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We combined genometric (DNA walks) and statistical (detrended fluctuation analysis) methods on 456
prokaryotic chromosomes from 309 different bacterial and archaeal species to look for specific patterns and
long-range correlations along the genome and relate them to ecological lifestyles. The position of each
nucleotide along the complete genome sequence was plotted on an orthogonal plane (DNA landscape), and
fluctuation analysis applied to the DNA walk series showed a long-range correlation in contrast to the lack of
correlation for artificially generated genomes. Different features in the DNA landscapes among genomes from
different ecological and metabolic groups of prokaryotes appeared with the combined analysis. Transition
from hyperthermophilic to psychrophilic environments could have been related to more complex structural
adaptations in microbial genomes, whereas for other environmental factors such as pH and salinity this effect
would have been smaller. Prokaryotes with domain-specificmetabolisms, such as photoautotrophy in Bacteria
and methanogenesis in Archaea, showed consistent differences in genome correlation structure. Overall, we
show that, beyond the relative proportion of nucleotides, correlation properties derived from their sequential
position within the genome hide relevant phylogenetic and ecological information. This can be studied by
combining genometric and statistical physics methods, leading to a reduction of genome complexity to a few
useful descriptors.
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Prokaryotes constitute, by far, the largest reservoir of life and
encompass the major part of physiological and phylogenetic diversity.
A large number of studies have been devoted to exploring microbial
biodiversity by 16S rRNA analyses (e.g., [1] and references therein)
and, recently, with genomic tools (e.g., [2]). The present capacity to
produce genomic information from both laboratory cultures and
complex microbial field assemblages widely surpasses the available
technical and intellectual skills to analyze and interpret such huge
amounts of data into an ecological and evolutionary context. Due to
the present size and constantly increasing rate of new raw data,
microbiologists and microbial ecologists need new and integrative
ways of thinking about microbial genomes to check quickly for
similarities and differences among them and to explore and track
interactions among genotypes, phenotypes, and the environment.
Several authors have recently highlighted the need for new computa-
tional tools to analyze and interpret the large amount of nucleotide
sequences available in databases [2–4]. Genes contained in genomes
provide essential information for understanding evolutionary rela-
tionships and ecological adaptations in microorganisms and, although

there is a wide repertoire of bioinformatics tools, both further manual
checking and lack of close relatives in databases are the main limi-
tations. Conversely, genome size and GC content are two integrative
parameters that have been explored by comparative analyses offering
interesting information [5–9]. However, DNA is predicted to contain
more structural information than would be expected from base
composition alone [10].

One of the main features of a DNA sequence related to the whole
genome structural composition is the long-range correlation, a scale-
invariant property of DNA. In a correlated sequence, occurrence of a
nucleotide in a specific position depends on the previous nucleotides
(memory). The long-range correlation is related directly to the fractal
structure of the DNA sequence or self-similarity. A sequence is defined
as self-similar if its fragments can be rescaled to resemble the original
sequence itself. Thus, a long-range correlated sequence suggests the
existence of repetitive patterns inside it. The search for intrinsic
patterns, correlations, and parameters measuring self-similarity by
scaling exponents has been carried out in past years by statistical
methods [11–16]. Peng et al. [13] studied correlation properties in DNA
sequences using a fractal landscape or DNAwalk model. DNA walking
is a genometric method based on a derivative function of the sequen-
tial position for each nucleotide along a DNA sequence. The resulting
“walk” can be projected on a two-dimensional plot representative of
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theDNA “landscape” and enables the simultaneous comparison among
different genome landscapes [17,18]. From a different perspective,
spectral and fractal analyses have been used to unveil long-range
correlations in DNA sequences. Li and Kaneko [19] found long-range
correlation by means of spectral analysis in the DNA sequence. Fractal
analysis has proven useful for revealing complex patterns in natural
objects [20,21], and genome fragments have been classified according
to their fractal properties [22]. Finally, a prokaryotic phylogenetic tree
based on fractal analyses has been proposed [23].

One of themost appropriatedmethods proposed in recent years for
the study of long-range correlations in genomes is the detrended
fluctuation analysis (DFA) [13,24]. DFA is a scaling analysis method
providing a single quantitative parameter—the scaling exponentα—to
represent correlation properties of a sequence and the characteristic
length scale of repetitive patterns. It is amethod specifically adapted to
handle problems associated with nonstationary sequences. DFA takes
into account differences in local nucleotide content (heterogeneity)
and can be applied to the entire sequence. It shows linear behavior in
log–log plots for all length scales, and the long-range correlation
property is characterized by the scaling exponent (α), i.e., the log–log
slope. DFA has two clear advantages over other methods. First, it
detects long-range correlations embedded in seemingly nonstationary
series (conventional methods such as spectral analysis or root mean
square fluctuation can be applied reliably only to stationary
sequences). Second, it also avoids the spurious detection of apparent
long-range correlations that are an artifact of nonstationary sequences
anddifferentiates local patchiness (excess of one type of nucleotide in a
specific region) from long-range correlations. Conventional methods
such as Markov models have limitations in coping with dependencies
at multiple scales, although they are more appropriate for analyzing
short-range nucleotide correlations. The case of the fast Fourier
transform (FFT) method is strongly affected at high-frequencies
analysis by short-range correlations related to codon structure,
whereas at low frequencies the signal is distorted by artifacts of the
method. The scaling exponent values performed by FFT at midfre-
quency, however, are close to the values reported by DFA [25].

DFA may help characterize different complex systems according to
its different scaling behavior. One of the already shown potentials of
DFA is a change in the quantification of genome complexity with
evolution [14]. Thus, an increase in the self-similarity (fractal
structure) of DNA sequences with evolution has been reported [26],
and links between long-range correlations and higher order structure
of the DNAmolecule have been suggested [27]. It has been shown that
scale-independent correlations offer the best compromise between
efficient information transfer and immunity to errors on all scales
[26], whereas the information theory suggests that one can package
the largest amount of information into characters of constant length
when a sequence is self-similar [28].

In this work, we propose a combination of DNA walking and DFA
methods to help decipher the biological significance of long-range
correlations in microbial genomes and the influence of lifestyle in the
DNA structure. First, we computed a DNA walk for 456 prokaryotic
genome sequences to translate the DNA base sequence into a numerical
sequence of Euclidean distances. Next, we used DFA to represent and
characterize the correlation properties of the numerical sequence. The
specific patterns and long-range correlations were related to phyloge-
netic, ecological, and metabolic information, providing a combined
window to look into prokaryotic genome complexity and microbial
biodiversity.

Results and discussion

Within the 456microbial strains analyzedwe covered awide range
of both genome lengths and GC content from several phylogenetic
lineages. The range of lengths was between 0.16 Mb in Candidatus
carsonella ruddii and 9.97 Mb in Solibacter usitatus. The percentage of

GC content ranged between 16.56% in Candidatus carsonella ruddii and
74.90% in Anaeromyxobacter dehalogenans. Genome length and
percentage of GC content were also heterogeneous within each phylo-
genetic group. For example, the 33 strains analyzed for Actinobacteria
differed by up to one order ofmagnitude in length, whereas the largest
difference in GC content was found within the Gammaproteobacteria
(up to fourfold difference). We also covered microorganisms with
different ecophysiological lifestyles related with optimal growth
temperature, pH, salinity and metabolism, according to information
from the taxonomy database at NCBI (www.ncbi.nlm.nih.gov) and
Bergey’s Manual of Systematic Bacteriology [29]. For more details see
Supplementary Tables S1 and S2.

DNA walk architecture

For each genome we run an SW (strong–weak pairing) DNA walk
and a 2D (two-dimensional) DNA walk (see Methods) as reported
in previous works [11,18]. Because a direct relationship exists between
%GC and slope in the SWplot (correlation coefficient 0.998), SW slopes
were used as the equivalent variable for the percentage of G+C bases:
positive slopes indicated dominance of GC, whereas negative slopes
reflected the opposite trend. The complete set of genomes fit the
previously reported assumption that large genomes have a tendency
to be richer in GC [30–32] and therefore they showed higher SW
slopes (Supplementary Tables S3 and S4). This has been related to the
fact that randommutations aremainly from C to T and fromG to A and
to the lack of repair mechanisms in reduced genomes that would lead
to a TA enrichment [30,31].

The 2D DNAwalk for the complete set of genomes was also within
the expected results [11,33]. These plots are characterized by the so-
called mutational strand bias [18]. Many microorganisms show a
preference for G over C, and T over A, in the leading strand and C over
G in the lagging strand because of several factors including proof-
reading efficiencies for the different types of DNA polymerases
([34,35] and references therein). A simple model for explanation is
based on the spontaneous deamination of cytosine that induces
mutations from C to T. The rate of this deamination is highly increased
in single-stranded DNA, such as the leading strand during DNA
replication. This causes prevalence of G over C in the leading strand
relative to the lagging strand [18]. Most of the chromosomes analyzed
(~80% of total) showed strong strand bias that resulted in a symmetric
chromosomal inversion in the 2D DNAwalks, inwhich one-half on the
genomic sequence was persistently enriched in two of the bases and
the other half was enriched in the complementary ones. Both halves
commonly split after an inversion point at which the walk changed
direction to return back to the run origin (see an example in Supple-
mentary Fig. S2A). The remaining chromosomes (~20%) showed weak
strand asymmetry (Supplementary Fig. S2B). Artificial controls run for
the different genomes lost the observed architecture and fit a single
linear path (see inner plots in Supplementary Fig. S2).

DFA and biological significance of long-range correlations

The 2D DNA landscapes were translated to a numerical series of
Euclidean distances (see Methods) for running the DFA. The resulting
curves showed scaling exponents within α=0.5417 (Brucella meliten-
sis) the lowest and α=0.7714 (Methanococcus jannaschii) the highest
(Fig. 1). We found for each prokaryotic genome a specific scaling
exponent with small variations among them. In all the cases, DFA
scaling exponents were higher than 0.5, indicating persistent long-
range correlations (see Methods). DFA run for artificial control
genomes always had scaling exponents up to 0.50 as expected for
uncorrelated sequences (Fig. 1). Therefore, long-range correlations in
the genome landscape indicate the existence of selective pressures
modeling the architecture along the whole prokaryotic genomes
([16,23] and references therein).
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The observed long-range correlations in all the DNA sequencesmay
be due to two factors. On one hand is the elongation of themolecule by
repetitive structures added inside the genomes [19]. The fact that long-
range correlations were persistent (independent of the scale) means
that repetitive structures with different lengths along the genome
were present. These repetitive structures may be generated by two
possible biological mechanisms important for evolution: first, elonga-
tion of sequences by gene duplication [19] and second, elongation and
repetition in the genomes by massive lateral transfer of genes from
other genomes. On the other hand, long-range correlation can also be
related to asymmetric DNA replication along the whole microbial
genome, as discussed earlier [36,37].

We found significant differences in scaling exponents (α) between
prokaryotes with weak and strong strand bias (t-Student, pb0.0001)
for the complete set of genomes analyzed (i.e., genomes with weak
strand bias consistently had a higher scaling exponent than strong
strand-biased genomes). We also found a significant negative correla-
tion between α value and GC content (R=−0.474, pb0.005) (Supple-
mentary Fig. S3). Weak strand asymmetry has been related to the
presence of multiple origins of replication [38] in both Archaea and
Bacteria [35,39]. However, along the complete set of genomes we

found weak strand asymmetry in archaeal species with single (e.g.,
Methanobacterium thermoautotrophicum and Archaeoglobus fulgidus)
as well as multiple origins of replication (e.g., Methanocaldococcus
jannaschii and Sulfolobus solfataricus). Conversely, strong strand biases
were observed in Archaea with single (Methanosarcina mazei) and
multiple origins of replication (Halobacterium NCR-1). This suggests
that processes acting in genomes with weak strand asymmetry are
somehow different from those that occur in the other genomes. Weak
mutational bias appeared mainly in the genomes from hyperthermo-
philes and acidophilic microorganisms. It is possible that adaptations
to environmental stresses in extremophiles may minimize strand
asymmetries. The rates of spontaneous mutation (hydrolytic depur-
ination or hydrolytic deamination) are greatly accelerated at extremely
high temperatures [40]. In consequence, hyperthermophiles should
have very efficient molecular strategies for repairing DNA under these
conditions of chemical instability, because mutation rates in
hyperthermophiles are not significantly different from those observed
in mesophiles [41].

Grouping genomes by phylogeny and lifestyle

The fact that the raw genome sequence harbors a phylogenetic
signal is known [23]. On one hand, over- and underrepresentation of
oligonucleotide frequencies have been used by Pride et al. [42] and
Teeling et al. [43], andmore recently byMcHardy et al. [44], for whole-
genome phylogeny and classification of genomic fragments. On the
other hand, the genomic GC content may change faster than previ-
ously thought and seems to be globally and actively influenced by
environmental conditions ([8] and references therein). Therefore, the
combination of DFA and SW slopes should capture these phylogenetic,
ecological, and metabolic signals.

First, we looked for differences at the phylogenetic level. We plotted
the combined graph between the DFA scaling exponent and the SW
DNA walk slope (Fig. 2B) against the single percentage of each of the
four bases (A, T, C, and G) obtained by a PCA (principal components
analysis) using the covariancematrix (Fig. 2A). The combination of DFA
values (a quantification of the self-similarity or presence of repetitive
patterns over all the length scales contained in the genomes) and SW
slopes (directly proportional to the GC content) clearly split prokaryotic
chromosomes and controls into two different clusters and showed
differences between bacterial and archaeal genomes (Fig. 2B). Controls
clearly were on the left part with the lowest slopes, close to 0.5, as
expected for randomly ordered sequences (the position of one
nucleotidewas completely uncorrelatedwith any previous nucleotide),

Fig. 2. (A) PCA using percentage of bases for the whole set of genomes analyzed (split into Bacteria and Archaea) and controls (randomly mixed genomes). (B) The same data
combination after genometric (SWDNAwalk slope on the y axis, i.e., a value proportional to the %GC content) and statistical (DFA scaling exponents on the x axis, i.e., a measure of the
likelihood that one nucleotidewill be followed by the same nucleotide) analyses on the entire genomes. Discriminant analysis showed a correct prediction in 96% of Archaea and 85%
of Bacteria and 100% in controls (B), whereas they were mixed in the quantitative PCA (A).

Fig. 1. DFA values calculated on two-dimensional DNA walks for three selected
chromosomes and controls. The linear log–log plots of the integrated and detrended
time series versus “box size” (F(n) vs n) yielded scaling exponents (value of the slope α)
ranging from 0.5417 of Brucella melitensis to 0.7714 of Methanococcus jannaschi. The
three controls (artificial genomes) were close to 0.5 as expected for random sequences.
Remaining graphs are available at http//nodens.ceab.csic.es/ecogenomics.
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and separated along the y axis (SWDNA slope) in agreement with their
GC content. On average, Archaea had the highest scaling exponents
(DFA slopesN0.62) and were located on the right part of the plot.
Bacteria appeared mainly in the middle zone of the plot (DFA slopes
between 0.54 and 0.74). Discriminant analysis showed a correct
prediction in 96% of Archaea and 85% of Bacteria. Conversely, Archaea
and Bacteria, as well as the control genomes, were mixed in the
quantitative PCA (Fig. 2A).

Second, we focused on ecological lifestyle, and some of the groups
clustered separately according to DFA and SW slope values (Fig. 3). For
instance, looking at the optimal growth temperature (Topt), hyperther-
mophiles showed higher scaling exponents than thermophiles and
psychrophiles. The three thermophiles placed within the hyperther-
mophilesweremicroorganismswith the highest Toptwithin their group
(close to 60 °C). Psychrophiles were discriminated according to GC
content in the low scaling exponent values region (Fig. 3A). The
discriminant analysis correct prediction was 79% for hyperthermo-
philes, 80% for thermophiles, and 100% for psychrophiles. Correlation
between Topt and GC content in prokaryotes has been the focus of a
recent controversy. Musto et al. [9,45] found in a limited number of
genomes (ca. 20 genomes) that GC content increased at higher Topt.
Conversely, several authors [6,7,46,47] concluded that high GC content
is not an adaptation to high temperatures and argued that the cor-
relation between both variables is not robust. The data calculated in our
survey (456microbial genomes) indicate that a tendency to the low GC
content exists in hyperthermophiles, but examples of genomes with
high GC content are present as well. The decrement of GC content in

parallelwith Topt is veryclear between thermophiles and psychrophiles.
Thus, it appears that the transition from a hyperthermophilic to a
psychrophilic environment would imply a structural adaptation in
microbial genomes both in the GC content and in the sequential
position of the nucleotides along the genome.

We also observed various clusters related to salinity andpH (Fig. 3B).
Halophiles showed low scaling exponents (b0.65) and high GC content.
Conversely,most acidophiles presentedhigh scaling exponents and low
GC content, although examples of lower DFA values and higher GC
contents were also detected. Alkalophiles showed intermediate values
of bothDFA slopes andGCcontents. Therefore pH itself doesnot seemto
have enough separation power. The true prediction calculated using
discriminant analysis was 75% for acidophiles, 83% for alkalophiles, and
87% for halophiles. Most of the acidophiles were hyperthermophilic
Archaea and a biased effect with temperature and phylogeny may be
present in these cases. In fact, the acidophilic thermophilic bacterium
Acidothermus cellulolyticus showed low scaling exponent (0.58) and
high GC content, in agreement with moderate thermophiles. This
example illustrates that temperature is an environmental factor that
might have stronger influence in the microbial genomic structure than
pH. Another outlier was the genome of the alkalophilic and moderate
halophilic bacterium Natronomonas pharaonis. This genome shows
higher GC content than the remaining alkalophiles and again pHwould
have smaller influence on the genomic structure than another
environmental factor such as salinity. Finally, photoautotrophs and
methanogens were classified into two distinct groups with no overlap
in their respective DFA slopes (Fig. 3C). Discriminant analysis showed a

Fig. 3. Ecological and metabolic clusters detected after the SW DNAwalk slope (a value proportional to the %GC content) and the DFA scaling exponents (a measure of the likelihood
that one nucleotide will be followed by the same nucleotide) analyses on the entire genomes are plotted in combination. For all plots, the GC content increases on the y axis
proportional to the SW DNAwalk slope value. The scaling exponents (α value) represented on the x axis are a measure of persistent, long-range correlations in the DNA sequence for
each genome. Note that the long-range correlations obtained from the available genomes (A) increased with temperature and (B) decreased with pH. Moreover, (C) methanogens
(anaerobic Archaea) showed higher values than phototrophs (oxygenic bacteria), whereas (D) sulfur oxidizers presented on average higher long-range correlations than nitrogen
fixers. (A) and (C) plots yielded the highest statistical confidence after discriminant analysis (see text for details).
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correct prediction in 91% of methanogens and 100% of phototrophs.
Photoautotrophy is an exclusive bacterial metabolism that implies
complex enzymatic pathways and no representatives with similar
photosystem equipment have been described within Archaea. On the
other hand, methanogenesis is a feature present only in the archaeal
world.

Similarly, nitrogen fixers and sulfur oxidizers showed opposite
behavior in both DFA and SW DNA slopes (Fig. 3D), although both
Bacteria and Archaea are able to carry out both processes. Discrimi-
nant analysis showed correct prediction of 94% for nitrogen fixers, 80%
for iron reducers, and 86% for sulfur oxidizers. In fact, we detected two
outliers from the general trend shown by both clusters, one from each:
first, the cyanobacterium Nostoc, which located away from the
remaining nitrogen fixers at the center bottom of the graph (higher
DFA slope and lower GC content than the remaining bacteria, mostly
from soils), and second, the mesophilic bacterium Thiomicrospira
crunogena,which separated from the remaining sulfur oxidizers (all of
them Archaea and thermophilic). Therefore, these conclusions could
be biased for the limited number of nitrogen-fixer and sulfur-oxidizer
genomes still available, but it seems that phylogeny and Topt have
stronger influence than these metabolic features in the genomic
properties detected.

Overall, the combination of genometrics and physical statistic
methods captured intrinsic ecological and phylogenetic patterns
present in the likelihood that one nucleotide will be followed by the
same nucleotide along the entire prokaryotic genome, offering clues
to deciphering their biological significance. Although the application
of fractal and time series analyses (e.g., self-similarity and fractional
dimensionality) to genome data has been carried out for several years
already, these techniques have not seen broad usage in genomics. The
application of self-similarity parameters as a measure of persistent,
long-range correlations in the DNA sequence relative to different
ecophysiological lifestyles and other biological parameters (J.A.L.
Garcia, A. Fernández-Guerra, and E.O. Casamayor, manuscript in
preparation) would help to link physicists and statisticians’ ap-
proaches with genomic microbiology aims. This work and other
recent approaches (e.g., [8,44]) will provide microbial ecologists new
tools for a better understanding of the naturally occurring genomic
structure and variation and, together with detailed studies of the gene
content, may help them to follow and understand the genetic
adaptations to specific environments and the magnitude of the
genetic reservoir present in the microbial world.

Methods

Four hundred fifty-six completely sequenced closed genomes from 309 different
species of prokaryotes were downloaded from GenBank (National Center for
Biotechnology Information, http://www.ncbi.nlm.nih.gov/Genbank) in May 2007. The
prospected genomes belonged to three archaeal kingdoms (28 chromosomes) and 20
bacterial classes (for more details see Supplementary Tables S1 and S2). The run for DNA
walks started at position 0 of the annotated sequence. For comparative purposes, we
constructed several artificial genomes as controls by randomly mixing the order of
bases from original genomes. For instance, for controls 1, 2, and 3 the following
conditions were chosen. Control 1 had the 1,197,687 bases of Anaplasma marginale in
random order and 50% GC content. Control 2 was the randomly ordered strain of My-
coplasma mycoides (1,211,703 bases in length and 24% GC content). Finally, control 3 was
rich in GCs with the same length (1,849,735 bases) and GC percentage (70%) as the
Thermus thermophilus chromosome.

DNA walks

We analyzed the sequential distribution of individual nucleotides along the
genomes by the DNA walk method [18,33,48,49]. DNA walks are graphical representa-
tions of the fluctuations in nucleotide series and provide quantification on internal
deviations of individual nucleotides along the genome. Every genome produces a
specific DNA walk and there are several possibilities and rules for plotting genomic
landscapes [33]. Here, we have used two types of representation. First, we translated
the original nucleotide sequence onto a one-dimensional numerical series grouping the
bases in pairs following the hydrogen bond energy rule (SW for strong–weak pair): ni
being the ith nucleotide of the genomic sequence and yi the DNA walk value for the
nucleotide ni; if ni is a strongly bonded pair (G or C), then yi=+1, and if ni is a weakly

bonded pair (A or T), then yi=−1. Wemapped the resulting SW DNAwalk series onto an
orthogonal plane (see Supplementary Fig. S1). The SW walks were fitted by linear
regression and the slopes were used as variables for subsequent analysis (SW DNAwalk
slope). For the second representation, we performed a 2Dmap inwhich each nucleotide
defines one direction in a plane formed by two orthogonal axes (i.e., C versus G and T
versus A). In this walk, the walker moves 1 unit onto the plane according to the four
senses defined by the nucleotide read. This 2D DNA walk generates an irregular graph
resembling a fractal landscape (see the example in Supplementary Fig. S2). The defining
feature of the landscape is the statistical self-similarity of the plots obtained at various
magnifications calculated with the DFA method.

Detrended fluctuation analysis

DFA is a scaling analysis method providing a simple integrative parameter—the
scaling exponent α—to represent the correlation properties of numerical series. The
scaling exponent is also called the self-similarity parameter. An object is self-similar if
its subsets can be rescaled to resemble statistically the original object itself. A numerical
sequence is considered stationary if the mean, standard deviation and correlation
functions are invariant under space translation [13,14,24]. Sequences that do not fit
these conditions are nonstationary. DFA allows detection of long-range correlations
embedded in seemingly nonstationary series, and it avoids the spurious detection of
apparent long-range correlations that are an artifact of nonstationarity [50]. The scaling
exponent quantifies the amount and range of the correlations. In a given sequence, a
change in the scaling exponent indicates changes in the correlations through different
scales.

Scaling exponents were calculated from the 2D DNA walks, using Euclidean
distances from the origin of the graph to every x–y point representing a step of the
walk, as follows. First, the entire sequence of length N, understood as the Euclidean
distances for each step of the walk, was divided into boxes of equal length, n, each
containing l steps of thewalk. We defined the “local trend” in each box by fitting a least-
squares linear model (proportional to the compositional bias in the box) to the
data. Second, we defined the “detrended walk” as the difference between the original
walk y(n) and the local trend. Next, we calculated both the variance on the detrended
walk for each box and the average of these variances over all the boxes of size l, denoted
F(n). Such computation was repeated over all time scales (box sizes) to provide a
relationship between F(n) and the box size n. Typically, F(n) increases with box size n. A
linear relationship on a log–log graph indicates the presence of scaling (long-range
correlations). Obtaining linear log–log plots of the integrated and detrended time series
versus “box size” (F(n) vs n) can help to establish the appropriateness of the DFA
method to all nonstationary data encountered. Under these conditions, fluctuations can
be characterized by the scaling exponent (α), i.e., the slope of the line relating log F(n)
to log n. The minimum box size (nmin) does not depend on N. On the contrary, the
maximum box size (nmax) scales as nmax=N/10 [50].

For an ideal sequence of infinite length, α=0.5 indicates the absence of long-range
correlation (random walk), where the value of one nucleotide is completely
uncorrelated with any previous values, whereas α different from 0.5 indicates long-
range correlation (see [51] for more details on themethod). For a sample of finite length,
statistical fluctuations due to finite size should be taken into account. Therefore, we
considered a DNA sequence to exhibit long-range correlation only if a value was
significantly different from the α value of the random finite control sequences. The α
values in the range 0.5bαb1 indicate persistent long-range power–law correlations
suggesting the existence of repetitive patterns in the sequence and that finding a
particular nucleotide on a sequential position depends on the previous nucleotides.

Finally, discriminant analysis [52] was used to construct the Fisher discriminant
function (a linear combination of the variables whose coefficients make maximum the
distance between the populations) for species classification into one of two or more
groups on the basis of the 2D DFA slope and SW DNA walk slope variables.
Computations were carried out with SAS/STAT release 9.1 statistical package (SAS
Institute, Inc., Cary, NC, USA).
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