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We explore if there exist universal statistical patterns that are different in coding and noncoding DNA and
can be found in all living organisms, regardless of their phylogenetic origin. We find that ~i! the mutual
information function I has a significantly different functional form in coding and noncoding DNA. We further

find that ~ii! the probability distributions of the average mutual information Ī are significantly different in
coding and noncoding DNA, while ~iii! they are almost the same for organisms of all taxonomic classes.

Surprisingly, we find that Ī is capable of predicting coding regions as accurately as organism-specific coding
measures.

PACS number~s!: 87.10.1e, 02.50.2r, 05.40.2a

I. INTRODUCTION

DNA carries the genetic information of most living organ-
isms, and the goal of genome projects is to uncover that
genetic information. Hence, genomes of many different spe-
cies, ranging from simple bacteria to complex vertebrates,
are currently being sequenced. As automated sequencing
techniques have started to produce a rapidly growing amount
of raw DNA sequences, the extraction of information from
these sequences becomes a scientific challenge. A large frac-
tion of an organism’s DNA is not used for encoding proteins
@1#. Hence, one basic task in the analysis of DNA sequences
is the identification of coding regions. Since biochemical
techniques alone are not sufficient for identifying all coding
regions in every genome, researchers from many fields have
been attempting to find statistical patterns that are different
in coding and noncoding DNA @2–6#. Such patterns have
been found, but none seems to be species independent.
Hence, traditional coding measures @7# based on these pat-
terns need to be trained on organism-specific data sets before
they can be applied to identify coding DNA. This training-
set dependence limits the applicability of traditional coding
measures, as many new genomes are currently being se-
quenced for which training sets do not exist.

II. MUTUAL INFORMATION FUNCTION

In search for species-independent statistical patterns that
are different in coding and noncoding DNA, we study the
mutual information function I(k), which quantifies the
amount of information ~in units of bits! that can be obtained
from one nucleotide X about another nucleotide Y that is
located k nucleotides downstream from X @8#. Within the
framework of statistical mechanics I can be interpreted as
follows. Consider a compound system ~X,Y! consisting of the
two subsystems X and Y. Let p i denote the probability of
finding system X in state i, let q j denote the probability of
finding system Y in state j, and let P i j denote the joint prob-
ability of finding the compound system ~X,Y! in state ~i,j!.
Then the entropies of the systems X,Y, and ~X,Y! are defined
by

H@X#[2kB(
i

p i ln p i ,

H@Y #[2kB(
j

q j ln q j , and

H@X ,Y #[2kB(
i , j

P i j ln P i j ,

where kB denotes the Boltzmann constant. If X and Y are
statistically independent, then H@X#1H@Y #5H@X ,Y # ,
which states that the Boltzmann entropy is extensive. If X
and Y are statistically dependent, then the sum of the entro-

FIG. 1. Mutual information function, I(k), of human coding
~thin line! and noncoding ~thick line! DNA, from GenBank release
111 ~Ref. @10#!. We cut all human, non-mitochondrial DNA se-
quences into non-overlapping fragments of length 500 bp, starting
at the 58-end. We compute the mutual information function of each
fragment, correct for the finite length effect ~Ref. @13#!, and display
the average over all mutual information functions ~of coding and
noncoding DNA separately!. We find that for noncoding DNA I(k)
decays to zero as k increases, while for coding DNA I(k) shows
persistent period-3 oscillations.
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pies of the subsystems X and Y is strictly greater @9# than the
entropy of the compound system (X ,Y ), i.e., H@X#1H@Y #
.H@X ,Y # . The mutual information I@X ,Y # is defined as the
difference of the sum of the entropies of the subsystems and
the entropy of the compound system,

I@X ,Y #[H@X#1H@Y #2H@X ,Y # .

If kB is replaced by 1/ln 2, then I@X ,Y # quantifies the
amount of information in X about Y in units of bits @9#. Two
obvious but noteworthy properties of I@X ,Y # are ~i!
I@X ,Y #5I@Y ,X# , so the amount of information in X about Y
is equal to the amount of information in Y about X, and ~ii!
I@X ,Y #>0, so the amount of information is always non-
negative, and it is equal to zero if and only if X and Y are
statistically independent. We choose P i j(k) to denote the
joint probability of finding the pair of nucleotides n i and n j
(n i ,n jP$A ,C ,G ,T%) spaced by a gap of k21 nucleotides,
and we define p i[( jP i j(k) and q j[( iP i j(k). Then

I~k ![ (
i , j51

4

P i j~k !log2

P i j~k !

p iq j
~1!

quantifies the degree of statistical dependence between the
nucleotides X and Y spaced by a gap of k21 nucleotides,
and we study I as a function of k for coding and noncoding
DNA of all eukaryotic organisms available in GenBank re-
lease 111 @10#.

Figure 1 shows I(k) for human coding and noncoding
DNA. We observe that for noncoding DNA I(k) decays to
zero, whereas for coding DNA I(k) oscillates between two

values, the in-frame mutual information Iin at distances k
that are multiples of 3 and the out-of-frame mutual informa-
tion Iout at all other values of k.

III. AVERAGE MUTUAL INFORMATION

The oscillatory behavior of I(k) in coding DNA is a con-
sequence of the presence of the genetic code @which maps
nonoverlapping nucleotide triplets ~codons! to amino acids#
and the nonuniformity of the codon frequency distribution.
The fact that the codon frequencies are nonuniformly distrib-
uted in almost all organisms is well known to biologists, and
arises because ~i! the frequency distribution of amino acids is
non-uniform, ~ii! the number of synonymous codons @11#
that encode one amino acid varies from 1 to 6, and ~iii! the
frequency distribution of synonymous codons is nonuniform
@12#.

A simple model that incorporates the nonuniformity of the
codon frequency distribution, but neglects any other correla-
tion, is the pseudo-exon model @13#, which concatenates
codons randomly chosen from a given probability distribu-
tion (QAAA , . . . ,QTTT), where QXYZ denotes the probability
of codon XYZ (X ,Y ,ZP$A ,C ,G ,T%). As the pseudo-exon
model has been shown to reproduce the period-3 oscillations
in genomic DNA @13#, we use the model assumption of ne-
glecting weak correlations between codons in order to ex-
press the joint probabilities P i j(k) in terms of the 12 posi-
tional nucleotide probabilities p i

(m) @14# of finding nucleotide
n i at position mP$1,2,3% in an arbitrarily chosen reading
frame @15# as follows @3,13#:

P i j~k !5

1

3
•H p i

~1 !p j
~1 !

1p i
~2 !p j

~2 !
1p i

~3 !p j
~3 ! , for k53,6,9, . . .

p i
~1 !p j

~2 !
1p i

~2 !p j
~3 !

1p i
~3 !p j

~1 ! , for k54,7,10, . . .

p i
~1 !p j

~3 !
1p i

~2 !p j
~1 !

1p i
~3 !p j

~2 ! , for k55,8,11, . . .
. ~2!

It is clear that P i j(k) is invariant under shifts of the read-
ing frame, because the expressions on the rhs of Eq. ~2! are
invariant under cyclic permutations of the upper indices
~1,2,3!. Since the second and third line on the rhs of Eq. ~2!
are identical after transposition of the lower indices (i , j), we
obtain P i j(k54,7,10, . . . )5P j i(k55,8,11, . . . ), which im-
plies that I(k) computed from P i j(k) of Eq. ~2! will assume
only two different values, Iin5I(3,6,9, . . . ) and Iout
5I(4,5,7,8,10,11, . . . ).

In order to construct a coding measure that can predict
whether a single sequence is coding or noncoding, we focus
on the presence ~absence! of the period-3 oscillation in cod-
ing ~noncoding! DNA, and neglect any other statistical pat-
tern in I(k), such as the decay of I(k) in noncoding DNA
and the decay of the envelope of I(k) in coding DNA. Based
on Eq. ~2!, we are able to express, for each single DNA
sequence, the maxima and minima of the I(k) oscillations,
Iin and Iout , in terms of p i

(m) as follows: we sample from
each sequence the 12 frequencies p i

(m) , compute P i j(k) from
p i

(m) by using Eq. ~2!, and then compute

Iin5I~3 ! and Iout5I~4 !5I~5 ! ~3!

by plugging P i j(k) and p i5q i5(p i
(1)

1p i
(2)

1p i
(3))/3 into

Eq. ~1!. For the sake of obtaining a simple coding measure
with a natural and intuitive interpretation, we compute from
Iin and Iout the average mutual information

Ī[Pin•Iin1Pout•Iout , ~4!

where Pin5
1
3 and Pout5

2
3 denote the occurrence probabili-

ties of Iin and Iout . The value of Ī quantifies the average
amount @16# of information one obtains about a nucleotide X
by learning both the identity of any other nucleotide Y in the
same DNA sequence and whether the distance k between X

and Y is a multiple of 3. We compute Ī from each single
sequence fragment @17# with the goal to distinguish coding
from noncoding DNA. Due to the presence of the genetic
code we expect that Ī will be typically greater in coding than
in noncoding DNA.
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IV. ACCURACY OF THE AVERAGE MUTUAL
INFORMATION

First, we investigate how accurately Ī can distinguish
coding from noncoding DNA. The accuracy A is defined as
follows: Denote by rc(Ī) and rn(Ī) the probability density
functions of Ī for coding and noncoding DNA ~see Fig. 2!.
Define the overlap integral O(Ī)[*M(Ī)dĪ, where M(Ī)
denotes the maximum of the two values rc(Ī) and rn(Ī) at
position Ī. In statistical terms, O(Ī) can be expressed as the
sum of Tp and Tn , O(Ī)5Tp1Tn , where Tp(Tn) denotes
the fraction of true positives ~true negatives! over all posi-
tives ~all negatives! @18#. Hence, the accuracy, defined by
A(Ī)[O(Ī)/2, ranges from from 1

2 ~no discrimination! to 1
~perfect discrimination! @19#.

We use the standard data set and benchmark test from
Ref. @5# and compare the accuracy of Ī to the accuracy of all
of the 21 coding measures evaluated in Ref. @5#. We find that
the accuracy of Ī @A(Ī)50.69, 0.76, 0.81 for human DNA
sequences of lengths N554, 108, 162 bp# is higher than
the accuracy of many of the 21 traditional coding measures
from Ref. @5#. In particular, A(Ī) is comparable to the accu-
racy of the hexamer measure H, @A(H)
50.70, 0.73, 0.74# , which is the most accurate of the 21
frame-independent @15# coding measures from Ref. @5#. This
finding is interesting, because H ~like all other 20 traditional
coding measures! is trained on species-specific data sets, and

Ī is not. If the Ī distributions turn out to be species indepen-
dent, then Ī could be used without prior training to distin-
guish coding from noncoding DNA in all species, regardless
of their taxonomic origin @20#.

V. SPECIES INDEPENDENCE OF THE AVERAGE
MUTUAL INFORMATION

Next, we investigate the species independence of rc(Ī)
and rn(Ī). Figure 2 shows the Ī distributions for coding and
noncoding DNA sequences from species of different taxo-
nomic orders, phyla, and kingdoms. We find that the Ī dis-
tributions are significantly different for coding and noncod-
ing DNA, while they are almost identical for all taxonomic
sets. In order to supplement this qualitative finding by a
quantitative analysis, we present in Table I the means and
variances of log10 Ī @21#. Table I shows that the means are
significantly different for coding and noncoding DNA, and
that the means and variances are almost the same for all
species. This finding is in agreement with the visual finding
based on Fig. 2 that the Ī distributions are species indepen-
dent and significantly different in coding and noncoding
DNA.

VI. UNDERSTANDING THE SPECIES INDEPENDENCE
FOR NONCODING DNA

In search for a possible origin of the observed species
independence, we attempt to develop simple models that are
able to reproduce the Ī distributions for coding and noncod-
ing DNA.

We first present a model that reproduces the Ī distribu-
tions for noncoding DNA. For a random, uncorrelated se-
quence of arbitrary composition (p1 ,p2,p3,p4), we can de-
rive the asymptotic form of the probability density function
r(Ī) as follows: Taylor-expand I(k) about P i j(k)2p ip j ,
i.e., express I(k) by the power series ( i , j( l 50

` a i j l @P i j(k)
2p ip j#

l , and truncate the Taylor series after the quadratic
term (l 52). The constant term (l 50) vanishes because
I(k)50 at P i j(k)5p ip j , and the linear terms (l 51) van-
ish because I(k) achieves its minimum at P i j(k)5p ip j ,
which causes the first derivatives of I(k) to vanish at
P i j(k)5p ip j . Hence, the first nonvanishing terms in the

FIG. 2. Ī distributions of coding DNA ~thin lines! and noncod-
ing DNA ~thick lines! from all eukaryotic DNA sequences in Gen-
Bank release 111 ~Ref. @10#!. We cut all DNA sequences into non-
overlapping fragments of length 54 bp ~Ref. @17#!, starting at the

58-end. We compute Ī of each DNA fragment and show the Ī

histograms for coding and noncoding DNA, for each of the 4 dis-
joint taxonomic sets ~primates, nonprimate vertebrates, inverte-
brates, plants! separately. We find that ~i! for all taxonomic sets

rn(Ī) is centered at significantly smaller values than rc(Ī), while

~ii! rc(Ī) and rn(Ī) of different taxonomic sets are almost identi-

cal. The close similarity of the Ī distributions for different taxo-
nomic orders, phyla, and kingdoms illustrates the species indepen-

dence of rc(Ī) and rn(Ī).

TABLE I. Means ~variances! of log10Ī for coding and noncod-

ing DNA of 6 taxonomic sets. While the means of log10Ī are sig-
nificantly different in coding and noncoding DNA, they are almost

the same for all taxonomic sets. Also the variances of log 10Ī are
almost the same for all taxonomic sets, supplementing the visual

finding from Fig. 2 that the Ī-distributions are nearly species inde-
pendent.

Noncoding Coding

Primates 22.52 ~0.31! 22.04 ~0.30!

Nonprimate vertebrates 22.54 ~0.39! 22.06 ~0.30!

Vertebrates 22.53 ~0.34! 22.05 ~0.30!

Invertebrates 22.50 ~0.33! 22.04 ~0.32!

Animals 22.52 ~0.34! 22.05 ~0.31!

Plants 22.48 ~0.31! 22.09 ~0.31!
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Taylor-series expansion are the quadratic terms (l 52), and
we obtain

I~k !}
1

ln 2 (
i , j

@P i j~k !2p ip j#
2

2p ip j
, ~5!

where the symbol } indicates that we neglect terms of
O@(P i j2p ip j)

3# . Substituting P i j(k) ~for k53,4,5! by the
expressions on the rhs of Eq. ~2! and expressing Ī[@I(3)
1I(4)1I(5)#/3 in terms of p i

(m) yields

Ī}
1

ln 2 F(
i ,m

~p i
~m !

2p i!
2

2p i
G

2

. ~6!

For a random, uncorrelated sequence the probability density
function of N( i ,m(p i

(m)
2p i)

2/p i converges, for asymptoti-
cally large sequence length N, to a x2 distribution with 6
degrees of freedom @22#. Hence, we obtain that r(Ī) con-
verges, for asymptotically large N, to

r~ Ī!5

~NAln 2 !3

4
•
AĪ•e2NAln 2AĪ. ~7!

Figure 3~a! shows r(Ī) from Eq. ~7! and the Ī histograms
for human noncoding DNA for N554, 108, and 162 bp. We
find that ~i! the Ī distributions for noncoding DNA collapse
after rescaling with a factor of N2, and that ~ii! the
Ī-distributions can be approximated by Eq. ~7!. The agree-
ment of the theoretical with the experimental Ī-distributions
states that the species independence of the Ī distributions for
noncoding DNA may be attributed to the absence of the
genetic code in noncoding DNA of all living species.

VII. UNDERSTANDING THE SPECIES INDEPENDENCE
FOR CODING DNA

We now test if the species independence of the Ī distri-
butions for coding DNA may be reproduced by a simple
model that incorporates the presence of a reading frame. We
generate a random, uncorrelated sequence where the prob-
ability of obtaining nucleotide n i at position m is given by
p i

(m) averaged over the entire set of DNA sequences for

which the model is constructed@23#. Figure 3~b! shows the Ī

histograms for the model sequences and for human coding
DNA sequences of length N554 bp. We find that the Ī dis-
tribution of the model sequences is significantly different
from the Ī distribution of human coding DNA sequences.
We perform the same analyses for different organisms, rang-
ing from simple bacteria to complex vertebrates, as well as
for different N, and we find that in all cases the modeled Ī

distributions cannot reproduce the Ī distributions of experi-
mental, coding DNA. This result shows that the presence of
a reading frame in coding DNA is not sufficient to reproduce
the Ī distributions of experimental, coding DNA, and thus
cannot explain the observed species independence for coding
DNA. This finding leads us to the conclusion that there must
exist additional correlations or inhomogeneities @24# in cod-
ing DNA, which are responsible for the observed species-
independence of the Ī distributions.

VIII. CONCLUSIONS

We reported the finding of a species-independent statisti-
cal quantity, the average mutual information Ī, whose prob-
ability distribution function is significantly different in cod-
ing and noncoding DNA. We showed that Ī can distinguish
coding from noncoding DNA as accurately as traditional
coding measures, which all require prior training on species-
specific DNA data sets. The capability of Ī to distinguish
coding from noncoding DNA without prior training and ir-
respective of its phylogenetic origin suggests that Ī might be
useful to identify coding regions in genomes for which train-
ing sets do not exist. In an attempt to understand the origin of

FIG. 3. Rescaled Ī distributions of model and experimental,
coding and noncoding DNA ~Ref. @10#!. Fig. 3~a! shows the histo-

grams of log10 N2
Ī for human noncoding DNA for N554 bp ~s!,

108 bp ~h!, and 162 bp ~L!, and the corresponding x2 probability
density function with 6 degrees of freedom ~thick line!. In addition

to the observation ~Fig. 2! that the Ī distributions are almost iden-

tical for different species, we find that ~i! the rescaled Ī distribu-
tions collapse for all taxonomic sets and for all N, and that ~ii! they
agree with the x2 probability density function. Hence, the species

independence of the Ī distributions for noncoding DNA may be
explained by the absence of a reading frame in noncoding DNA of

all species. Figure 3~b! shows the histograms of log10 N2
Ī for hu-

man coding DNA sequences of length N554 bp ~s!, the probabil-
ity density function for model sequences ~thick line!, and the central
x2 probability density function ~thin dotted line!. We find that ~i!

the modeled Ī distribution ~thick line! is indeed shifted to higher Ī

values than the Ī distribution of noncoding DNA ~thin dotted line!,

but that ~ii! the Ī distribution of the model sequences ~thick line! is

significantly different from the Ī distribution of human coding
DNA ~s!. The significant difference between the modeled and the

experimental Ī distribution states that the presence of a reading

frame is not sufficient to explain the species independence of the Ī

distributions of coding DNA ~Fig. 2!.
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the observed species independence of Ī, we found that the
species independence of rn(Ī) may result from the absence
of a reading frame in noncoding DNA. We derived analyti-
cally the Ī distribution for an ensemble of random, uncorre-
lated sequences of arbitrary composition, and we showed
that this distribution is consistent with the observed Ī distri-
bution of noncoding DNA for all species and all sequence
lengths N. For coding DNA, we could show that the presence
of a reading frame in coding DNA sequences is not sufficient
to reproduce the observed Ī distributions of coding DNA.
This finding makes it tempting to conjecture that additional

correlations or inhomogeneities are a vital and species-
independent ingredient of coding DNA sequences of any liv-
ing organism.
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@22# The mathematical proof can be found in: H. Cramer, Math-

ematical Methods of Statistics ~Princeton University Press,
Princeton, 1946!. An intuitive heuristic argument of why the
number of degrees of freedom is equal to 6 is that there are
41321 independent linear constraints that the 433512
numbers p i

(m)
2p i must satisfy. Hence, the number of degrees

of freedom is 4332(41321)56.
@23# For the probabilities p i

(m) we choose the total number of nucle-
otides n i in position m of the biological reading frame divided
by the total number of nucleotides from exactly the same set of
coding human sequences to which the model sequences are
compared.

@24# By correlations or inhomogeneities we mean that the probabil-
ity distributions p i

(m) are not constant, but vary along the DNA
sequence from gene to gene and also within a gene. These
variations of the probability distributions p i

(m) seem to be a
typical feature of coding DNA of any living organism.
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