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Abstract

We survey a theory (first sketched in Nature in 2003, then fleshed out in the Quarterly Journal of Economics in 2006) of

the economic underpinnings of the fat-tailed distributions of a number of financial variables, such as returns and trading

volume. Our theory posits that they have a common origin in the strategic trading behavior of very large financial

institutions in a relatively illiquid market. We show how the fat-tailed distribution of fund sizes can indeed generate

extreme returns and volumes, even in the absence of fundamental news. Moreover, we are able to replicate the individually

different empirical values of the power-law exponents for each distribution: 3 for returns, 3/2 for volumes, 1 for the assets

under management of large investors. Large investors moderate their trades to reduce their price impact; coupled with a

concave price impact function, this leads to volumes being more fat-tailed than returns but less fat-tailed than fund sizes.

The trades of large institutions also offer a unified explanation for apparently disconnected empirical regularities that are

otherwise a challenge for economic theory.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This paper surveys a recent paper [1], in which we present a model in which volatility is caused by the trades of
large institutions. This paper may be the first econophysics paper published in a refereed, top-four economics
journal. As such, it represents a useful step in the progressive integration of econophysics and economics.2

In our theory, spikes in trading volume and returns are created by a combination of news and the trades by
large investors. Suppose news or proprietary analysis induces a large investor to trade a particular stock. Since
his desired trading volume is then a significant proportion of daily turnover, he will moderate his actual
trading volume to avoid paying too much in price impact. The optimal volume will nonetheless remain large
enough to induce a significant price change.
e front matter r 2007 Elsevier B.V. All rights reserved.
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Traditional measures, such as variances and correlations, are of limited use in analyzing spikes in market
activity. Many empirical moments are infinite; moreover, their theoretical analysis is typically untractable.
Instead, a natural object of analysis turns out to be the tail exponent of the distribution, for which some
convenient analytical techniques apply. Furthermore, there is much empirical evidence on the tails of the
distributions, which appears to be well approximated by power laws. For example, the distribution of returns r

over daily or weekly horizons decays according to Pðjrj4xÞ�x�zr where zr is the tail or Pareto exponent. This
accumulated evidence on tail behavior is useful to guide and constrain any theory of the impact of large
investors. Specifically, our theory unifies the following stylized facts:
(i)
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the power-law distribution of returns, with exponent zr ’ 3;

(ii)
 the power-law distribution of trading volume, with exponent zq ’ 1:5;

(iii)
 the power law of price impact;

(iv)
 the power-law distribution of the size of large investors, with exponent zS ’ 1.
Existing models have difficulty in explaining facts (i)–(iv) together, not only the power-law behavior
in general, but also the specific exponents. For example, efficient market theories rely on news to move
stock prices and thus can explain the empirical finding only if the news is power-law distributed with an
exponent zr ’ 3. However, there is nothing a priori in the efficient markets hypothesis that justifies this
assumption. Similarly, GARCH models generate power laws, but need to be fine-tuned to replicate the
exponent of 3.3

We rely on previous research to explain (iv), and develop a trading model to explain (iii). We use these facts
together to derive the optimal trading behavior of large institutions in relatively illiquid markets. The fat-tailed
distribution of investor sizes generates a fat-tailed distribution of volumes and returns (see also Refs. [22–24]).
When we derive the optimal trading behavior of large institutions, we are able to replicate the specific values
for the power-law exponents found in stylized facts (i) and (ii).4

In addition to explaining the above facts, an analysis of tail behavior may have a number of wider
applications in option pricing,5 and risk management.
2. The empirical findings that motivate our theory

This section presents the empirical facts that motivate our theory, and provides a self-contained tour of the
empirical literature on power laws.
2.1. The power-law distribution of price fluctuations: zr ’ 3

The tail distribution of returns has been analyzed in a series of studies that uses an ever-increasing number
of data points [3–6]. Let rt denote the logarithmic return over a time interval Dt. The distribution function of
returns for the 1000 largest U.S. stocks and several major international indices has been found to be:6

Pðjrj4xÞ�
1

xzr
with zr ’ 3, (1)
lso, GARCH models are silent about the economic origins of the tails, and about trading volume.

his includes the relative fatness documented by facts (i), (ii) and (iv) (note that a higher exponent means a thinner tail). Since large

rs moderate their trading volumes, the distribution of volumes is less fat-tailed than that of investor sizes. In turn, a concave price

ct function leads to return distributions being less fat-tailed than volume distributions.

ur theory indicates that trading volume should help forecast the probability of large returns. Marsh and Wagner [7] provides evidence

stent with that view.

o compare quantities across different stocks, we normalize variables such as r and q by the second moments if they exist, otherwise by

rst moments. For instance, for a stock i, we consider the returns r0it ¼ ðrit � riÞ=sr;i, where ri is the mean of the rit and sr;i is their

ard deviation. For volume, which has an infinite standard deviation, we use the normalization q0it ¼ qit=qi, where qit is the raw

e, and qi is the absolute deviation: qi ¼ jqit � qitj.
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Fig. 1. Empirical cumulative distribution of the absolute values of the normalized 15min returns of the 1000 largest companies in the

Trades And Quotes database for the 2-year period 1994–1995 (12 million observations). We normalize the returns of each stock so that the

normalized returns have a mean of 0 and a standard deviation of 1. For instance, for a stock i, we consider the returns r0it ¼ ðrit � riÞ=sr;i,

where ri is the mean of the rit’s and sr;i is their standard deviation. In the region 2pxp80 we find an ordinary least squares fit

lnPðjrj4xÞ ¼ �zr lnxþ b, with zr ¼ 3:1� 0:1. This means that returns are distributed with a power law Pðjrj4xÞ�x�zr for large x

between 2 and 80 standard deviations of returns. Source: Gabaix et al. [2].
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with a good fit for jrj between 2 and 80 standard deviations (Fig. 1). OLS estimation yields �zr ¼ �3:1� 0:1,
i.e., Eq. (1). We refer to Eq. (1) as ‘‘the cubic law of returns’’.7
2.2. The power-law distribution of trading volume: zq ’ 3=2

To better constrain a theory of large returns, it is helpful to understand the structure of large trading
volumes. Gopikrishnan et al. [8] find that trading volumes for the 1000 largest U.S. stocks are also power-law
distributed:8

Pðq4xÞ�
1

xzq
with zq ’ 3=2. (2)

The precise value estimated is zq ¼ 1:53� 0:07. Fig. 2 illustrates that the density satisfies pðqÞ�q�2:5, i.e.,
Eq. (2). The exponent of the distribution of individual trades is close to 1:5.

To test the robustness of this result, we examine 30 large stocks of the Paris Bourse from 1995–1999, which
contain approximately 35 million records, and 250 stocks of the London Stock Exchange in 2001. As shown in
Fig. 2, we find zq ¼ 1:5� 0:1 for each of the three stock markets. The exponent appears essentially identical in
the three stock markets, which is suggestive of universality.

We refer to Eq. (2) as the ‘‘half-cubic law of trading volume’’.
It is intriguing that the exponent of returns should be 3 and the exponent of volumes should be 1.5. To see

if there is an economic connection between those values, we turn to the relation between return and
volume.
7The particular value zr ’ 3 is consistent with a finite variance, but moments higher than 3 are unbounded. zr ’ 3 contradicts the ‘‘stable

Paretian hypothesis’’ of Mandelbrot [12], which proposes that financial returns follow a Lévy stable distribution. A Lévy distribution has

an exponent zrp2, which is inconsistent with the empirical evidence [13–15].
8We define volume as the number of shares traded. The dollar value traded yields very similar results, since, for a given security, it is

essentially proportional to the number of shares traded.
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Fig. 2. Probability density of normalized individual transaction sizes q for three stock markets (i) NYSE for 1994–1995 (ii) the London

Stock Exchange for 2001 and (iii) the Paris Bourse for 1995–1999. OLS fit yields ln pðxÞ ¼ �ð1þ zqÞ ln xþ constant for zq ¼ 1:5� 0:1.
This means a probability density function pðxÞ�x�ð1þzqÞ, and a countercumulative distribution function Pðq4xÞ�x�zq . The three stock

markets appear to have a common distribution of volume, with a power-law exponent of 1:5� 0:1. The horizontal axis shows invidividual
volumes that are up to 104 times larger than the absolute deviation, jq� qj. Source: Gabaix et al. [1].
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2.3. The power law of price impact: r�V g

In Gabaix et al. [1] we present evidence that the price impact r of a trade of size V scales as:

r�kV g, (3)

with k40; 0pgp1, which yields a concave price impact function [9–11]. The parameterization g ¼ 1=2 is often
used, e.g., by Barra [16], Gabaix et al. [2], Hasbrouck and Seppi [10].

Eq. (3) implies zr ¼ zV=g. Hence, given zr ¼ 3 and zV ¼ 3=2, the value g ¼ 1=2 is a particularly plausible
null hypothesis. From this relationship, we see a natural connection between the power laws of returns and
volumes.

The exact value of g is a topic of active research. In Gabaix et al. [1], we discuss evidence on the null
hypothesis g ¼ 1=2. However, it is possible that the true relationship is different, or may vary from market to
market. This is why we present a theory with a general curvature g.

2.4. The power-law distribution of the size of large investors: zS ’ 1

It is highly probable that substantial trades are generated by very large investors. This motivates us to
investigate the size distribution of market participants. A power law formulation

PðS4xÞ�
1

xzS
(4)

often yields a good fit. In Gabaix et al. [1], we report estimates consistent with zS ’ 1, a Zipf’s law [17–19].

2.5. Summary and challenges

The facts summarized in this section present important challenges. First, economic theories have difficulty
in explaining the power-law distribution of returns, as the efficient market theory, and GARCH models, need
to be fine-tuned to explain why the distribution of returns would have an exponent of 3.
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Second, it is surprising that the Pareto exponent of trading volume is zq ’ 1:5, while that of institution size
is zS ’ 1. In models with frictionless trading, all agents have identical portfolios and trading policies, except
that they are scaled by the size S of the agents (which corresponds to wealth). Hence frictionless trading
predicts that the distribution of trading volume of a given stock should reflect the distribution of the size of its
investors, i.e., zq ¼ zS ’ 1. However, we find that zq4zS. A likely cause is the cost of trading; large institutions
trade more prudently than small institutions, because price impact is monotonically increasing in trade size.

Finally, the basic price impact model [20] predicts a linear relation between returns and volume, which
would imply zr ¼ zq. To explain why zq=zr is close to 1/2, we require a model with curvature of price impact
g ’ 1=2. We now present a model that attempts to resolve the above paradoxes.
3. The model

We consider a large fund in a relatively illiquid market. We first describe a rudimentary model for the price
impact of its trades. Next, we link the various power-law exponents; this represents the core contribution of
this paper. One could employ different microfoundations for price impact without changing our conclusions.
3.1. A simple model to generate a power law price impact

Before presenting, in Section 3.2, the core of the model, we first present a simple microfoundation for the
square root price impact. The model used in this section is a formalized version of a useful heuristic argument,
sometimes called the ‘‘Barra model’’ of Torre and Ferrari [16].

The model formalizes the compensation required by a liquidity provider to accept a large block of size V.
We assume that the liquidity provider has the following mean variance utility function on the total amount W

of money earned during the trade:

U ¼ E½W � � l½varðW Þ�d=2, (5)

with l40 and d40. The liquidity supplier requires compensation equal to lsd to bear a risk of standard
deviation s, i.e., has ‘‘dth order risk aversion’’. With standard mean-variance preferences, d ¼ 2. In many
cases, a better description of what behavior is first-order risk aversion, which corresponds to d ¼ 1. One
justification for first-order risk aversion comes from psychology. Prospect theory [21] presents psychological
evidence for this behavior.

In equilibrium, one gets the following price impact function:

tðV Þ ¼ HV g, (6)

with H ¼ lsd=ð3V Þd=2 and

g ¼
3d
2
� 1.

In particular, with first-order risk aversion ðd ¼ 1Þ, then g ¼ 1=2, a square root price impact of trades.
The proof is in Gabaix et al. [1]. The intuition is that the liquidity provider needs a time T ¼ V=V to buy

back the V shares. During that time, the price diffuses at a rate s. Hence the liquidity provider faces a price
uncertainty with standard deviation s

ffiffiffiffi
T
p
�s

ffiffiffiffi
V
p

. If the liquidity provider is first-order risk aversion, the price
concession t is proportional to the standard deviation, hence t�s

ffiffiffiffi
V
p

, i.e., g ¼ 1=2.
3.2. The core model: behavior of a large fund

We now lay out the core of our model. The fund periodically receives signals about trading opportunities,

which indicate that the excess risk-adjusted return on the asset is stMt
eC. st, Mt and eC are independent.

st ¼ �1 is the sign of the mispricing. Mt is the expected absolute value of the mispricing. Mt is drawn from a
distribution f ðMÞ, which we assume to be not too fat-tailed.
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The model misspecification risk eC captures uncertainty over whether the perceived mispricing is in fact real.eC can take two values, 0 and C�. If eC ¼ 0, the signals the fund perceives are pure noise, and the true average
return on the perceived mispricings is 0. If eC ¼ C�, the mispricings are real. We normalize E½ eC� ¼ 1.

The fund has S dollars in assets. If it buys a volume V t of the asset, and pays a price concession RðV tÞ, the
total return of its portfolio is:

rt ¼ V tð eCMt � RðV tÞ þ utÞ=S, (7)

where ut is mean zero noise.
If the model is wrong, expected returns are

E½rtj eC ¼ 0� ¼ �VtRðVtÞ=S. (8)

We assume that the manager has a concern for robustness. He does not want his expected return to be below
some value �L percent if his trading model is wrong. Formally, this means

E½rtj eC ¼ 0�X� L. (9)

To simplify the algebra, we assume that, subject to the robustness constraint, the manager wants to
maximize the expected value of his excess returns E½r�.9 The fund’s optimal policy is a function V ðM ;SÞ that
specifies the quantity of shares V traded when the fund perceives a mispricing of size M. It maximizes the
expected returns E½rt� subject to the robustness constraint (9):

max
V ðM ;SÞ

E½rt� s:t: E½rtj eC ¼ 0�X� L, (10)

i.e.,

max
V ðM ;SÞ

1

S

Z 1
0

V ðM ;SÞðM � RðV ðM ;SÞÞÞf ðMÞdM

s:t:
�1

S

Z 1
0

V ðM ;SÞRðV ðM ;SÞÞf ðMÞdMX� L.

To solve this problem, we use the notation V ðMÞ rather than V ðM ;SÞ. The Lagrangian is:

L ¼

Z
V ðMÞðM � RðV ðMÞÞÞf ðMÞdM � m

Z
V ðMÞRðV ðMÞÞf ðMÞdM

¼

Z
V ðMÞðM � ð1þ mÞhV ðMÞgÞf ðMÞdM.

It is sufficient to optimize on V ðMÞ separately for each M:

0 ¼
qL

qV ðMÞ
¼

q
qV ðMÞ

½V ðMÞM � ð1þ mÞhV ðMÞ1þg�f ðMÞ

! 0 ¼M � ð1þ mÞð1þ gÞhV ðMÞg

! V ðMÞ ¼ ½ð1þ mÞð1þ gÞh��1=gM1=g. ð11Þ

Thus, using Eq. (8),

�E½rtj eC ¼ 0� ¼ E½hV ðMÞ1þg=S� ¼ hE½M1þ1=g�½ð1þ mÞð1þ gÞh��ð1þ1=gÞ=S.

If constraint (9) binds �E½rtj eC ¼ 0� ¼ L. This implies

½ð1þ mÞð1þ gÞh��ð1þ1=gÞ ¼
LS

hE½M1þ1=g�
9One might prefer the formulation maxV ðM;SÞ E½uðrÞ� subject to E½uðrÞjC ¼ 0�Xuð�RÞ, with a concave utility u. Fortunately, this does not

change the conclusions in many instances, such as uðrÞ ¼ �e�ar, a40. On the other hand, with a non-linear function u the derivations are

more complex, as they rely on asymptotic equalities, rather than exact equalities. To keep things simple, we use the linear representation

(10).
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and going back to Eq. (11), we get V ðMÞ ¼ vM1=gS1=ð1þgÞ with

v ¼
L

hE½M1þ1=g�

� �1=ð1þgÞ

. (12)

The expression for R comes from R ¼ hV g.
To sum up, we conclude.

Proposition 1. The optimal policy for a fund of size S perceiving a mispricing of size M is to trade a volume:

V ðM ;SÞ ¼ vM1=gS1=ð1þgÞ. (13)

The price change after the trade is

RðM ;SÞ ¼ hvgMSg=ð1þgÞ (14)

for a positive constant v, which is increasing in L and decreasing in h.

It would be greatly desirable to be able to test Proposition 1 directly, for instance by looking at trade-by-
trade data in a data set comprising the identity and size of the funds trading. Such a data set is not currently
available, but might be in the future. In the meantime, we can already extract some predictions from
Proposition 1. By taking the power-law exponents of the last two equations, we find that, if the news is fat-
tailed enough (if they have an exponent greater than ð1þ gÞzS), the following proposition holds.

Proposition 2. Volumes and returns are power-law distributed, with respective exponents zV and zR such that:

zV ¼ ð1þ gÞzS, ð15Þ

zR ¼ 1þ
1

g

� �
zS. ð16Þ

Indeed, for instance, Eq. (14) gives:

zR ¼ minðzM ; zSg=ð1þgÞ
Þ ¼ z

Sg=ð1þgÞ
¼

1þ g
g

zS.

With the empirical and theoretical baseline case of a square root price impact (g ¼ 1=2) and Zipf’s law for
financial institutions (zS ¼ 1), volumes and returns follow power-law distributions, with respective exponents
of 3=2 and 3.

zV ¼ 3=2, ð17Þ

zR ¼ 3. ð18Þ

These exponents are the empirical values of the distribution of volume and returns.

The above captures our explanation of the origins of the cubic law of returns, and the half-cubic law of
volumes. Random growth of mutual funds leads to Zipf’s law of financial institutions, zS ¼ 1. The model of
Section 3.1 leads to a power law price impact with curvature g ¼ 1=2. As large funds wish to lessen their price
impacts, their trading volumes are less than proportional to their size. This generates a power-law distribution
of the size of trades that is less fat-tailed than the size distribution of mutual funds. The resulting exponent is
zV ¼ 3=2, which is the empirical value. Trades of large funds create large returns, and indeed the power-law
distribution of returns with exponent zr ¼ 3.

On the other hand, Eqs. (15) and (16) predict that in some circumstances the power laws of volumes and
returns will differ from 3=2 and 3. In future research, it would be interesting to evaluate predictions Eqs. (15)
and (16) across different stocks, or different stock markets.
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