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Abstract. We introduce a method of obtaining information about percolation clusters in 
which the clusters are ‘burned’ in different ways. This method yields the backbone and 
the elastic backbone, their number of loops, shortest path and other quantities. It works 
in any dimension and can be applied also to other clusters. We obtain accurate estimates 
for the backbone exponents in two and three dimensions. 

Suppose we choose two points PI and P2 separated by a distance comparable to the 
correlation length 6. If we pass a current from P, to P2 then the set of current carrying 
bonds is called the backbone and the remaining bonds are called dangling ends. One 
can also define the backbone as the intersection of all the self-avoiding walks between 
PI and P2 (Shlifer ef a1 1979, Hong and Stanley 1983a, b). 

The investigation of the backbone of clusters-especially in the case of percolation 
clusters-has been of interest for a long time. Possible applications are the conductivity 
of random systems (Skal and Shklovski 1975, de Gennes 1976, Daoud 1983) and the 
flow of fluids in porous media (Stanley and Coniglio 1984). From the theoretical point 
of view, the backbone has provided an understanding of the general structure of 
percolation structures within the framework of links, nodes and blobs (Coniglio 1981, 
1982, Pike and Stanley 1981, Stanley 1977, Hong and Stanley 1983a, Stanley and 
Coniglio 1984). The exflonents of the backbone such as the exponent PB: 

P : ( P ) - ( P - P c ) p B >  (1) 
where p ! ( p )  is the mean density of sites of the backbone of the fractal dimension 
DB = d - PB/ v, have been calculated numerically by different methods: large-cell 
renormalisation (Shlifer et a! 1979), Monte Carlo (Kirkpatrick 1978, Pike and Stanley 
1981), &-expansion (Harris 1983, Harris and Lubensky 1983), position-space renor- 
malisation group (Hong and Stanley 1983b), and series expansions (Hong and Stanley 
1983a). The error bars are quite big, however, and it is important to find effective 
algorithms for obtaining backbones in order to improve the error estimates for these 
exponents. The availability of backbones is also important in testing the argument of 
Stanley and Coniglio (1984) stating the non-validity for backbones of the conjecture 
of Alexander and Orbach (1982). (See Hong et a! (1984) for the case of ants on 
backbones.) 
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We now introduce a new fractal object, which we call the elastic backbone. It has 
been proposed that the elasticity of disordered structures-a gel at the sol-gel transition 
point, for instance-can be described by the electrical conductivity (de Gennes 1976) 
and thus related to the normal backbone. However, elasticity can be described by 
small springs in the bonds of a cluster. It is difficult to imagine that more than just 
the shortest paths connecting the two points at which a force is applied should contribute 
to this elasticity. This can be seen by considering figure 1, where a piece of the backbone 
is shown before and after the elongation due to the force F. We thus introduce as a 
new object the ‘elastic backbone’ of a cluster as being the sites that lie on the union of 
all the shortest paths between two points P1 and P2 on the cluster. If the distance 
between P1 and P2 goes to infinity, we expect that the densities p: of sites or p: of 
loops or p: of cutting sites of the elastic backbone should become independent of P1 
and P2. The question of critical behaviour of p z ,  p: and p: will be studied id this paper. 

lo 1 l b )  

Figure 1. Supposing that the angles of the object of springs shown in (a)  can change freely, 
we show in (b) the elongation of the object due to the application of the force F at A and 
B. 

To construct the elastic backbone (and also the full backbone), we propose a new 
method which we call ‘burning’. We first select two endpoints P1 and P2, which we 
choose to be as close as possible to diagonally opposite corners of a surrounding 
hypercube. The first step is to burn the cluster from PI:  at time t l  site P1 burns and 
gets the value 1; at the next time unit t2,  all the neighbours of PI burn and get the 
value 2; at time t i + ] ,  all the neighbours of sites burning at time ti that have not yet 
burned are burned and get the value i + l .  This procedure was first presented by 
Stauffer (1984) as a means of describing forest fires (of fractal shape). The first burning 
of the cluster imposes an ordering to the sites of the cluster. One obtains the burning 
time Tp, which is the number of time units needed to burn all the sites, the length of 
the shortest path 1, (Middlemiss et a1 19801, which is the number of time units needed 
to burn P2, and the number of loops Lp of the cluster, which is the number of times 
that one tries to burn a site Pi that is already burned in the same time unit. The 
ordering of the cluster obtained in this first burning will be used in the next steps and 
is thus kept in mind. The second step is a burning starting at P2 and with the additional 
condition that only those sites can be burned at time t i+l which, in the ordering of the 
previous step, have a smaller value than those burned at time ti. Due to this condition, 
only sites on the elastic backbone are now burned. Simultaneously one obtains the 
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number of sites SE, of loops LE, and of cutting sites CE of the elastic backbone; CE 
is the number of time steps that only one site is burning. Also the maximal number 
ME of sites that burn simultaneously can be obtained, and it is in some sense a measure 
of the broadness of the elastic backbone. Finally, the backbone is obtained by growing 
it from the elastic backbone. So before starting the third step the ‘growing’ backbone 
is equal to the elastic backbone. In the third step one burns from the sites P i ,  which 
were the sites at which loops were closed in the first burning. In this third burning 
again a site can only be burned at if its value (in the ordering from the first burning) 
is smaller than the value of the sites burned at ti but additionally the growing backbone 
cannot burn. Now the question is asked if starting at a given P i  the elastic backbone 
is reached at only one site or at several sites. In the case of several sites all the sites 
that have been burned from Pi are added to the growing backbone. This is done over 
and over again until no more parts can be attached to the growing backbone by burning 
from the P i .  Then the backbone is complete. One can finally obtain the number of 
sites SB or loops LB of the backbone, for instance, by burning the backbone in the 
same way as in the first step. We note that the backbone constructed in this way 
depends on PI and P2 in the same fashion as described above for the elastic backbone 
and also for the backbone the distance between PI and P2 should ideally go to infinity. 

We applied the above method to the largest (or incipient infinite) cluster of site 
percolation at pc on a square lattice and a simple cubic lattice in finite boxes of edge 
length L. The endpoints PI and P2 were determined to be as close as possible to 
diagonally opposing corners, but if their Euclidean distance was smaller than a number 
a the cluster was not considered and a new percolation configuration was chosen. This 
procedure prevents, due to statistical fluctuations, too small or deformed clusters being 
taken as prototypes for a spanning or ‘infinite’ clusters in a finite box. The parameter 
a can be changed and the results should not depend on a in the limit of large L. If 
a is too close to the length of the diagonal of the box, however, too many rejections 
of clusters will slow down the algorithm. The number of realisations (different samples 
taken) varies in two dimensions from 450 000 for L = 10 to 100 for L = 500 and in 
three dimensions from 500 for L = 6 to 100 for L = 40. 

In two dimensions we use pc = 0.592 77 (Gebele 1983). Our results are shown in 
figure 2. We also tested for a dependence; within error bars the results are the same 
for all values of a. We find very straight lines for the sites of the backbone and the 
slope gives, because of finite size scaling and 

SB(p,-) = Ldp!(pc)  - Ld-BB’Y = LDB, (2) 
the fractal dimension of the backbone DB= 1.60*0.05. Note that the question of 
whether v B = $ =  v (percolation) does not arise in equation (2). The points for the 
sites of the elastic backbone, of the shortest path and the cutting sites of the elastic 
backbone also lie on straight lines although with larger statistical deviations. They all 
have more or less the same slope of about 1.1. In the large L limit it cannot be 
excluded that the slope(s) might go to unity, as may occur for the shortest path, but 
without extrapolating possible curvatures hidden in the error bars our data yield 
DE= l.lO*O.O5 for the fractal dimension of the elastic backbone. 

In three dimensions we work at pc=0.3117 (Heermann and Stauffer 1981). Our 
results are shown in figure 3 for a = L. The statistical errors are indicated for L = 10, 
where two independent runs are shown. All quantities seem to be critical as they show 
straight lines over a wide range with a slope different from one (compare with the 
broken line) and a curvature that would give a slope one for large values of L seems 



U64 Letter to the Editor 

L 

Figure 2. Log-log plot showing dependence on L of the number of sites in the backbone 
S,(x), the elastic backbone &(A), the shortest path I&V) and red bonds in the elastic 
backbone S,,,(O) for pc = 0.59277. 
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Figure 3. Log-log plot of the number of sites in the backbone S,(X), the number of sites 
in the elastic backbone S,(A), and the number of sites on one shortest path I,(V) against 
the system length L for three dimensions at pc=0.3117. The broken line has slope 1. 

extremely unlikely. The fractal dimension of the backbone is estimated to be DB= 
1.77*0.07 and the fractal dimension of the elastic backbone is, as in the two- 
dimensional case, equal to the fractal dimension of the shortest path and has a value 
of DE = 1.35*0.05. In figure 4 we show the number of loops of the largest cluster, 
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Figure 4. Log-log plot of the number of loops of the largest cluster L,(U) backbone 
L,(X) and elastic backbone L,(O) against the system length in three dimensions at 
pc = 0.31 17. 

the backbone and the elastic backbone. Within their statistical error bars, the three 
slopes agree with the corresponding fractal dimensions. This shows that for all the 
three objects the site and bond problems yield the same fractal dimension because of 
Euler’s relation. 

The values that we find for the fractal dimension of the backbone of percolation, 
in two dimensions: 1.60 and in three dimensions 1.77, are in fair agreement with the 
results of series expansion (1.80* 0.05 in d = 2,1.83 *0.08 in d = 3, Hong and Stanley 
1983a), Monte Carlo simulation (1.55-1.62 in 2~ and 1.8-2.1 in 3 ~ ,  Kirkpatrick 1978; 
1.72 in 2 ~ ,  Li and Strieder 1982), and PSRG (1.55 for d = 2, Hong and Stanley 1983b) 
and large-cell renormalisation (- 1.62 in 2 ~ ) .  

In summary, we have introduced a new critical object in percolation: the elastic 
backbone which, at least in three dimensions, has a non-trivial fractal dimension of 
about 1.35. It seems to be equivalent to the shortest path in the cluster. However, 
the elastic backbone does not explain the experimental discrepancy by nearly a factor 
of two between the conductivity and elasticity exponents (Adam et al 1981) because 
in addition to the effect shown in figure 1 a real gel will also have retrieving forces in 
the angles and volumes enclosing nearly incompressible fluids so that any deformation 
will contribute to the elasticity. We proposed a fast algorithm which obtains for any 
cluster not only the elastic backbone but also the usual backbone. The fractal dimension 
that we get for the usual backbone agrees with numerical work of other authors. 

We thank E Guyon for useful discussions. 
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Note added in proof. In two dimensions our result agrees well with recent calculations by Puech and Rammal 
(1983). 
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