Of note in C is the presence of strongly
periodic oscillations (�1�min), which are associated with Cheyne-Stokes
breathing, a pathologic type of cyclic respiratory pattern. Quantifying and
modeling the complexity of healthy variability, and detecting more subtle
alterations with disease and aging, present major challenges in contemporary
biomedicine.

Table 1. Nonlinear�complexity mechanisms and phenomena in
physiology: partial list of possible contenders

Abrupt changes
Bifurcations
Intermittency�bursting
Bistability�multistability
Phase transitions

Hysteresis
Nonlinear oscillations

Limit cycles
Phase-resetting
Entrainment
Pacemaker annihilation

Scale-invariance
Fractal and multifractal scaling
Long-range correlations
Self-organized criticality
Diffusion limited aggregation

Alternans phenomena
Nonlinear waves: spirals; scrolls; solitons
Complex periodic cycles and quasiperiodicities
Stochastic resonance and related noise-modulated mechanisms
Time irreversibility
Complex networks
Deterministic chaos
Emergent properties

Modified from ref. 13.
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1 over nearly three decades, indicative of long-range correlations
extending to thousands of heartbeats. As expected, the random-
ized ‘‘control’’ data set shows a trivial exponent � � 0.5,
indicating a white noise output associated with the breakdown of
correlations. Power spectrum analysis (Fig. 5B) is consistent with
the DFA results. However, the � exponent derived from the
power spectrum is less accurate because the stationarity require-
ments for Fourier analysis, are, as usual, not satisfied in this case
of real-world data.¶ Systematic analysis has confirmed the scaling
behavior and long-range correlation properties of the healthy
human heartbeat (14, 22, 23).

Altered Fractal Dynamics of the Heartbeat
The presence of long-range (fractal) correlations in cardiovas-
cular fluctuations in health has implications for understanding
and modeling neuroautonomic regulation. Of particular note,
this type of scaling behavior is not accounted for by traditional
homeostatic mechanisms of control, whose goal is to maintain a
constant, ‘‘steady-state’’ output (2, 13, 19, 22, 30). A related
consideration is whether pathologic states and aging are asso-
ciated with distinctive alterations in these scaling properties,
which could be of practical diagnostic and prognostic use. We
have found that datasets from patients with congestive heart
failure are particularly useful in assessing correlations under
markedly pathologic conditions, because this life-threatening
condition is associated with profound abnormalities in both the

sympathetic and parasympathetic control mechanisms that reg-
ulate beat-to-beat variability. Fig. 6 compares scaling analysis of
representative 24-hr interbeat interval time series from a healthy
subject and a patient with congestive heart failure. For large time
scales (asymptotic behavior), data from the healthy subject
(consistent with data in Figs. 4 and 5), show long-range corre-
lations extending over nearly three decades, with � � 1 (i.e., 1�f
noise), whereas for the heart failure data set, � � 1.3 (closer to
Brownian noise). Analysis of scaling behavior in a variety of
life-threatening cardiac pathologies indicates significant alter-
ations in short and long-range heartbeat correlation properties,
suggesting possible clinical applications (22, 27, 31–34). Subse-
quent studies have also revealed significant differences in scaling
exponents associated with circadian variations in health and
disease (35), as well as during different phases of sleep (36).

¶One alternative method to reduce the effects of nonstationarity in heart rate time
series is to study the first difference of the original time series. In that case, the
interbeat interval increments in health exhibit long-range anti-correlations, such that
increases (decreases) in heart rate are likely to be followed by decreases (increases)
over multiple time scales (22, 30).

Fig. 2. Schematic representations of self-similar structures and self-similar
fluctuations. The tree-like, spatial fractal (Left) has self-similar branchings, such
that the small-scale structure resembles the large-scale form. A fractal temporal
process, such as healthy heart rate regulation (Right), may generate fluctuations
on different time scales that are statistically self-similar. Adapted from ref. 13.

Fig. 3. (Top) Color-coded wavelet analysis of a heart rate time series in
health. The x axis represents time (�1700 beats), and the y axis indicates the
wavelet scale, extending from about 5 to 300 s, with large time scales at the
top. The brighter colors indicate larger values of the wavelet amplitudes,
corresponding to large heartbeat fluctuations. White tracks represent the
wavelet transform maxima lines—the structure of these maxima lines shows
the evolution of the heartbeat fluctuations with scale and time. This wavelet
decomposition reveals a tree-like, self-similar hierarchy to the healthy cardiac
dynamics. (Middle) Magnification of the central portion of the top panel, with
200 beats on the x axis and wavelet scale corresponding to about 5 to 75 s on
the y axis, shows similar branching patterns. (Bottom) In contrast, wavelet
decomposition of heartbeat intervals (�1500 beats) from a patient with
obstructive sleep apnea, a common pathologic condition, shows the loss of
complex, multiscale hierarchy, with emergent, single-scale (periodic) behav-
ior. The wavelet scale (along the y axis) extends from about 5 to 200 s. The red
background is used to provide contrast with the fractal cascades under healthy
conditions, shown in the Upper panels. Adapted from ref. 24.
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We have applied similar analyses to assess the effects of
physiologic aging on heartbeat correlation behavior. For a group
of healthy elderly subjects (68–81 years), the cardiac interbeat
interval time series suggested two scaling regions. Over short
time scales, f luctuations resembled a random walk process
(Brownian noise, � � 1.5), whereas over the longer range, they
resembled white noise (� � 0.5). Both short-range and long-
range exponents were significantly different in the elderly sub-
jects compared with young adults (37). Further, the alterations
of scaling behavior associated with physiologic aging exhibited
different patterns compared with the changes associated with
heart failure (Fig. 6). We have speculated that the degradation
of short and longer range correlation properties with aging may
be associated with the loss of integrated physiologic responsive-

ness, thereby increasing susceptibility to injury and illness in the
elderly (11, 16).

Beyond 1�f Noise: Multifractal Scaling in Heartbeat Dynamics
The DFA algorithm, and related two-point correlation methods,
such as Fourier transform and Hurst analyses, measure only one
exponent characterizing a given signal. These methods, there-
fore, are most appropriate for the analysis of monofractal signals.
Monofractals are homogeneous in the sense that they have the
same scaling properties, characterized by only one singularity
exponent throughout the entire signal (38–40). In contrast, an
interesting class of signals is multifractal, requiring a larger, and
theoretically infinite, number of indices to characterize their

Fig. 4. Illustration of the DFA algorithm to test for scale-invariance and
long-range correlations. (A) Interbeat interval (IBI) time series from a healthy
young adult. (B) The solid black curve is the integrated time series, y(k). The
vertical dotted lines indicate boxes of size n � 100 beats. The red straight line
segments represent the ‘‘trend’’ estimated in each box by a linear least-
squares fit. The blue straight line segments represent linear fits for box size n �
200. Note that the typical deviation from the y(k) curve to the red lines is
smaller than the deviation to the blue lines. (C) The rms deviations, F(n), in B
are plotted against the box size, n, in a double logarithmic plot. The red circle
is the data point for F(100), and the blue circle is the data point for F(200). A
straight-line graph indicates power-law scaling. The slope of the line, �,
relates to the presence and type of two-point correlations. In this case, � � 1.0,
consistent with 1�f noise and long-range correlations; � � 0.5 indicates white
noise with uncorrelated randomness; � � 1.5 indicates Brownian noise. See
Figs. 5–7 and text. Adapted from ref. 19.

Fig. 5. Fractal scaling analyses for two 24-hr interbeat interval time series.
The solid black circles represent data from a healthy subject, whereas the open
red circles are for the artificial time series generated by randomizing the
sequential order of data points in the original time series. (A) Plot of log F(n)
vs. log n by the DFA analysis. (B) Fourier power spectrum analysis. The spectra
have been smoothed (binned) to reduce scatter. DFA and Fourier scaling
exponents, � � 1.0 and � � 1.0, respectively, are consistent with long-range
correlations (1�f noise). After randomization, � � 0.5 and � � 0, consistent
with loss of correlation properties (white noise).
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scaling properties. Multifractal signals are intrinsically more
complex and inhomogeneous than monofractals (Fig. 7). The
visually apparent ‘‘patchiness’’ of healthy heartbeat time series
(Fig. 1B) suggests that different parts of the signal may have
different scaling properties. In addition, evidence that heartbeat
dynamics exhibit nonlinear properties (41–44) indicates the need
to study higher order correlations. To obtain additional infor-
mation about the singular properties of such signals, we recently
adapted the wavelet modulus maxima method to physiologic
time series (14). Our findings suggest that not only are heart rate
time series of healthy humans multifractal signals (14), but that
this type of complex variability is not simply attributable to
physical activity (45). Furthermore, heart rate time series from
patients with severe heart failure show a breakdown of multi-
fractal scaling (ref. 14; Fig. 7).

The detection of multifractal scaling in heart rate dynamics is
of interest for a number of reasons (14, 38, 39, 45). Previous
analyses by our group and others have focused only on the
quantification of a single exponent (i.e., monofractal behavior)
to characterize the 1�f-like scaling of healthy interbeat intervals
and other physiologic time series over a wide range of time scales
(20, 22, 23, 46, 47). Subsequent findings suggest that the healthy
heartbeat is even more complex than suspected, because it
requires multiple exponents for its characterization. The appar-
ent loss of multifractal complexity in a life-threatening patho-
logic condition—namely heart failure—confirms and extends
the monofractal (DFA and Fourier transform) analyses de-
scribed above. These findings also pose a challenge to contem-
porary efforts aimed at developing realistic models of heart rate
control and other processes under neuroautonomic regulation
(14, 30, 48). No precedent exists in physiology to account for
dynamics with such multiscale, nonlinear complexity, which in
physical systems has been connected with turbulence and related
phenomena (14, 49, 50). Multifractality in heartbeat dynamics
raises the intriguing possibility that the nonlinear control mech-
anisms involve coupled cascades of feedback loops in a system
operating far from equilibrium (14).

Fractal Scaling in Other Signals: Human Gait Dynamics
Concepts and methods described above to detect and quantify
scaling behavior of heartbeat time series can be applied to other
complex physiologic signals. An illustrative example is the
analysis of the step-to-step (stride interval) f luctuations in
human walking rhythm. The stride interval is analogous to the
cardiac interbeat interval, and, like the heartbeat, traditionally it
has been thought to be quite regular under healthy conditions.
However, as shown in Fig. 8 Top, subtle but complex fluctuations
are apparent in healthy gait dynamics. Whereas this ‘‘noise’’ had
been previously observed, until recently these fluctuations had
not been characterized. Our goal has been to analyze step-to-
step fluctuations in gait to help understand the neural control of
locomotion in health and disease (refs. 15 and 51–53; for ref. 52,
text and data available at http:��www.physionet.org�publica-
tions�); for ref. 53, data available at http:��www.physionet.org�
physiobank�database�gaitndd�?M�A).

By using scaling analysis techniques described above (Fig. 4),
we have found that (i) for healthy adults, f luctuations in the
stride interval during walking are not random, but display
long-range correlations, extending over thousands of steps,
consistent with a fractal gait rhythm (51) and (ii) these corre-
lation properties evolve during childhood (52) and degrade both
with physiologic aging and with certain degenerative neurologic
diseases, including Huntington’s disease and Parkinson’s disease
(15). Furthermore, in subjects with Huntington’s disease, the
scaling exponent, �, is strongly related to the degree of functional
impairment (15).

These findings are of interest from both basic and bedside
perspectives. The long-range correlations in stride dynamics are not
accounted for by traditional central pattern generator models of
rhythmic motor behavior (51, 54). The observation that aging and
neurologic disease diminish stride interval correlation properties
parallels the effects of age and pathology on heartbeat dynamics
described above, and may also generalize to modeling other neu-
roregulatory processes. From a practical viewpoint, measurement
of short and longer-range scaling properties, along with other
temporal parameters of gait, may aid in the quantitative assessment

Fig. 6. Scaling analysis of heartbeat time series in health, aging, and disease.
Plot of log F(n) vs. log n for data from a healthy young adult, a healthy elderly
subject, and a subject with congestive heart failure. Compared with the
healthy young subject, the heart failure and healthy elderly subjects show
alterations in both short and longer range correlation properties. To facilitate
assessment of these scaling differences, the plots are vertically offset from
each other. Adapted from ref. 19.

Fig. 7. Singularity spectra of heart rate signals in health and disease. The
function D(h) measures the fractal dimension of the subset of the signal that is
characterized by a local Hurst exponent with value h. (The local Hurst exponent
h is related to the exponent � of the DFA method by the relationship � � 1 � h.)
Note the broad range of values of h with non-zero fractal dimensions for the
healthy heartbeat, indicating multifractal dynamics. In contrast, data from a
representative subject with severe heart failure shows a much narrower range of
values of h with non-zero fractal dimensions, indicating loss of multifractal
complexity with a life-threatening disease. Adapted from ref. 14.
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of neurologic status and the efficacy of pharmacologic therapy and
other interventions designed to maintain or restore gait stability
(refs. 19, 53, 55, and 56; for ref. 55, data available at http:��
www.physionet.org�physiobank�database�umwdb�).

Fractal Physiology: Implications for the Dynamics of Health
and Disease
A defining feature of healthy function is adaptability, the
capacity to respond to unpredictable stimuli and stresses. Func-
tional plasticity requires a broad range of integrated outputs.
Fractal physiology, exemplified by long-range correlations in the
human heartbeat, as well as in gait dynamics, may be adaptive
from at least two perspectives (12–14, 19): (i) long-range cor-
relations serve as a (self-) organizing mechanism for highly
complex processes that generate fluctuations across a wide range
of time scales; and (ii) the absence of a characteristic scale
inhibits the emergence of highly periodic behaviors (mode-
locking), which would greatly narrow functional responsiveness.
This latter conjecture is supported by findings from life-
threatening conditions such as heart failure, where the break-
down of fractal correlations is often accompanied by the emer-
gence of a dominant mode (e.g., the Cheyne-Stokes breathing
frequency; Fig. 1C). Transitions to strongly periodic dynamics

are observed in many other pathologies, including Parkinson’s
disease (tremor), obstructive sleep apnea (ref. 41; Fig. 3), sudden
cardiac death, epilepsy, and fetal distress syndromes, to name but
a few (12–14, 57).

The paradoxical appearance of highly ordered dynamics with
pathologic states (often termed ‘‘disorders’’) exemplifies the con-
cept of complexity loss in disease and aging (11, 13). We have
defined physiologic complexity as relating, at least in part, to the
presence of long-range (fractal) correlations, along with distinct
classes of nonlinear interactions (13, 16). The antithesis of a
scale-free system is one dominated by a characteristic frequency.
Physiologic systems manifesting only one (or a few) dominant
scale(s) become especially easy to recognize and characterize for
clinicians because they necessarily display strongly periodic dynam-
ics—repeating their behavior over a sustained time in a highly
predictable (syndromic) pattern (Fig. 1 A and C; refs. 12 and 13).

Whereas fractals are irregular, not all irregular spatial or
temporal structures are fractal. A key feature of the class of
fractals observed in healthy physiology appears to be the dis-
tinctive type of long-range order described above (13, 19). This
power-law correlation property can extend over many scales of
space or time (Fig. 5). For complex physiologic processes,
scale-invariance is the mechanism underlying a ‘‘memory’’ ef-
fect: the value of some variable, e.g., heart rate or stride interval
at a given time, is related not just to immediately preceding
values, but to fluctuations in the remote past (19, 51). Certain
pathologies are marked by a breakdown of this organization,
sometimes producing an uncorrelated randomness similar to
‘‘white noise,’’ and apparently distinct from deterministic chaos
(13, 19). Examples include the erratic ventricular response in
atrial fibrillation over relatively short time scales (Fig. 1D) and
stride interval f luctuations in Huntington’s disease (Fig. 8).

In summary, the breakdown of fractal physiologic complexity
may be associated with excessive order (pathologic periodicity),
on the one hand, or uncorrelated randomness, on the other (13,
16, 19). A unifying theme underlying both routes to pathology is
the degradation of correlated, multiscale dynamics.

Future Directions: Addressing the Problem of Access to
Physiologic Data
A major impediment to the dynamical analysis of physiologic
signals has been the unavailability of large, well-characterized
databases and algorithms necessary to promote multidisciplinary
efforts to find ‘‘hidden information’’ in such recordings. In
September, 1999, under the sponsorship of the National Center
for Research Resources of the National Institutes of Health, we
and our colleagues inaugurated the Research Resource for
Complex Physiologic Signals (refs. 58 and 59; ref. 58 available at
http:��circ.ahajournals.org�cgi�content�full�101�23�e215).
The ‘‘PhysioNet’’ Resource has three interdependent compo-
nents: (i) PhysioBank is a large and growing archive of well-
characterized digital recordings of physiologic signals. Currently
available databases include multiparameter cardiopulmonary,
neural, and other biomedical signals from healthy subjects and
from those with a variety of conditions with major public health
implications, such as life-threatening cardiac arrhythmias, con-
gestive heart failure, sleep apnea, neurologic disorders, and
aging. (ii) PhysioToolkit is a library of open-source software for
physiologic signal processing and analysis, detection of physio-
logically significant events by using both classical techniques, and
novel methods based on statistical physics and nonlinear dynam-
ics (e.g., DFA and multifractal analysis). (iii) PhysioNet (from
which the Resource derives its name) is an on-line forum for
dissemination and exchange of recorded biomedical signals and
open-source software for analyzing them.

PhysioNet recently initiated a series of unique web-based
competitions (in the spirit of Fig. 1). Researchers are confronted
with a major clinical problem (e.g., diagnosing sleep apnea from

Fig. 8. Stride interval fluctuations in health and disease. For illustrative
purposes, each time series has been normalized by subtracting its mean and
dividing by its standard deviation. The breakdown in long-range correla-
tions with Huntington’s disease is indicated by the change in scaling
exponent, �, from close to 1 in health to about 0.5 with severe pathology.
Logarithmic values are given to base 10. Adapted from ref. 15.
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a single-lead electrocardiogram, or forecasting the occurrence of
cardiac arrhythmias), and are challenged to develop new diag-
nostic methods based on ‘‘real-world’’ physiologic data made
available over the Internet. This modality is intended to foster
friendly competition and collaboration, helping to create inter-
disciplinary ‘‘laboratories without walls.’’ The initial experience
has been very encouraging: PhysioNet challenges have been
creatively addressed by researchers who would, otherwise, never
have had access to these kinds of annotated biomedical datasets,
including investigators with expertise in physics, computer sci-
ence, bioengineering, and mathematics.

PhysioNet also provides a platform for investigators to publish
not only the text of peer-reviewed articles, but also the support-
ive original data and algorithms (‘‘Pub-Med Plus’’ initiative).
This capability facilitates reanalysis of data with new techniques
as they become available, permitting ongoing ‘‘data-leveraging’’
and ‘‘data-mining,’’ as well as validation studies. We anticipate
that future explorations will focus productively not only on
scale-invariance and its alterations with aging and disease, but
also on the rich and remarkable array of other behaviors related

to complexity and nonlinear dynamics in physiology and medi-
cine listed in Table 1. Many more manifestations of physiologic
complexity likely remain to be discovered. Just as GenBank and
related databases have greatly accelerated progress in molecular
biology, open-source datasets of carefully annotated dynamical
signals, along with analytic software, promise to catalyze efforts
to understand and model integrative physiologic control and
complex signaling networks in the postgenomic era (2, 58). In a
related way, open-source data and algorithms are likely to be
essential not only in the development of new diagnostic and
prognostic measures, but also in the discovery of novel thera-
peutic interventions.
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40. Barabási, A.-L., Szépfalusy, P. & Vicsek, T. (1991) Physica A 178, 17–28.
41. Ivanov, P. Ch., Rosenblum, M. G., Peng, C.-K., Mietus, J., Havlin, S., Stanley,

H. E. & Goldberger, A. L. (1996) Nature (London) 383, 323–327.
42. Sugihara, G., Allan, W., Sobel, D. & Allan, K. D. (1996) Proc. Natl. Acad. Sci.

USA 93, 2608–2613.
43. Barahona, M. & Poon, C.-S. (1996) Nature (London) 381, 215–217.
44. Ashkenazy, Y., Ivanov, P. Ch., Havlin, S., Peng, C.-K., Goldberger, A. L. &

Stanley, H. E. (2001) Phys. Rev. Lett. 86, 1900–1903.
45. Amaral, L. A. N., Ivanov, P. Ch., Aoyagi, N., Hidaka, I., Tomono, S.,

Goldberger, A. L., Stanley, H. E. & Yamamoto, Y. (2001) Phys. Rev. Lett. 86,
6026–6029.

46. Marsh, D. J., Osborn, J. L. & Cowley, A. W. (1990) Am. J. Physiol. 258,
F1394–F1400.

47. Kobayashi, M. & Musha, T. (1982) IEEE Trans. Biomed. Eng. 29, 456–457.
48. Lin, D. C. & Hughson, R. L. (2001) Phys. Rev. Lett. 86, 1650–1653.
49. Muzy, J. F., Bacry, E. & Arneodo, A. (1991) Phys. Rev. Lett. 67, 3515–3518.
50. Meneveau, C. & Sreenivasan, K. R. (1987) Phys. Rev. Lett. 59, 1424–1427.
51. Hausdorff, J. M., Peng, C.-K., Ladin, Z., Wei, J. Y. & Goldberger, A. L. (1995)

J. Appl. Physiol. 78, 349–358.
52. Hausdorff, J. M., Zemany, L., Peng, C.-K. & Goldberger, A. L. (1999) J. Appl.

Physiol. 86, 1040–1047.
53. Hausdorff, J. M., Lertratanakul, A., Cudkowicz, M. E., Peterson, A. L.,

Kaliton, D. & Goldberger, A. L. (2000) J. Appl. Physiol. 88, 2045–2053.
54. West, B. J. & Griffin, L. (1998) Fractals 6, 101–108.
55. Hausdorff, J. M., Purdon, P. L., Peng, C.-K., Ladin, Z., Wei, J. Y. &

Goldberger, A. L. (1996) J. Appl. Physiol. 80, 1448–1457.
56. Chau, T. (2001) Gait Posture 13, 49–66.
57. Milton, J. & Black, D. (1995) Chaos 5, 8–13.
58. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. Ch.,

Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K. & Stanley, H. E. (2000)
Circulation 101, e215–e220.

59. Moody, G. B., Mark, R. G. & Goldberger, A. L. (2001) IEEE Eng. Med. Biol.
20, 70–75.

2472 � www.pnas.org�cgi�doi�10.1073�pnas.012579499 Goldberger et al.


