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1We study the spatially heterogeneous dynamics in water via molecular dynamics simulations using the
extended simple point charge potential. We identify clusters formed by mobile molecules and study their
properties. We find that these clusters grow in size and become more compact as temperature decreases. We
analyze the probability density function of cluster size, and we study the cluster correlation length. We find that
clusters appear to be characterized by a fractal dimension consistent with that of lattice animals. We relate the
cluster size and correlation length to the configurational entropy, Sconf. We find that these quantities depend
weakly on 1/Sconf. In particular, the linearity found between the cluster mass n* and 1/Sconf suggests that n*

may be interpreted as the mass of the cooperatively rearranging regions that form the basis of the Adam-Gibbs
approach to the dynamics of supercooled liquids. We study the motion of molecules within a cluster, and find
that each molecule preferentially follows a neighboring molecule in the same cluster. Based on this finding we
hypothesize that stringlike cooperative motion may be a general mechanism for molecular rearrangement of
complex, as well as simple liquids. By mapping each equilibrium configuration onto its corresponding local
potential energy minimum or inherent structure �IS�, we are able to compare the mobile molecule clusters in
the equilibrium system with the molecules forming the clusters identified in the transitions between IS. We find
that �i� mobile molecule clusters obtained by comparing different system configurations and �ii� clusters
obtained by comparing the corresponding IS are completely different for short time scales, but are the same on
the longer time scales of diffusive motion.
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I. INTRODUCTION

The dynamics of simple liquids well above the glass-
transition temperature Tg are known to be spatially homoge-
neous, i.e., the mobility of the constituent atoms or mol-
ecules is distributed uniformly over space. As a liquid is
cooled toward Tg the dynamics become spatially heteroge-
neous with transient regions of relative high and low mobil-
ity �1–3�. Both geometrical �4–8� and thermodynamic �9�
explanations for the existence of spatially heterogeneous dy-
namics �SHD� in glass forming systems have been offered.
The recent works of Garrahan and Chandler �GC� �4,5� use a
geometric idea that particle mobility in a glass former is a
result of facilitation �i.e., mobile particles assist their neigh-
bors to become mobile�, and that mobility propagation car-
ries a direction �6,7�. The GC ideas are supported by a recent
computer simulation on viscous silica �10�.

In the SHD scenario, proposed by Adam and Gibbs �AG�
�9�, liquids relax through the motion of cooperatively rear-
ranging regions �CRR� �11,12�. Furthermore, AG propose
that SHD emerges as a consequence of lack of accessible
states in configurational space �13�. Their predictions have
been tested in experiments �14,15� and simulations �16,17�,
including the extended simple point charge �SPC/E� model
�18,19� that we study. However, there are experimental re-
sults that seem to contradict the AG results �see, e.g. �20��. In

this work, we interpret �in the context of the AG approach�
the presence of the SHD in the SPC/E model of water.

In recent years, computer simulations �21–32� and experi-
ments �33–38� have explored the concept of CRR and devel-
oped a more formal approach to identify local regions of
enhanced or diminished mobility. In brief reports of some of
the present results �39,40�, molecular dynamics �MD� simu-
lations found that heterogeneous dynamics of the SPC/E
model for water �41� can be described by noncompact clus-
ters of “mobile molecules,” which we will call MM-clusters.

A key aspect of the AG approach is the concept of Sconf,
the configurational part of the total entropy. AG proposed
that Sconf could be related to both the average relaxation of
the system and to the size of the CRR. However, AG did not
provide a precise definition of Sconf for a liquid. Progress
toward a more precise definition was made in 1969 by Gold-
stein �42�, who considered the possible connection between
the slowing down of liquid dynamics approaching Tg and the
topography of the potential energy landscape �PEL�. The
PEL is the hypersurface defined by the potential energy as a
function of the configurational degrees of freedom of the
system �43,44�. The system at a given instant of time is rep-
resented by a point on the PEL determined by the coordi-
nates of all the molecules. The dynamics of the system can
be described by the motion of the system point on the PEL.
At sufficiently high temperatures, the system can freely ex-
plore the entire PEL. As temperature is lowered toward Tg,
the accessible portion of the PEL becomes more limited. At
sufficiently low temperatures, the motion of the system can
be described by oscillations around PEL local minima and
transitions between one local minimum and another. A con-
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figuration in real space corresponding to a PEL local mini-
mum is called an inherent structure �IS�. Stillinger �43�
formalized the concept of Sconf by mathematically relating
it to the number of minima accessible to the system at equi-
librium.

The evolution of the system in real space can be related to
the transitions between the PEL minima. Similar to the MM-
clusters observed in the evolution of the equilibrium system,
the infrequent transitions between IS at low T involve the
rearrangement of few molecules which also form clusters
�45,46�. We call these clusters “IS-transition clusters” �IST-
clusters�. A natural question that arises is what, if any, is the
relationship between MM-clusters and IST-clusters, and can
these clusters be related to Sconf, as proposed by AG.

The MM-clusters have been studied extensively in
Lennard-Jones �LJ� and polymer systems.�21–32� Here we
consider if the MM-clusters observed in those systems are
different from the MM-clusters observed in supercooled wa-
ter which has a predominantly tetrahedral structure. This
work is organized as follows. In the next section we give
details of our molecular dynamics simulations. In Sec. III we
describe how we identify the MM-clusters. The dependence
of the cluster properties on temperature is reported in Sec.
IV, and the motion of the mobile molecules within a cluster
is discussed in Sec. V. In Sec. VI we study the relation be-
tween the MM-clusters and the IST-clusters �46�. In Sec. VII
we summarize the results and compare with earlier works on
atomic and polymer systems �21–32�.

II. SIMULATIONS

We perform MD simulations of the SPC/E model �41� of
water for a system of 1728 molecules, at a fixed density �
=1 g/cm3. We simulate temperatures ranging from
200 to 260 K at 10 K intervals. For each state point, we run
two independent trajectories to improve statistics. The details
of the numerical procedure can be found in Ref. �47�. We
measure the mean-square displacement �MSD� for times
long enough so molecules are able to move at least two mo-
lecular diameters. In this way, a clear diffusive regime can be
observed from the MSD for long times. We obtain the values
of the diffusion coefficient from the slope of the MSD for
long times and find that our values are consistent to those
reported in Ref. �47�. In accord with the mode coupling
theory �48�, we find that for the SPC/E model the diffusion
coefficient D decreases with T as

D � �T − TMCT��, �1�

where �=2.8 and the mode coupling temperature TMCT
�194 K �47�.

To study the IST-clusters, we must perform many energy
minimizations to generate the IS configurations. Because the
conjugate gradient minimization algorithm used to generate
the IS is computationally expensive, it becomes prohibitive
to do many minimizations with large systems. Hence, to
compare the MM-clusters with the IST-clusters, we also
simulated a 216 molecule system at T=210 K and �
=1 g/cm3. These results are also averaged over two indepen-
dent simulations of more than 60 ns each, i.e., more than 10

times the �-relaxation time at this temperature �47�.

III. DEFINITION OF MOBILE MOLECULE CLUSTERS

To compare the MM-clusters of the SPC/E model of water
with the MM clusters of binary LJ systems, polymer sys-
tems, and colloids, we use the same approach used in Refs.
�23,30,33,38�. Specifically, we calculate the self-part of the
time-dependent van Hove correlation function �49�

Gs�r,t� �
1

N
�
i=1

N

	� �
r�i�t� − r�i�0�
 − r�� , �2�

where 	¯� represents average over independent runs and
possible starting configurations and r�i�t� are the coordinates
of the oxygen atom of the ith molecule. The probability den-
sity of finding an oxygen atom at time t and at distance r
from its initial position at t=0 is 4�r2Gs�r , t�.

At both short time intervals �when molecules move bal-
listically� and long time intervals �when the molecular mo-
tion can be described as a diffusive process� Gs�r , t� can be
fit by a Gaussian approximation,

G0�r,t� = � 3

2�	r2�t��3/2

exp�− 3r2/2	r2�t��� , �3�

where 	r2�t�� is the mean-square displacement of the oxygen
atoms. Deviations of Gs�r , t� from G0�r , t� are known to be
pronounced at intervals between the ballistic and diffusive
motion, i.e., at times corresponding to the vibration of the
molecules within the cage formed by neighbor molecules.
The deviation of Gs�r , t� from G0�r , t� can be quantified by a
“non-Gaussian parameter” �50�,

�2�t� �
3

5
	r4�t��/	r2�t��2 − 1. �4�

The larger �2�t� is, the larger the deviations of Gs�r , t� from
G0�r , t�. As indicated in Fig. 1�a�, we define t* as the value of
time at which �2�t� is maximum.

As indicated in Fig. 1�b�, we define r* as the largest value
of r at which Gs�r , t*� and G0�r , t*� intersect. Similar to
simple liquids Gs�r , t*� has a tail for r�r* where Gs�r , t*�
�G0�r , t*�. In other words, there is an excess of molecules
that have moved a distance r�r*, when compared with the
expectations of a Gaussian distribution. We find that r* is in
the range 0.20–0.25 nm for all T, slightly smaller than the
typical nearest-neighbor separation �51�. The fraction of mol-
ecules that have moved a distance r�r* at t= t* is given by

� � �
r*

�

4�r2Gs�r,t*�dr . �5�

Depending on T, we find 0.06	�	0.08. Since � varies
weakly with temperature, we fix �=0.07 for all T to simplify
our analysis. Similar values of � were found in simulations
of atomic systems in Refs. �22,23� and polymer melts �30�,
as well as in experiments on colloidal systems �38�. Follow-
ing �23�, we define the mobility of the ith molecule at a given
time t0 as the maximum displacement of the oxygen atom in
the interval �t0 , t0+
t�, i.e.,
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�i�t0,
t� = max�
r�i�t0� − r�i�t + t0�
,t0 � t � t0 + 
t� . �6�

We will be interested in the “mobile molecules” defined as
the fraction � of molecules with largest �i. We define a
MM-cluster at time t0 over an observation time 
t as those
mobile molecules whose nearest-neighbor oxygen-oxygen
distance at time t0 is less than 0.315 nm, the first minimum
of the oxygen-oxygen radial distribution function gOO�r�
�52�.

MM-clusters can become quite large. Hence to avoid
strong finite size effects that can result from the spanning of
clusters across the system, we must ensure that our system is
large enough that the probability of finding a spanning clus-
ter Pspan��� is small. Figure 2 shows Pspan��� as a function of
the fraction � of mobile molecules at T=200 K �the lowest
temperature studied where correlations are expected to be
greatest�. We find that Pspan��� becomes nonzero around �
�0.1 and reaches 0.5 at ��0.18. Since MM-clusters have a
smaller size at higher T, our system size is large enough that
for �=0.07 no spanning MM-clusters should be present at
any T studied. For comparison we include in Fig. 2 the span-
ning probability obtained for clusters formed by choosing
random molecules. The difference between the two curves
reflects the cooperativity associated with the MM-clusters.
Similar results have also been found for polymeric systems
�30�.

IV. DEPENDENCE OF MM-CLUSTER PROPERTIES ON
TEMPERATURE

A. Cluster mass: Number of participating molecules

The size of MM-clusters can be quantified using the
weight average cluster mass

	n�
t��w �
� n2P�n,
t�

� nP�n,
t�
=

	n2�
t��
	n�
t��

, �7�

where P�n ,
t� is the probability of finding clusters of size n
within an observation time 
t. 	n�
t��w measures the aver-
age size of a MM-cluster to which a randomly chosen mol-
ecule belongs. Percolation theory �53� predicts that clusters
formed by randomly chosen molecules have a nontrivial de-
pendence of the cluster size on the fraction of chosen mol-
ecules �. Therefore, to quantify how cooperativity affects the
MM-cluster size and eliminate effects due to clusters formed
by randomly chosen molecules, we use a normalized quan-
tity, 	n�
t��w / 	nr�w, where 	nr�w is the weight average cluster
mass when choosing randomly N� molecules. This removes
any random contribution from 	n�
t��w, such that

	n�
t��w/	nr�w = 1 �8�

means that the clusters are the same size as those that would
be formed by a random process.

The dependence of 	n�
t��w / 	nr�w on the observation time

t for different T was studied in a preliminary work �39�.
Figure 3�c� in Ref. �39� shows that at high temperature �T
240 K�, there is a weak T-independent maximum at t
�1 ps reflecting correlations in vibrational motion due to
hydrogen bonds. At lower T�240 K, 	n�
t��w / 	nr�w devel-
ops a T-dependent maximum at 
t= tmax�T� that shifts to
larger times as T decreases. For all T studied, it is found that
t* is slightly larger than tmax �39�. It has been shown that t*

indicates the time scale corresponding to the escape of the
molecules from the cages formed by the neighboring mol-
ecules, at the beginning of the “diffusive regime” �39�. The
fact that t* and tmax have similar values implies that MM-
clusters reach their maximum size for an observation time 
t
approximately corresponding to the time at which molecules
leave their cages. In this section, we focus on the T depen-

FIG. 1. �a� Definition of t*, the time at which the maximum of
the non-Gaussian parameter �2�t� occurs �example at T=220 K�. �b�
Definition of the distance r* as the intersection of the van Hove
correlation function Gs�r , t*� and its Gaussian approximation
G0�r , t*� obtained using 	r2�t*��, for T=220 K. The tails of the dis-
tributions cross at r*�0.225 for all temperatures. This paper fo-
cuses on the subset of mobile molecules that correspond to dis-
placements larger than r* over a time interval t*. These molecules
represent a fraction, 0.06–0.08, of the system �shaded area in panel
�b��.

FIG. 2. Probability density function to find a spanning MM-
cluster as a function of the fraction � of mobile molecules compos-
ing the cluster. We choose the simulated T at which the clusters are
largest, i.e., T=200 K. We also include the corresponding spanning
probability for clusters formed by randomly chosen molecules. The
percolation threshold pc �where the spanning probability is 0.5� is
�0.18 for MM-clusters and �0.49 for clusters formed by randomly
chosen molecules. Note that there are no spanning MM-clusters at
�=0.07.
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dence of the MM-clusters obtained at 
t= t*. Our conclu-
sions are unaffected if we chose 
t= tmax instead of 
t= t*.

The properties of the MM-clusters can also be examined
in terms of the properties of clusters defined in percolation
theory, for example, by studying the probability density func-
tion P�n ,T� of finding a MM-cluster with n molecules at a
given T. P�n ,T� is shown in a previous work �40� for differ-
ent T and for a fraction �=0.07 of mobile molecules. The
distributions can be fitted with the Ansatz used in percolation
theory �53�,

P�n,T� � n−�e−n/n0, �9�

where n0=n0�T� is a characteristic cluster size at T and the
exponent �=��T� may depend also on T. The functional form
of P�n ,T� does not depend on �, although changing �
changes the values of n0�T� and ��T�. The values of ��T� and
n0�T� obtained for �=0.07 are tabulated in Table I. We are
unable to obtain highly accurate estimates of n0�T�, but we
do find a trend that n0�T� increases with decreasing T, con-
sistent with clusters becoming progressively larger upon
cooling. From Table I, we see that ��T�=2.1±0.1 for all T.
This value is consistent with the values

��T� � 1.9 �10a�

for LJ particles �23� and

��T� = 2.2 ± 0.2, �10b�

for colloidal suspensions �38�. Thus � may be independent of
the details of the potential. A similar expression for P�n ,T�
was also found in �30� for a polymer melt but with a smaller
exponent

��T� = 1.62 ± 0.12. �10c�

This smaller value may be due to the constraints in the mo-
tion of the monomers, which are bonded to neighboring
monomers in the same polymer. Note that the value of the
exponent � found for MM-clusters is very close to the value
predicted for the distribution of three-dimensional percola-
tion clusters �perc=2.19, which is satisfied by the clusters of
randomly selected molecules at the percolation threshold. As
shown in Fig. 2, the random percolation threshold for our
system is �0.5, much larger than the fraction of mobile mol-
ecules �=0.07. Thus the observed exponent � for MM-
clusters is not a consequence of percolation theory �53�.

Figure 3�a� shows the T-dependence of average maximum
number of molecules in a MM–cluster for n*�	n�
t= t*��
�without normalization�, and Fig. 3�b� shows the normalized
weight average cluster mass 	n�
t= t*��w / 	nr�w. Both quanti-
ties measure a characteristic cluster size in terms of the num-
ber of molecules, and they appear to increase nonlinearly
with decreasing T. However, we cannot reliably predict the
functional form of this T dependence, or how strongly the
cluster size may grow at T below 200 K, the lowest T we
simulate.

B. Cluster size: Spatial dimensions

We next aim to better characterize the morphology of the
clusters by estimating the geometric size. We first must ob-
tain a characteristic spatial dimension of the MM-cluster
size, which we evaluate using the correlation length �Fig.
3�c��

�2 �
�r

r2g�r�

�r
g�r�

, �11�

where g�r� is the correlation function or pair connectivity
�53� defined as the probability that two molecules belonging
to the same MM-cluster are separated by a distance r. Here,
� can be interpreted as the root-mean-square distance be-
tween two molecules in a cluster �53�. For a given observa-
tion time 
t, ��
t� can be rewritten in terms of the radius of
gyration Rg�n� �53�,

�2�
t� =
2 � Rg�n�2n2P�n,
t�

� n2P�n,
t�
, �12�

where

TABLE I. Fitting parameters for P�n ,T��n−�e−n/n0, where �
=��T� and n0=n0�T�.

T � n0

200 2.17 33.4

210 1.99 7.4

220 2.09 8.0

230 1.96 4.3

240 2.04 4.9

250 2.01 4.0

260 1.96 3.6

FIG. 3. Demonstration that three critical quantities increase non-
linearly as T decreases: �a� the non-normalized average number of
molecules n*�	n�
t= t*��, �b� the normalized weight cluster mass
	n�
t= t*��w / 	nr�w, and �c� the correlation length ��
t= t*�. Dotted
lines are a guide to the eye.
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Rg
2�n� �

�i,j

r�i − r� j
2

2n2 . �13�

Here r�i and r� j are the positions of oxygen atoms of molecules
i and j within the same cluster. The dependence of ��
t� with
the observation time is similar to the behavior of
	n�
t��w / 	nr�w. Furthermore, from Fig. 3�c� we observe that
�2�
t= t*� increases monotonically with decreasing T, and
for T=200 K we find �2�
t= t*��0.4 nm2. This indicates a
typical cluster size of ��0.63 nm at T=200 K�1.03 TMCT.

While we cannot accurately estimate � at near
Tg—significantly below the lowest T=200 K that we can
access in simulations—we can extrapolate values consistent
with experimental estimates of the cluster size. Using
o-terphenyl �54� as an example, the size sensitivity of the
probe molecules to heterogeneous dynamics indicates a typi-
cal cluster size of �2.5 nm at the glass transition. The cluster
size in a LJ system �21� was also estimated to be of the order
of 1 nm at T�1.04 TMCT. Future simulations should focus
on the cluster size at lower T to confirm that clusters found in
simulations have a comparable size to those found experi-
mentally.

The similar behavior of 	n�t*��w / 	nr�w, n*, and ��t*� upon
cooling in Fig. 3 suggests that these quantities are related. In
Fig. 4 we show 	n�
t��w / 	nr�w versus ��
t� and find an ex-
ponential dependence

	n�
t��w

	nr�w
� e��
t�/�, �14�

where �=0.35 nm. Exponential dependence of
	n�
t��w / 	nr�w with ��
t� was also observed in polymer
melts �30�, but an explanation of this behavior has been elu-
sive. In the following we give a plausible argument explain-
ing how such exponential dependence can arise from the
branching structure of the clusters.

If one assumes that the MM-clusters have a branching
treelike structure in which each molecule has on average q
�4 neighbors �the typical coordination number of a bulk

water molecule is 4�, then the mass of the cluster with a
radius R� j�0 �where �0=0.28 nm is the average oxygen-
oxygen nearest-neighbor distance, and j=1,2 , . . . is an inte-
ger� grows as

	n�
t��w

	nr�w
� �q − 1� j . �15�

Substituting j=R /�0 into Eq. �15� we get

	n�
t��w

	nr�w
� e�R/�0�ln�q−1�. �16�

Thus if we identify R=� then from Eq. �14� it follows that
�=�0 / ln�q−1�. Using the value �=0.35 nm, this suggests
q=3.2, i.e., an average of 3.2 neighbors for each molecule,
consistent with the expectation that q�4. We calculate q at
T=200 K and 
t= t*, and find that q�2.65 for large clusters,
smaller than the estimated value of 3.2. Therefore, the ap-
proximation Eq. �16� may serve as a first step to rationalize
the relationship given by Eq. �14�, but a more detailed model
is needed.

We can expect from Eq. �14� that the number of mol-
ecules n in a MM-cluster and the average radius of gyration
Rg�n� are also related by an exponential function,

n � ebRg�n�, �17�

where b is a constant. On the other hand, large clusters can-
not obey this formula due to the constraint n�c�Rg�n��3

where c is a constant proportional to the number density of
molecules. Moreover, percolation theory �53� predicts that at
percolation threshold, clusters are fractal objects with

n � �Rg�n��df , �18�

where df =2.52 in three dimensions. Below the percolation
threshold, large clusters are expected to behave as lattice
animals �53� with smaller fractal dimension, df =2 in three-
dimensions. Lattice animals �55� are connected clusters of n
particles counted with equal statistical weight. The clusters
in percolation theory are counted with weight �1−��t, where
t is the cluster perimeter. Thus elongated percolation clusters
with large perimeters are taken with smaller weight than
compact clusters with small perimeters. Consequently the
fractal dimension of percolation clusters is larger than that of
lattice animals. For very small �, the fractal dimension of
large clusters must coincide with the fractal dimension of
lattice animals. These ideas were put forward by Bouchaud
�56� for dynamics of granular media and in Ref. �57� for
glassy dynamics. They suggested that the regions of fast dy-
namics are delimited by the contour lines of a random field.
Thus Bouchaud conjectured that dynamic heterogeneities
may be lattice animals of fractal dimension df =2 in three
dimensions �and df =1.56 in two dimensions�.

In order to test the predictions that small clusters will
obey Eq. �17�, while large clusters will be lattice animals, we
plot the values of n versus Rg�n� in semilogarithmic and
double-logarithmic scales for T=200 K �Figs. 5�a� and 5�b��.
One can clearly see that as predicted, the slope of the graph
on the semilogarithmic plot decreases with Rg�n�, while on
the double-logarithmic plot it increases, approaching the

FIG. 4. Log-linear plot of the weight averaged cluster mass
	n�
t��w / 	nr�w as a function of the correlation length ��
t�. We
show points for all temperatures and observation times 
t. An ex-
ponential dependence of 	n�
t��w / 	nr�w with ��
t� has been also
found in a polymer melt �30�.

CLUSTERS OF MOBILE MOLECULES IN SUPERCOOLED WATER PHYSICAL REVIEW E 72, 011202 �2005�

011202-5



asymptotic limit df =2. Hence these clusters may be lattice
animals. The value df =2 is also in agreement with the deter-
mination of Weeks et al. for dense, three-dimensional colloi-
dal glasses �38�.

C. Relation between MM-clusters and cooperatively
rearranging regions

The developing study of SHD follows from the seminal
work of AG, who discussed the relaxation of liquids in terms
of local cooperatively rearranging regions �CRR�. In this sec-
tion we discuss the possible relations between the approach
of AG and the phenomenology of the MM-clusters. AG pre-
dict that the configurational entropy Sconf and the diffusion
constant D are related by

D � exp� − A

TSconf
� . �19�

Although in some cases this expression could not be con-
firmed �20�, it was successfully tested for the SPC/E model
�18,19,58� and other liquids �16,17�. AG also predict that the
size z of a CRR is related to Sconf via

z =
Nsconf�z�

Sconf
, �20�

where sconf�z� is the configurational entropy associated to a
CRR of size z, and Sconf is the total configurational entropy
of the system. Assuming that the T-dependence of sconf�z� is
weak in comparison to that of Sconf, as can be expected since
z�N and the configurational entropy is an extensive prop-
erty, then Eq. �20� reduces to

z �
1

Sconf
. �21�

Given the conceptual overlap between CRR described by
AG and the MM-clusters we study, it is natural to ask if the
MM-clusters can be identified with the CRR. To this end, we
plot 	n�
t= t*��w / 	nr�w, n*, and ��
t= t*� as functions of
1 /Sconf �Fig. 6�. All three quantities have weak dependences
on 1/Sconf for large Sconf. The finding that

�n* − 1� �
1

Sconf
�22�

has an important consequence. We can recover the AG pre-
diction, Eq. �21�, if we identify z�n*−1, and hence the
MM-clusters may be said to describe the CRR of the AG
approach. This finding thus suggests a quantitative connec-
tion between the SHD approach and the AG approach.

As discussed previously in Ref. �39�, by combining Eqs.
�19� and �22� one obtains

n* − 1

T
� − log D . �23�

This equation relates the size of the MM-clusters with the
diffusion coefficient. From this expression, we can estimate
the value of n* at Tg and compare it with experimental val-
ues. To do this, first we evaluate Eq. �23� at Tg and at TMCT,
and then we form the ratio of both expressions,

FIG. 5. �Color online� Average cluster size n as a function of the
radius of gyration Rg�n� for MM-clusters defined at 
t= t* and T
=200 K. We show the data in both �a� semilog and �b� log-log
scale. The exponential dependence only appears valid for small n.
On the double-logarithmic plot the slope increases consistent with
an asymptotic limit df =2 �where df is the fractal dimension of the
MM-clusters�. Since for lattice animals in three dimensions df =2,
the value of the slope found in �b� suggests that the MM-clusters
resemble lattice animals.

FIG. 6. Dependence on 1/Sconf of �a� the non-normalized aver-
age cluster mass n*�	n�
t= t*��, �b� the normalized weight aver-
aged cluster mass 	n�
t= t*��w / 	nr�w, and �c� the correlation length
��
t= t*�. The three quantities are weak dependent on 1/Sconf and
only n* can be satisfactorily fit by a straight line �see dotted lines�.

GIOVAMBATTISTA et al. PHYSICAL REVIEW E 72, 011202 �2005�

011202-6



n*�Tg� − 1

Tg

TMCT

n*�TMCT� − 1
=

log D�Tg�
log D�TMCT�

. �24�

In accord with Ref. �47�, we find that for the SPC/E model
TMCT=194 K. Thus we approximate D�TMCT=194 K� by
D�200 K� and use the value obtained from our simulations
D�200 K��10−8 cm2/s �47�. Therefore we obtain D�TMCT

=194 K��10−8 cm2/s. On the other hand, typical values of
D at Tg are 10 or more orders of magnitude smaller than
those of normal liquids �59�. Thus, assuming D�TMCT�
�1010D�Tg�, Eq. �24� reduces to

n*�Tg� − 1

Tg

TMCT

n*�TMCT� − 1
�

− 18

− 8
= 2.25. �25�

We approximate n*�TMCT� by n*�200 K� and use the value
we obtain from our simulations, n*�200 K�=1.86. We also
assume TMCT /Tg�1.3, as it is commonly found in glass-
forming liquids. Therefore, replacing n*�TMCT��1.86 and
TMCT /Tg�1.3 in Eq. �25�, we get n*�Tg��2.5. This value for
n*�Tg� corresponds to a linear size of 0.6–0.9 nm, in accord
with estimates from calorimetric data made for different
glass-forming liquids �60� which give radii for SHD at Tg in
the range 0.7–2.2 nm. Moreover, Ref. �36� finds that SHD in
o-terphenyl �OTP� extends to length scales of 2.5 nm at Tg.
The size of the OTP molecule is �1 nm, so our estimate for
n*�Tg� is also consistent with �36�.

For the Dzugutov potential, it was found that n*

�1/Sconf, and not �n*−1��1/Sconf. As discussed in Ref. �61�,
the first expression was proposed based on the AG relation
which was suggested for temperatures near Tg. At moder-
ately high T, cooperativity is no longer important for particle
motion, and so we expect n* approaches the value for ran-
domly chosen molecules �close to one�, while 1 /Sconf is still
larger than zero �the limit 1 /Sconf→0 corresponds to the
limit T→�, i.e., to the very high T limit�. As a result, an
extrapolation of n* to the 1/Sconf=0 limit will result in a
nonzero value of n*. The exact value of the extrapolated n*

will be system dependent, as the 1/Sconf axis will be system
dependent, as the temperature where cooperativity becomes
unimportant is system dependent. Hence, in Ref. �39�, we fit
data for n* as a function of 1/Sconf and found a linear rela-
tionship

�n* − a� �
1

Sconf
, �26�

where a is a constant. We select a=1, so that �n*−a�→0 for
T→�, for which 1/Sconf→0. However, Eq. �21� is expected
to hold only for low T. Therefore there are no physical re-
quirements that support a=1, and one can only suggest that
�n*−a��1/Sconf �where a is system dependent�. With this
revised interpretation, the CRR of Adam and Gibbs may be
related with the MM-clusters in both the SPC/E and the
Dzugutov potential simulations.

We also note that in a recent MD simulation of silica �a
“strong” liquid� where simulations were performed above
and below TMCT �i.e., in a wider range of T than in the
present work and in �61�� a weak but nonlinear dependence
of �n*−1� with 1/Sconf �62� was found. It is not clear whether

Eq. �26� holds for silica �for a�1�, but the case of silica
suggests that Eq. �26� is an approximation that may not be
generalized to all liquids. Note that we can test Eq. �26� only
in a relatively narrow range of temperatures, 200 K�T
�260 K. In this T range, 1 /Sconf changes by less than a
factor of 2. Thus small deviations from linearity may not be
well seen. In a wider T range the predictions of the AG
approach may not hold. However, the AG theory provides a
simple conceptual framework to understand the dynamics of
supercooled liquids in terms of SHD.

V. CORRELATED MOTION OF MOLECULES WITHIN
MM-CLUSTERS

For LJ and polymer systems �23,31�, it has been found
that the MM clusters consist of one or more “strings”—
groups of particles that follow each other in a roughly linear
fashion. In this section, we focus on the correlations among
the displacements of the molecules within MM-clusters to
determine if a similar behavior exists in the MM-clusters of
water, as well as to explore what role, if any, hydrogen bonds
play in determining motion within the cluster. We will deter-
mine if molecules move in a stringlike fashion by checking
�i� if displacements of neighboring oxygen atoms are paral-
lel, �ii� if the magnitude of the displacements of neighboring
oxygen atoms are comparable, and finally �iii� if these dis-
placements are approximately collinear with the vector con-
necting both oxygens.

First, for each MM-cluster, we identify all pairs of
nearest-neighbor molecules, i.e., those molecules in a cluster
with an oxygen-oxygen distance less than 0.315 nm. We fo-
cus on the angle � between the “maximum displacement vec-
tors” �� O1�
t� and �� O2�
t� of pairs of neighboring oxygen
atoms O1 and O2 in the same MM-cluster, during an obser-
vation time 
t. To determine if the displacements of neigh-
boring molecules are parallel, we plot the probability density
function P��� at T=210 K for many observation times in the
ballistic and cage regimes in Fig. 7. For very short times
�
t	50 fs�, we find that P��� is uniformly distributed and
we observe no correlation between the maximum displace-
ment vectors of neighboring mobiles molecules. This can be
understood because at short time scales the MM-clusters and
clusters formed by randomly selected molecules are nearly
indistinguishable. Differences from the random case start to
emerge at 
t�60 fs and reach their maximum at 
t
=0.26 ps, i.e., at the beginning of the cage regime when
molecules reach the boundaries of their cages. These small

t differences are due to correlations in vibrational motions
due to hydrogen bonding. We observe that P��� increases for
��0° indicating that neighboring mobile molecules move
preferentially parallel to each other. During the cage regime
�until 
t� t*=65.54 ps�, P��� still has a maximum at small
angles but it evolves to a uniform distribution as 
t in-
creases.

Having established that molecules preferentially displace
parallel to each other, we next investigate whether the mag-
nitude of the displacements of the molecules are similar. In
Fig. 8 we show the probability density function P�
rij�,
where 
rij is the change in the distance between any two
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nearest-neighbor mobile molecules i , j in the interval t0 and
t0+ t* at T=210 K. Specifically,


rij = 

r�i�t0 + t*� − r� j�t0 + t*�
 − 
r�i�t0� − r� j�t0�

 . �27�

If mobile molecule i and j move in a stringlike manner, then
the distance between them should not significantly change,
i.e., we should find 
rij =0. Figure 8 shows that this is the
dominant case, i.e., P�
rij� has a sharp peak at 
rij =0. This
result is consistent with the peak found in P��� at �=0° for

t= t*�65 ps at T=210 K. Note that when calculating the
P�
rij� for all mobile molecules, i.e., not only nearest-
neighbors, the sharp peak at 
rij =0 is not present; this re-
flects the ramified structure of the cluster as a whole. The
fact that P�
rij��0 for 
rij �0.05 nm means that in many
cases, molecules also move away from each other, as we
observe in Fig. 7, where P��=180° ��0.

Finally, we determine whether the displacements of
neighboring oxygen atoms are collinear with the direction
connecting the two oxygens by studying the angles �O1 and
�O2. Figure 9�a� shows schematically two oxygen atoms O1
and O2 belonging to nearest-neighbor mobile molecules. �O1
and �O2 are the angles between the direction connecting oxy-

gens O1 and O2 and the maximum displacement vectors of
each oxygen �� O1�
t= t*� and �� O2�
t= t*�, during an obser-
vation time 
t= t*. In a hydrogen bond a molecule shares one
of its hydrogen atoms with one of its neighbors �63�. In this
way, one molecule “donates” a hydrogen atom and the other
molecule “accepts” it �64�. In Fig. 9�a�, O1 is the acceptor
oxygen atom while O2 is the donor oxygen. We also define in
Fig. 9�a� the angle �OH between the shared hydrogen atom

FIG. 8. Probability density function for the change in the dis-
tance 
rij between two nearest-neighbor mobile molecules i , j in
the interval t0 and t0+ t*. More precisely, 
rij �

r�i�t0+ t*�−r� j�t0

+ t*�
− 
r�i�t0�−r� j�t0�

. The sharp peak at 
rij =0 implies that mobile
molecules, after a time t*, mainly conserve their relative distance.
When calculating P�
rij� for all mobile molecules, i.e., not only
nearest-neighbors, the sharp peak at 
rij =0 is not present, reflecting
the ramified structure of the cluster as a whole.

FIG. 9. �a� Schematic illustration showing the angles �O1, �O2,
and �OH defined for pairs of neighbor molecules in a MM-cluster.
O2 is the oxygen atom of the donor molecule which shares one of
its hydrogen atoms with the acceptor oxygen atom O1. �� O1�
t
= t*�, �� O2�
t= t*�, and �� H�
t= t*� are the maximum displacement
vectors during an observation time 
t= t* corresponding to oxygens
O1, O2, and the shared hydrogen H. Here, �O1 and �O2 are the
angles between the O1–O2 direction and the vectors �� O1�
t= t*�
and �� O2�
t= t*�, respectively. �OH is the angle between �� H�
t
= t*� and the O1–H direction. �b� Probability density function at T
=210 K for the angles �O1, �O2, and �OH defined schematically in
�a�. The �O1 and �O2 distributions have sharp peaks at �=0° sug-
gesting that molecules move preferentially toward a neighboring
molecule.

FIG. 7. Probability density function P��� for the angle � be-
tween the maximum displacement vectors �� O1�
t� and �� O2�
t� of
two neighbor oxygen atoms belonging to the same MM-cluster. We
show P��� at T=210 K for different values of the observation time

t corresponding to the �a� ballistic and �b� cage regimes. For short

t, P��� is uniform as expected for clusters formed by randomly
chosen molecules. The maximum peak at 0° is reached for t
=0.26 ps, just at the end of the ballistic regime and the beginning of
the cage regime. During the cage regime, P��� decreases at �=0°
evolving toward a uniform distribution.
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maximum displacement vector and the direction connecting
the acceptor oxygen atom O1 and the hydrogen atom. Figure
9�b� shows the probability density functions for each of these
angles at T=210 K. The �01 and �02 distributions are peaked
at 0° suggesting that molecules move preferentially toward a
neighboring molecule. However, distributions are nonzero
for �=180°, meaning that sometimes molecules move apart
from each other. Hence molecules predominantly move in a
collinear fashion as observed in the LJ and polymer systems
�23,31�. We note that the �OH distribution is peaked at 0° and
�180° and is approximately symmetric around 90°. This
suggests that the H atoms tend to rotate toward or away from
the acceptor oxygen atom O1 with equal probability �65�.

VI. RELATION BETWEEN SHD AND TRANSITIONS
BETWEEN INHERENT STRUCTURES

It has been suggested that diffusion in cold liquids may be
a consequence of a collection of smaller and more subtle
types of heterogeneity that would occur when the system
moves between consecutive local minima �IS� in the PEL
�44–46�. In Ref. �46� we studied the transitions between IS
using the SPC/E model and found that molecules with larger
displacements in IS transitions form clusters, i.e., IST-
clusters. IST-clusters similar to those found in the SPC/E
model have been also found in binary mixtures of LJ par-
ticles �45�. In this section we study how the IST-clusters �46�
relate to the MM-clusters obtained in the equilibrium trajec-
tory studied in Sec. III.

To compare these types of clusters, we follow both the
equilibrium MD-trajectory and the corresponding IS-
trajectory, i.e., the trajectory obtained by successive energy
minimizations of the equilibrium trajectory as a function of
time. We again focus on the fraction �=0.07 of the most
mobile molecules. MM-clusters in the equilibrium trajectory
are identified as explained in Sec. III. The same definition is
used to identify IST-clusters in the IS-trajectory, except that
we use the coordinates of the molecules from the IS-
trajectory. This definition of the IST-clusters is identical to
the definition used in Ref. �46� when 
t is small enough so
that there is only one IS-transition between t0 and t0+
t.

In the following analysis, we show how the MM-clusters
in the equilibrium trajectory defined at t0 with an observation
time 
t relate to the IST-clusters in the IS-trajectory defined
also at t0 with the same observation time 
t. Figure 10 shows
the mean-square displacement 	r2�
t�� of the equilibrium
trajectory at T=210 K and the average number of molecules
	k�
t�� which belong both to the MM-clusters and the IST-
clusters. We normalize 	k�
t�� by N�, so, the equality
	k�
t�� /N�=1 implies that MM-clusters and IST-clusters to-
tally overlap. We find a correlation between 	k�
t�� /N� and
	r2�
t��. During the ballistic regime 	k�
t�� /N�	0.1 and it
does not change with 
t. For the case in which the molecules
in each subset are independently and randomly chosen, the
expected value is

	k�
t��
N�

= � = 0.07. �28�

Thus the identities of the molecules in the MM-clusters and
the IST-clusters have virtually no overlap. This result sug-

gests that in this time frame there is little relation between
the motions of the molecules in the equilibrium trajectory
and the motions of the molecules when the system changes
from one IS to another. The overlap between MM-clusters
and the IST-clusters is larger during the cage regime, and
	k�
t�� /N� increases as log�
t�. Once the diffusive regime
starts, 	k�
t�� /N� evolves very slowly with 
t, approaching
its maximum value of 1.

In Fig. 11 we show the probability P�k� that k molecules
belong to both MM-clusters and IST-clusters as a function of
the observation time 
t. We show P�k� �a� during the ballis-
tic regime �
t�0.2 ps�, and �b� during the cage regime
�0.2 ps�
t�100 ps� and diffusive regime �
t100 ps�.
The behavior of P�k� for different 
t is consistent with the
evolution of 	k�
t�� /N�. There is a weak time dependence
of P�k� during the ballistic regime with the maximum at k
=1, while the distribution during the cage regime shifts rap-
idly to higher values of k. At the beginning of the diffusive
regime there is still a weak shift of P�k� to larger values of k.

To better understand our results, we refer to Fig. 12 where
we show schematically the basins in the PEL sampled at time
t0 and at time t0+
t. We define RIS�t� as a 3N-dimensional
vector given by the coordinates of all the oxygen atoms at
the IS sampled at time t. We then define the vector 
RIS�
t�
pointing from the starting IS at t0 to the IS sampled at time
t0+
t,


RIS�
t� � RIS�t0 + 
t� − RIS�t0� . �29�

Analogously, we also identify R�t� as a 3N-dimensional vec-
tor given by the coordinates of all the oxygen atoms at time
t, and define

FIG. 10. �a� Mean square displacement at T=210 K showing
approximately the transition from the ballistic to the cage regime
and from the cage to the diffusive regime. �b� Normalized average
number of molecules, 	k�
t�� /N�, which belong to both the MM-
clusters and the IST-clusters found in the IS-trajectory. The normal-
ization factor is N�=216�0.07�15, i.e., the maximum number of
mobile molecules for this system. 	k�
t�� /N� shows that both types
of clusters are uncorrelated during the ballistic regime, but as 
t
increases in the cage regime both types of clusters share more mol-
ecules. In the diffusive regime, MM-clusters and the IST-clusters
tend to overlap.
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R�
t� � R�t0 + 
t� − R�t0� . �30�

Here 
R�
t� is a 3N-dimensional vector pointing from the
starting configuration at time t0 to the configuration at time
t0+
t; this definition implies mathematically that
	
R2�
t��=N	r2�
t��. The vector d�t� in Fig. 12 points from
the IS sampled at t to the configuration of the system at t,
i.e.,

d�t� � R�t� − RIS�t� . �31�

We note that MM-clusters are defined from the displace-
ment of the molecules in the real trajectory, i.e., from the
components of 
R�
t�. Instead, IST-clusters are defined
from the displacement of the molecules in the IS-trajectory,
i.e., from the components of 
RIS�
t�. Therefore, when
these two vectors are approximately the same, 
d�t0+
t�
,

d�t0�
� 

RIS�
t�
, we will find that MM-clusters and IST-
clusters overlap.

At T=210 K�TMCT, 
R2�
t� grows continuously with
time while d2�
t� is bounded. We find d2�t��0.5 nm2 mean-
ing that the configurations are always close to their corre-
sponding IS—i.e., the root-mean-square distance between
the positions of an oxygen atom in a given configuration and
in the corresponding IS is �d2�t� /N�0.05 nm. For very
short times, the two basins in Fig. 12 are neighboring and

R2�
t��d2�t0+
t�, e.g., we find that for 
t=0.1 ps,


R2�
t�
d2�t0 + 
t�

� 0.43. �32�

Therefore molecules belonging to the MM-clusters and the
IST-clusters are expected to be different. P�k� confirms this
expectation, as shown in Fig. 11�a�. During the cage regime
and at later times, 
R2�
t��d�
t�2 and therefore, as time
goes on, 
R�
t� approaches 
RIS�
t�. In other words, more
and more molecules belonging to the MM-clusters will also
belong to the IST-clusters in agreement with Fig. 11�b�. Fi-
nally, in the diffusive regime, 
R�
t��
RIS�
t� and MM-
clusters overlap with IST-clusters.

Next, we discuss briefly how the MM-clusters and the
IST-clusters are related with the topography of the PEL.
Stillinger �44� suggested that the PEL is very rough and
many small contiguous basins may be grouped together to
form wider “megabasins.” The elementary transition pro-
cesses �identified with the �-relaxation �44�� that connect the
small contiguous basins require only local rearrangements of
a small number of particles. The escape from one “megaba-
sin” to another requires a lengthy directed sequence of el-
ementary transitions �66,67�. In the context of the topogra-
phy of the PEL, the IST-clusters identified in �46�, i.e., in the
transitions between consecutive IS, should be identified with
the elementary processes suggested in �44�. Instead, the MM-
clusters �defined with 
t= t*� may be related to transitions
between megabasins �66,67�.

VII. SUMMARY

We have presented a detailed analysis of the MM-clusters
characterizing the spatially heterogeneous dynamics in water.
Similar to other simulations of atomic and polymer systems,
clusters are largest on the time scale of the onset of diffusive
motion and their size increases nonlinearly with T upon cool-
ing. The probability density function for the cluster size fol-
lows a power law with exponent �2, as also found in atomic
systems. The correlation length of the MM-clusters corre-
sponds to a typical spatial dimension of the order of 1 nm,
comparable to the length scale found in simulations of LJ

FIG. 11. Probability density function P�k� that k molecules be-
longing to MM-clusters also belong to IST-clusters for different
observation times 
t. In accord with Fig. 10, during the ballistic
regime P�k� is centered at k=1 but its width increases with 
t.
During the cage regime P�k� shifts to larger values of k. We find
that during the diffusive regime, P�k� continues to shift slowly to
larger values of k and its width decreases.

FIG. 12. Scheme showing one basin in the PEL sampled at time
t0 and another basin sampled at time t0+
t. 
RIS�
t� is the vector
pointing from the starting IS sampled at t0 to the IS sampled at time
t0+
t and 
R�
t� is the vector pointing from the starting configu-
ration of the system at t0 to the configurations at time t0+
t. d�t� is
the vector pointing from the IS sampled at time t to the configura-
tion of the system at the same time. For 
t�0, 
d�t0+
t�

�

R�
t�
, 

RIS�
t�
. For long 
t, 
d�t0+
t�
 and 
d�t0�
 are
much smaller than 

R�
t�
 or 

RIS�
t�
, therefore 
R�
t�
�
RIS�
t�. The condition 
R�
t��
RIS�
t� satisfied for long 
t
implies that MM-clusters and IST-clusters overlap.
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systems �21�. However, further simulations at lower tempera-
ture are needed to better compare with estimates obtained for
the length scale of SHD in experiments close to the glass
transition temperature �54�. We do not find a power law re-
lating the size of the MM-clusters and the correlation length
�expected from percolation theory�, as is the case for simu-
lations of a polymer melt �30�. This is most likely a result of
the fact that MM-clusters are branched, and that there are
mainly small MM-clusters with two or three molecules. As a
consequence, the size of the MM-clusters has an exponential
dependence on the correlation length which will only ap-
proach a power-law dependence for MM-clusters larger than
those obtained in this study.

Motivated by the AG theory, we also study the MM-
cluster properties as a function of the configurational en-
tropy. We find evidence suggesting that the MM-clusters
obey the functional form relating entropy and size proposed
by AG for the cooperatively rearranging regions. This result,
combined with the AG predictions, gives an estimation for
the cluster size at Tg of 2 to 3 molecules which is in agree-
ment with experimental clusters size measurements in OTP
�36�.

Within the MM-clusters, we found that a molecule mainly
follows its neighbor molecule, as is the case of LJ and poly-

meric liquids. This result supports the hypothesis �23� that
stringlike motion may be a generic mechanism of both
simple atomic liquids and complex molecular liquids.

In the last part of this work we considered the relation
between the MM-clusters formed in the equilibrium trajec-
tory and the IST-clusters formed in the IS trajectory. We find
that both types of clusters are different for short time scales,
meaning that experiments detecting SHD in short time scales
��0.2 ps� cannot give information on clusters found in IS
transitions. However, MM-clusters and IST-clusters overlap
on the longer time scales of diffusive motion, where the sys-
tem is changing PEL megabasins �44�, so, MM-clusters can
be related to clusters between IS in different megabasins of
the PEL.
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