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Abstract - We review recent developments in the study of  the diffusion reaction system of 
the type A + B  --~ C in which the reactants are initially separated. We consider the case where 
the A and/3 particles are initially placed uniformly in Euclidean space at x > 0 and x < 
0 respectively. We find that whereas for d > 2 a single scaling exponent characterizes the 
width of  the reaction zone, a multiscaling approach is needed to describe the one-dimensional 
system. We also present analytical and numerical results for the reaction rate on fractals and 
percolation systems. 

1 Introduction 

The dynamics of  diffusion controlled reactions of  the type A + B ---, C has been studied extensively since 
the pioneering work of  Smoluchowski [1,2]. Most studies have focused on homogeneous systems, i.e., when 
both reactants are initially uniformly mixed in a d-dimensional space, and interesting theoretical and numerical 
results have been obtained. When the concentrations of  the A and B reactants are initially equal, i.e., cA(O) = 
cB(0) = c(0), the concentration of both species is found to decay with time as, c(t) ,,~ t -d/4 for Euclidean 
d _< 4-dimensional systems [3-10] and as c(t) ,,~ t -d`/4 for fractals [5,6] with fracton dimension d8 < 2. Also, 
self-segregated regions of A and B in low dimensions (d < 3) [4] and in fractals [9] have been found. Quantities 
such as the distributions of domain sizes of segregated regions and interparticle distances between species of  
the same type and different types have been calculated [11-13]. These systems were also studied theoretically 
and numerically under steady state conditions and several predictions have been obtained [ 14-17]. However, the 
above numerical and theoretical predictions have not been observed in experiments, in part because of difficulties 
to implement the initially uniformly-mixed distributions of  reactants. 

In recent years it was realized that diffusion reaction systems in which the reactants are initially separated [ 18], 
can be studied experimentally [19,20] and that the dynamics of such a system have several surprising features 
[20--27]. These systems are charadtedzed by the presence of  a dynamical interface or a front that separates the 
reactants. Such a reaction front appears in many biological, chemical and physical processes [28-34]. 

G~dfi and R~tcz [18] studied diffusion-controlled reactions with initially separated reactants. They studied the 
kinetics of the reaction diffusion process by a set of  mean-field (MF) type equations, 

OCA ~ 02CA 
- ~  - -  LIA--~-~X 2 --  kCACB 
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OC o 02CB 
---- DB-g'--4-,, --  kCACB,  (1) 

Ot GX" 

where CA =-- CA(X, t) and CB =-- CB(X, t) are the concentrations of A and B particles at position x at time t respec- 
tively, DA, B are the diffusion constants and k is the reaction constant. The rate of  production of the C-particles 
at site x and time t, which we call the reaction-front profile, is given by R(x,  t) - kCACB. The initial conditions 
are that the A species are uniformly distributed on the right-hand side of  x = 0 and the B species are uniformly 
distributed on the left-hand side. 

Using scaling arguments Gb.lfi and Rhcz [18] find that the width w of  the reaction front R(x,  t) scales with time 
as, w ,-~ t '~ with a = 1/6 and the reaction rate at the center of the front, which is called the reaction height, scales 
as h ,~ t -~ with/3 = 2/3. 

Experiments [19] and simulations [19,21-24] for d > 2 systems in which both reactants diffuse, support the 
above predicted values for c~ and/3. Indeed, CorneU et al [23] argue that the upper critical dimension is d = 2 and 
the MF approach should therefore be valid for d > 2. However, numerical simulations of  1D systems show that 
the width exponent appears to be a -~ 0.3 and the height exponent/3 ~ 0.8 [23,24]. Recently [25] it was argued 
that a varies between 1/4 and 3/8, depending on the moment at which the width is calculated. For a more detailed 
discussion, see Sec. III. The origin of  the difference between the exponents of  1D systems and those of  higher 
dimensional systems is due to fluctuations in the location of  the front which are important in low dimensions and 
are neglected in the MF approach. 

Taitelbaum et al [20,22] studied analytically Eqs. (1) and presented experiments for the limit of  small reaction 
constant or short time. The main results are that several measurable quantities undergo interesting cressovers. 
For example, the global reaction rate changes from t 1/2 in the short time limit to t -1/2 at the assymptotic time 
regime. The center of the front can change its direction of motion as found in experiments [20]. Ben-Naim and 
Redner [26] studied the solution of  (1) under steady-state conditions. Generalization of  Eqs. (1), by including 
persistence effects, were studied by Vilensky et al. [35]. 

2 The Form of the Reaction Front,  R(x,  t), in the Mean-Field Approach 

In a recent work, Larralde et al. [27] considered the symmetric case in which both diffusion constants and concen- 
trations are equal, i.e., DA = DB =- D and CA(Z, 0) = eB(X, 0) = Co. If we define F(x ,  t) -- ca(x, t) - cB(x,t), 
then from Eq. (1) follows, 

8F 02F 
- D-z-z~, (2) 

Ot GX ~ 

subject to the conditions that initially the A particles are uniformly distributed to the right of  the origin while the B 
particles are uniformly distributed to the left of the origin. Equation (2) has the solution F(x ,  t) = Co e r f ( x / ~ ) .  

We rewrite the concentrations of  A and B particles as (see Fig. 1), 

C A ( X , t ) = G l ( x , t ) + S c l ( x , t ) ,  c u ( x , t ) = G 2 ( x , t ) + S c 2 ( x , t ) ,  (3) 

where 

= { o > ol 
[x < 01, (4) 
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Fig. 1. Schematic picture of the reactant concentration profiles near the origin. The solid lines represent the G1,2(x, t) part 
of the profile, the dashed fines represent the complete form G1,2(x, t) =t= 6c(x, t). Note that the profile of species A is given 
solely by 6c(x, t) on the left of the origin. (From Ref. [27].) 

and G2(x, t) = G l ( -X ,  t). It is easy to see that under the above conditions, 6Cl(X, t) = 6c2(x, t) =- 6c(x, t). 
Substituting Eqs. (3) into Eqs. (1) yields 

Ot Ox 2 + 6c 5c. (5) 

The asymptotic solution for this equation that vanishes as x ---* c~ is, 

- [ 'C($, t )  N t - 1 / 3 ( ~ - ~ / 6 ) 1 ' 4 e x p - - ~  t~-'iT'~] J ' t x16 << x << (4Dt) 1/2, (6) 

where A = (ka/D) 1/3, a ---- co/(rD) 1/2. As may be confirmed by direct substitution, this expression is a solution 
0fEq. (5) up to terms of order (6c)/t, which can be neglected for large t. 

Using Eq. (6) we can write an expression for the reaction-front profile R(x,  t) defined in (1) as, 

-- t-iT(6c ) ,~ ~t--i~ ) exp 2 ~ t116] J"  (7) 

It is seen that the width of  the reaction front grows as t x/6, whereas the height can be identified with the prefactor 
t -2/3 in Eq. (7), consistent with the exponents found by G~fi and R~tcz [18]. Equation (7) provides a more quan- 
titative solution of  Eqs. (1) than the previous scaling arguments [ 18], as well as information on the dependence 
of the form of the reaction front on the parameters co, k, and D, for the symmetric case. 

For the case in which one reactant is static no analytical solution (of Eq. 1) exists for the form of  the reac- 
tion front. However, numerical solutions of Eq. (1) with DB = 0 shown in Fig. 2, suggest that R(x,  t) 
t-ng(x/t  ~) exp( - i z i / t~) .  The excellent scaling in Fig. 2b suggests that the width does not increase with time, 
i.e., w ,,~ t ~ with a = 0 and h ,-~ t -n with ~ = 1/2. 

3 The Front, R(x,t), in d = 1 

The spatial distribution of the C particles in d = 1 systems, R(x,  t), when both reactants are diffusing with the 
same diffusion constant, DA = DB ~ 0, has been calculated numerically [24]. The data shown in Fig. 3, in a 
scaling form, suggest that 
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t 

c~(x ,  t) =_-/R(x, t')dt' ~ exp(-a]xl/ta), 
o 

(8) 

with 6 = 0.37 4- 0.05. In a recent work [25] it was found that the reaction front in one dimension is characterized 
by multiple characteristic length scales. Let re(t) be the midpoint between the rightmost A particle (RMA) and 
the leftmost B particle (LMB). It is found that ~(t) _= (mq(t)) 1/q ,,~ t ~ with 3 ~ 3 /8  independent on q. Another 
length scale that characterizes the reaction front is the distance tAB(t) between the RMA and LMB. At time t, a 
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Fig. 2. Numerical solution of Eq. (1) for the case DB = 0, DA # 0: (a) plot of c(x, t) as a function of x for t = 500, 1000 
and 5000; (b) the good scaling plot ofc(x  , t) as a function of (x - (x)) indicates that a = 0 and/~ = 1/2. 
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reaction will occur at position m(t ) if and only if ~AB ( t )  = 0. It is found that (~qaB (t))I/q scales as t" with (r ~ 1/4 
for all q. This result is similar to that found by Weiss at al. [36] for the analogous quantity in the one-dimensional 
trapping problem. 

Next, Araujo et al. studied the spatial moments of  the reaction front [25], 

o o  

f xqR(x, t)dx 
1"2 d f xqcc(z ' t)dx -- t qaq. (Ixlq> ~ 0o0 

f R(x, t)dx o 
o 

(9) 

While both the distributions of  re(t) and IAB (t) seem to be describable in terms a of single can scale, the moments 
of the reaction front do not follow a simple scaling relation. Indeed, the small moments, q --~ 0, approach the 
value a0 = 1/4, whereas the high moments approach the value c~o0 --- 3/8 (see Fig. 4). Note that the value c~ of 
the second moment coincides with the value ( "  0.3) obtained in previous numerical studies [23,24]. 

To explain the behavior of  c%, we studied numerically the form of  R ( z ,  t ) .  O u r  data suggest that 
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Fig. 3. Plot of cc(x,t) defined in Eq.  (8) for  d = 1 system with system size L = 10 000 and t = 1000, 
5000  and  10 000. 
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Fig. 4. Plot of c~q as a function of q obtained from extrapolation to infinite times for values of q ranging from 114 to 10. 
The solid line represents the theoretical prediction of Eq. (11). Inset shows successive values of the exponents aq which 
characterize the moments (x q) 1/q of the reaction as a function of 1/t for q = 1/2(+),  2(x),  8(0). 

R(x, t) ,~ u_2e_lullt,18 ' 
/~(x, t) =-- f ~  R(x,  t)dx (10) 

where u = x / t  114. Substituting this expression into Eq. (9) yields 

1/4 q < 1 
aq = ( 3 / 8 ) -  (1/8q) q > 1 

(11) 

where for q = 1 

(Izl) ~ t 114 In t. (12) 

Our results for q > i are in good agreement with these theoretical predictions (see Fig. 4). However for q < 1 
our results are slightly larger than 1/4, which is probably due to difficulties in reaching the assymptotic limit [37]. 

For the case DA # 0, DB = 0, analytical and numerical studies [38] yield for the reaction front 

,it~(X, t ) ]1 (2")"2 / 1/2 [ (X -- ~"/tli2)2] [ X -- "~t1'21 
= ~ \ # T r /  exp - 7ttt-i~ -j 1 + 27tVz J ' (13) 



Anomalous kinetics in A + B --, C 163 

where 7 and/~ are constants. From Eq. (13) follows that a = 1/4 and ~ = 3/4. It is interesting to note that the 
time integral of R(x, t), which is the total production of the C particles at x up to time t is given by, 

t 

cc(x,t)= f R(x,r)dT 1 (z_-Ttl/2 I = ~erfc (14) 

Larralde et al. [38] performed analogous calculations of (mq(t)) 1/q, for (~1AB)I/q , for the case where one of the 
reactants is static. Numerically and theoretically, results show that in this case the two exponents coincide: 6 = 
a = 1/4. 

To summarize, we find four sets of exponents shown in Table 1. 

Table 1 

] d = t IMF (d > 2) 1 
both moving] 1/4 < aq < 3/8 a = 1/6 

5 = 3 / 8 ,  a = 1 / 4  / 3 = 2 / 3  

[one static] a = 1/4 a = 0 
= 3/4 ~ = 1/2 

5 = a = 1/4 

4 The Reaction Rate in d = 2 Percolation 

The case of A + B --, C with initially-separated reactants on fractal systems was studied on the d = 2 infinite 
percolation cluster at criticality [22]. For an illustration of the percolation system see Fig. 5. It is expected that 
the total number of reactants up to time t, 

f co(x, t)dx, 
- - O O  

scales as the mean displacement of a random walker on a fractal, i.e., (r 2) t/2 ,,~ tlldw, where d~ is the anomalous 

diffusion exponent [39,40]. From this follows that the reaction rate 

R(t) =-- f R(x,t)dx ~ t -7, 7 = 1 - 1/d~. (15) 
- o o  

One has to distinguish between reaction-diffusion on the infinite cluster and in the percolation system, containing 
also finite clusters [39]. The reaction rate on the infinite cluster system is smaller and decreases more slowly than 
that of the system containing clusters of all sizes. This can be understood as follows. At any finite time we can 
divide all clusters into two groups according to their sizes: active clusters---chisters of masss  > s*, in which at 
time t < t* ,,~ s *aw/al particles are not aware of the finiteness of their cluster (this group contains the infinite 
cluster)--and inactive clusters of mass s < s* on which at least one of the reactants has been vanished and the 
reaction rate has became zero. According to this picture, in the full percolation system at any time there are active 
clusters of finite size that can contribute to the reaction rate. Therefore, the rate of reaction in the percolation 
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system is always higher, than on the infinite cluster. Also, at any time there are some finite clusters that become 
inactive causing additional (comparing with the infinite cluster network) decrease of  the rate of reaction in the 
percolation system. Since the system is self-similar one expects a change in the reaction rate exponent. 

To quantify the above considerations we can look on each cluster of  mass s and linear size r ,,~ sl /ds as a reservoir 
of particles divided by the  f ron t  line into two regimes: A and B. We introduce an active f ron t  of a cluster as the 
sites belonging both to the cluster and to the front line. The length ~, of  the active f ron t  of a single cluster of  size 
s is expected to be 

I s  "~ r d / - 1  "~ 8 ( d s - 1 ) / d l .  (16) 

Next we assume that the rate of reaction on a cluster of  mass s per unit length of active front is 

{ t  -'y t < t* 
Ro(t),,~ 0 t > t* ' (17) 

where t* = 8 d ~ / d l  . Therefore, the total contribution of  active clusters of  size s to the reaction rate is 

R ,  ( t ) ,,, qo , s ~daTA1~ t -~  , (18) 

where ~Ps is number of  clusters of  size s that intersect the front line. One can estimate ~o, as follows. In a percola- 
tion system of  size L x L there are n,  clusters of  mass s. Only a small part of  them intersects the front line, those 

, l / a I  
in a strip of width w ,,, s 1~at around the front line. Their fraction is w / L .  Therefore, ~o, ,,~ - - w - n ,  ~ sl/dCns. 
Substituting this in (18) we get 

df-i 
R s ( t )  ",  s l / e f n , s  dl t -~  = t - ~ s n s .  

Thus, the reaction rate in the percolation system is 

R ( t )  = ~ R s ( t )  = t -V(s*)  2-" = t - v t  -e  = t -•', 
8~S* 

where 

(19) 

, 4 .  
6 = -~' - -y = ~ ( ~ -  - 2 ) .  ( 2 0 )  

These results are in agreement with our 2d simulations, shown in Fig. 6. 

We also study the finite size effects on the reaction-diffusion system. For a percolation system of  size L x L we 
expect that for the infinite cluster, 

R ( t )  = Ld1-1 t  -~,  (21) 

while for the percolation system 

R ( t )  = L t  - ¥ .  (22) 
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Fig. 6. (a) Plot of the rate cc(t)  for the percolation system (o) and for the infinite percolation claster ( o ). Co) Plot of suc- 
cessive slopes of the data in (a). The exponent 7 of reaction rate on the infinite elaster (+) and on the percolation system 
(o). 

We expect that at t ime t* L d~ the " ' . . . . . .  se two  rates become equal, since no small  active cluster exists m the system 
above t*. Indeed, equating the last two  expressions, Eqs. (21) and (22), w e  rederive Eq. (20). The prefactor L in 
(22) assures that the reaction rate for percolation system is larger for t < t* than the reaction rate on the infinite 
cluster. Indeed, the ratio o f  the reaction rates at t = 1 is o f  the order L2-as. 

We wish to thank E Leyvraz,  S. Redner, H. Taitelbaum and G. H. Weiss for useful  discussions.  
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