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Abstract. Our dependence on networks – be they infrastructure,
economic, social or others – leaves us prone to crises caused by the
vulnerabilities of these networks. There is a great need to develop
new methods to protect infrastructure networks and prevent cascade
of failures (especially in cases of coupled networks). Terrorist attacks
on transportation networks have traumatized modern societies. With
a single blast, it has become possible to paralyze airline traffic, elec-
tric power supply, ground transportation or Internet communication.
How, and at which cost can one restructure the network such that
it will become more robust against malicious attacks? The gradual in-
crease in attacks on the networks society depends on – Internet, mobile
phone, transportation, air travel, banking, etc. – emphasize the need to
develop new strategies to protect and defend these crucial networks of
communication and infrastructure networks. One example is the threat
of liquid explosives a few years ago, which completely shut down air
travel for days, and has created extreme changes in regulations. Such
threats and dangers warrant the need for new tools and strategies to de-
fend critical infrastructure. In this paper we review recent advances in
the theoretical understanding of the vulnerabilities of interdependent
networks with and without spatial embedding, attack strategies and
their affect on such networks of networks as well as recently developed
strategies to optimize and repair failures caused by such attacks.
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1 Introduction

The interdisciplinary field of network science has attracted great attention in recent
years [1–27]. This has taken place because an enormous amount of data regarding
social, economic, engineering, and biological systems has become available over the
past two decades as a result of the information and communication revolution brought
about by the rapid increase in computing power. The investigation and growing under-
standing of this extraordinary amount of data will enable us to make the infrastruc-
tures we use in everyday life more efficient and more robust. The original model of
networks, random graph theory, developed in the 1960s by Erdős and Rényi (ER),
is based on the assumption that every pair of nodes is randomly connected with the
same probability (leading to a Poisson degree distribution). In parallel, lattice net-
works in which each node has the same number of links have been used in physics to
model physical systems. While graph theory was a well-established tool in the math-
ematics and computer science literature, it could not adequately describe modern,
real-world networks. Indeed, the pioneering observation by Barabási in 1999 [2], that
many real networks do not follow the ER model but that organizational principles
naturally arise in most systems, led to an overwhelming accumulation of supporting
data, new models, and novel computational and analytical results, and led to the
emergence of network science.
Significant advances in understanding the structure and function of networks, and

mathematical models of networks have been achieved in recent years. These are now
widely used to describe a broad range of complex systems, from techno-social systems
to interactions amongst proteins. A large number of new measures and methods
have been developed to characterize network properties, including measures of node
clustering, network modularity, correlation between degrees of neighboring nodes,
measures of node importance, and methods for the identification and extraction of
community structures. These measures demonstrated that many real networks, and in
particular biological networks, contain network motifs – small specific subnetworks–
that occur repeatedly and provide information about functionality [8]. Dynamical
processes, such as flow and electrical transport in heterogeneous networks, were shown
to be significantly more efficient compared to ER networks [28,29].
Complex networks are usually non-homogeneous structures that exhibit a power-

law form in their degree (number of links per node) distribution. These systems are
called scale-free networks. Some examples of real-world scale-free networks include
the Internet [3], the WWW [4], social networks representing the relations between in-
dividuals, infrastructure networks such as airlines [30,31], networks in biology, in par-
ticular networks of protein-protein interactions [32], gene regulation, and biochemical
pathways, and networks in physics, such as polymer networks or the potential energy
landscape network. The discovery of scale-free networks has led to a re-evaluation of
the basic properties of networks, such as their robustness, which exhibit a character
that differs drastically from that of ER networks. For example, while homogeneous
ER networks are vulnerable to random failures, heterogeneous scale-free networks are
extremely robust [4,5]. Much of our current knowledge of networks is based on ideas
borrowed from statistical physics, e.g., percolation theory, fractal analysis, and scal-
ing analysis. An important property of these infrastructures is their stability, and it is
thus important that we understand and quantify their robustness in terms of node and
link functionality. Percolation theory was introduced to study network stability and
to predict the critical percolation threshold [5]. The robustness of a network is usu-
ally (i) characterized by the value of the critical threshold analyzed using percolation
theory [33] or (ii) defined as the integrated size of the largest connected cluster during
the entire attack process [34]. The percolation approach was also extremely useful in
addressing other scenarios, such as efficient attacks or immunization [6,7,14,35,36],
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for obtaining optimal path [37] as well as for designing robust networks [34]. Network
concepts were also useful in the analysis and understanding of the spread of epidemics
[38,39], and the organizational laws of social interactions, such as friendships [40,41]
or scientific collaborations [42]. Moreira et al. investigated topologically-biased fail-
ure in scale-free networks and controlled the robustness or fragility by fine-tuning the
topological bias during the failure process [43].
Because current methods deal almost exclusively with individual networks treated

as isolated systems, many challenges remain [44]. In most real-world systems an indi-
vidual network is one component within a much larger complex network of networks.
As technology has advanced, coupling between networks has become increasingly
strong. Node failures in one network will cause the failure of dependent nodes in
other networks, and vice-versa [45]. This recursive process can lead to a cascade of
failures throughout the network of networks system. The study of individual parti-
cles has enabled physicists to understand the properties of a gas, but in order to
understand and describe a liquid or a solid the interactions between the particles are
needed to be considered. Such is also the case in network theory, where the study of
isolated single networks brings extremely limited results – real-world noninteracting
systems are extremely rare in both classical physics and network study. Most real-
world network systems continuously interact with other networks, especially since
modern technology has accelerated network interdependency.
To adequately model most real-world systems, understanding the interdependence

of networks and the effect of this interdependence on the structural and functional
behavior of the coupled system is crucial. Introducing coupling between networks is
analogous to the introduction of interactions between particles in statistical physics,
which allowed physicists to understand the cooperative behavior of such rich phenom-
ena as phase transitions. Surprisingly, recent results on mathematical models [45,46]
show that analyzing complex systems as a network of coupled networks may alter the
basic assumptions that network theory has relied on for single networks.

2 Cascading failures in interdependent networks

Complex systems, usually represented as complex networks, are rarely isolated but
usually interdependent and interact with other systems [47–49]. The vulnerability of
a single network is usually described by the percolation model in which the order
parameter is the size of the giant connected component and the control parameter
is the fraction of nodes not removed in the initial failure [50]. Recently it was shown
that a coupled networks system is considerably more vulnerable than its isolated
network components [45,46]. In interdependent networks nodes interactions are rep-
resented by two different types of links, connectivity and dependency links. Moreover,
while single network disintegrate continuously as in a second order phase transition,
a coupled network system disintegrate abruptly as in a first order phase transition.
The requirement to be connected to the giant connected component, as in single-
network-percolation, represents the need of a node (to function) to be connected to
the system, but it does not matter through which path. In contrast, a dependency
link represents the need of a node to get a critical supply in order to function from
one other specific node. Without this supply it fails even if it is still connected to
giant component. This type of models are based on the idea of mutual percolation in
which the order parameter is the size of the mutual giant component [45,46,51–63].
The coupling between different networks induces a dynamical process of cascading
failures. A failure of nodes in one network leads to a failure of dependent nodes in
other networks, which in turn may cause further damage to the first network and so
on. This cascading failures may totally fragment the entire system and the size of the
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mutual giant component collapses to zero. It was shown that the coupling strength of
the networks, represented by the fraction q of interdependent nodes, determines the
way the system collapses [46,52,70]. For strong coupling, that is for high fraction of
interdependent nodes, an initial damage can lead to cascading failures that yields an
abrupt collapse of the system, in a form of a first-order phase transition. Reducing the
coupling strength below a critical value, qc, leads to a change from an abrupt collapse
to a continuous decrease of the size of the network, in a form of a second-order phase
transition. This new paradigm is in marked contrast to the common knowledge repre-
sented by a single network behavior. In any single network the percolation transition
is always continuous, therefore, the damage due to a failure is a continuous function
of the size of the damage. In sharp contrast, in interdependent networks, due to the
cascading failures, the percolation transition may be discontinuous. In this case, a
damage of even a single node can lead to failure of finite fraction of the whole
system, which is clearly different from the continuous behavior in single networks.
The existence of an abrupt collapse phenomena in interdependent networks makes
such systems extremely risky. Thus, understanding this phenomena is critical for
evaluating the systems’ risks and vulnerability and for designing robust infra-
structures [34].
Recently, four examples of network of networks (NON) that can be explicitly

solved analytically have been introduced [52,70,71]: (i) a tree-like ER NON fully
dependent, (ii) a tree-like random regular (RR) NON fully dependent, (iii) a loop-
like ER NON partially dependent, and (iv) an RR network of partially dependent
ER networks. All cases represent different generalizations of percolation theory for a
single network. Next we discuss shortly the case of (i) and (iv).

2.1 Tree-like NON of ER networks

To study the robustness of a given network, one can apply percolation theory and
ask what happens to the network after removing randomly a fraction of 1 − p of
nodes. Removing the nodes, their edges become also non functional and thus are
also removed. This may cause the breakdown of the network into clusters. When p is
greater than a critical threshold pc, there exists a giant component, P∞, of the order of
the initial network size, while for p < pc the network breaks down into small clusters.
For ER network with average degree 〈k〉, P∞ was derived analytically [64–67],

P∞ = p[1− e−〈k〉P∞ ]. (1)

To study the robustness of interdependent networks systems, composed for example
of two networks A and B, we begin by removing a fraction 1 − p of network A
nodes and all the A-edges connected to these nodes. As an outcome, all the nodes
in network B that are dependent on the removed A-nodes by A → B links are also
removed since they depend on the removed nodes in network A. Their B edges are
also removed. Further, the removed B nodes will cause the removal of additional
nodes in network A which are connected to the removed B-nodes by B → A links.
As a result, a cascade of failures that eliminates virtually all nodes in both networks
can occur. As nodes and edges are removed, each network breaks up into connected
components (clusters). The clusters in network A (connected by A-edges) and the
clusters in network B (connected by B-edges) are different since the networks are each
connected differently. If one assumes that small clusters (whose size is below certain
threshold) become non-functional, this may invoke a recursive process of failures that
we now formally describe. Our insights based on percolation theory is that when
the network is fragmented the nodes belonging to the giant component connecting a
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finite fraction of the network are still functional, but the nodes that are part of the
remaining small clusters become non-functional. Thus, in interdependent networks
only the giant mutually-connected cluster is of interest.
Gao et al. presented an exact expression for for tree-like NON of fully interdepen-

dent (q = 1, where q represents the degree of interdependency) ER networks, for the
order parameter P∞(p), the size of the mutual giant component for all p, k, and n
values [52,70],

P∞ = p[1− e−〈k〉P∞ ]n. (2)

Here 1−p is the fraction of removed nodes in each network, 〈k〉 is the mean degree and
n is the number of ER networks in the tree. The special case n = 1 is the known ER
second-order percolation law for a single network [64–66]. In contrast, for any n > 1
the solution of (2) yields a first-order percolation transition, i.e., a discontinuity of
P∞ at pc.
Gao et al. derived also pc and P∞(pc) as a function of n for different 〈k〉 values,

pc = [n〈k〉(1− fc)(n−1)]−1, (3)

P∞(pc) =
(1− fc)
n〈k〉fc , (4)

and

fc = −
[
nW

(
− 1
n
e−(1/n)

)]−1
, (5)

where W (x) represents the Lambert function [52].
Furthermore, when n is fixed and 〈k〉 is smaller than a critical number kmin(n),

pc � 1, which means that when 〈k〉 < kmin(n) the NON will collapse even if a
single node fails. The minimum average degree kmin as a function of the number of
networks is

kmin(n) = [nfc(1− fc)(n−1)]−1. (6)

Equations (2)–(6) are valid for all tree-like NON. Note that Eq. (6) yields the value
of kmin(1) = 1, reproducing the known ER result, that 〈k〉 = 1 is the minimum
average degree needed to have a giant component. For n = 2, Eq. (6) also yields
results obtained in [45], i.e., kmin = 2.4554. The abrupt first order transition in
interdependent networks was shown recently to occur simultaneously with a second
order percolation transition during the cascading failures [72].

2.2 NON of ER networks

Next we review results [70,71] for a NON in which each ER network is dependent
on exactly m other ER networks. This system represents the case of RR network of
ER networks. We assume that the initial attack on each network is 1 − p, and each
partially dependent pair of networks has the same fraction of dependency nodes q in
both directions. The n equations for P∞ can be solved analytically,

P∞ =
p

2m
(1− e−〈k〉P∞)[1− q +

√
(1− q)2 + 4qP∞]m. (7)

It is found [71] that there is a critical coupling qc is

qc =
〈k〉+m− (m2 + 2〈k〉m)1/2

〈k〉 · (8)
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For q < qc the percolation transition is continuous (second order) while for q > qc
it is abrupt (first order). When the transition is second order (q < qc), pc is found
to be,

pc =
1

〈k〉(1− q)m · (9)

Furthermore, it is possible to calculate the critical point qmax, above which (q > qmax)
the system is unstable and collapse even for p = 1

qmax =
(a1/m − 1)2

2(1− 2zc − z1/m) , (10)

where

a =
1− e〈k〉(zc−1)
2m(1− zc) · (11)

It is surprising that both the critical threshold and the giant component do not depend
on the number of networks n, in contrast to tree-like NON, but only on the coupling q
and on both degrees k and m. In the special case of m = 0, Eqs. (7) and (9) coincide
with the known results for a single ER network. In summary, that when q < qc
we have “weak coupling” represented by a second-order phase transition and when
qc < q < qmax we have “strong coupling” and a first-order phase transition. When
q > qmax the system becomes unstable due to the “very strong coupling” between the
networks, and a removal of a single node in one network may lead to the collapse of
the NON. For the critical behavior of the tri-critical point qc, see [46,73,74].

2.3 NON of scale free networks

We analyze here NetONets composed of SF networks with a power law degree distri-
bution P (k) ∼ k−λ. The corresponding generating function is

G(z) =

∑M
s [(k + 1)

1−λ − k1−λ]zk
(M + 1)1−λ − s1−λ (12)

where s (s = 2 in this paper) is the minimal degree cutoff and M is the maximal
degree cutoff.
SF networks approximate real networks such as the Internet, airline flight patterns,

and patterns of scientific collaboration [2,4,20]. When SF networks are fully interde-
pendent [45], pc > 0, even in the case λ � 3 in contrast to a single network for which
pc = 0 [5]. We study the percolation of a RR network composed of interdependent
SF networks by substituting their degree distribution and obtaining their generating
functions. We assume, for simplicity, that all the networks in the NON have the same
λ, s and M , and analyze the percolation of an RR NON of SF networks.
The generating function of the branching process is defined as H(z) =

G′(z)/G′(1), and it is used together with Eq. (12) to obtain the function R(z) for RR
of SF networks. Three regimes of coupling strength q are observed:

(i) When q is small (q < qc), R(z) is a monotonically increasing function of z, the
system shows a second order phase transition, and the critical threshold pIIc is
obtained when z → 1 which corresponds to R(1) = max{R} =∞ = 1/pIIc , i.e.,
pIIc = 0.
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(ii) When q is larger, qc < q < qmax, R(z) as a function of z shows a peak which
corresponds to a sharp jump to a lower value of P∞ at zIc showing a first
order phase transition. As z increases, R(z) first decreases then increases with
z and reach the maximal value of R at zIIc → 1 showing a second order phase
transition. Furthermore, the threshold of first order phase transition is pIc =
1/R(zIc ), while for p below this sharp jump the system undergoes a smooth
second order phase transition and the critical threshold is zero, similar to (i).

(iii) When q is above qmax, R(z) decreases with z first, and then increases with z,
which corresponds to the system collapse.

Next we analyze the three regimes more rigorously.
(i) When q is small (q < qc), R(z) is a monotonically increasing function of z, the

maximum of R(zc) is obtained when zc → 1, which corresponds to P∞ = 0,

max{R} = lim
z→1
H(z)− 1
z − 1 (1− q)m .= H ′(1). (13)

Thus, for λ < 3, the second order transition happens at pIIc (M)→ 0, when M →∞,
while for λ > 3 it remains finite for M →∞.
(ii) As q increases (q � qc), R(z) as a function of z shows a peak corresponding

to R(z) = R(zc) for small values of z, dR/dz = 0 (smaller root has the physical
meaning), where R = Rc = 1/p

I
c > 1 which corresponds to the first order critical

threshold where P∞ as a function of p shows an abrupt jump. Furthermore, we define

P−∞ = lim
p→pIc ,p<pIc

P∞(p), (14)

and
P+∞ = lim

p→pIc ,p>pIc
P∞(p). (15)

However the phase transition here is different from a normal first order phase transi-
tion where P−∞ = 0. In our interdependent networks system P−∞ > 0. After the sharp
drop for p < pIc , P∞ decreases smoothly to 0 and undergoes a second order phase
transition. The critical threshold of the second order phase transition is described in
(i). The specific case of two partially interdependent SF networks is studied also Zhou
et al. [72].

(iii) As q increases further (q > qmax),
dR(z)
dz at z = 0 becomes negative, thus the

NetONet will collapse even when a single node is initially removed. So the maximum
values of q is obtained as

dR(z)

dz
|z→0 = 0. (16)

For the minimal degree cut-off s = 2, i.e. P (0) = P (1) = 0, when q = qmax,
P∞(z)|z→0 = 1 and P ′∞(z)|z→0 = −1, so we get

qmax =
1

m− 1 · (17)

Comparison between analytical and simulation results is shown in Fig. 1.

3 Vulnerability of interdependent spatially embedded networks

Current models focus on interdependent networks where space restrictions are not
considered. Indeed, in some complex systems the spatial location of the nodes is not
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relevant or not even defined, such as in proteins interaction networks [75–77] and the
World Wide Web [5,78]. However, in many real-world systems, such as power grid
networks, ad hoc communication networks and computer networks, nodes and links
are located in Euclidian two-dimensional space [79]. Based on universality principles,
the dimension of a network is a fundamental quantity to characterize its structure
and basic physical properties [80,81]. Indeed, all percolation models whose links have
a characteristic length, embedded in space of same dimension belong to the same
universality class [80]. An example is power grid networks where the links have a
characteristic length since their lengths follow an exponential distribution [81]. Due
to universality considerations, any 2d network with links having a characteristics
length scale, belong to the same universality class as regular lattices. Thus, to obtain
the main features of an arbitrary system of interdependent networks embedded have
been modeled in two dimensional space, these spatially embedded networks as two-
dimensional lattices. Typically, real spatial networks in two dimensional space are
characterized by lower average degree than a square lattice [79]. The case of coupled
lattice is not only a representative example for all its universality class but may serve
as a lower bound case, while real coupled spatial networks are even more vulnerable.
Here, we review recent analytical and numerical results recently presented by

Bashan et al. on the stability of systems of two interdependent spatially embedded
networks, modeled as two interdependent lattices [82]. We find that in such systems
qc = 0, i.e., any coupling q > 0 leads to an abrupt first-order transition. We show that
the origin for this extreme vulnerability of spatially embedded networks lies in the
critical behavior of percolation of a single lattice, which is characterized by a critical
exponent β < 1 [80,83]. This is in contrast to random networks for which β = 1,
leading to qc > 0 for interdependent random networks. Here the dependency links
are between lattices’ nodes located in different random spatial positions (Fig. 1a) or
between lattice nodes and nodes of random networks where the space does not play
a role at all (Fig. 1b). In the case of dependency links between lattice nodes with
exactly the same position, the transition is always continuous, as for percolation in a
single lattice [69]. Note that the fully interdependent limit of q = 1 of coupled lattices
was studied by Wei et al. [63].
Our theoretical and numerical approaches predict [82] that a real-world system of

interdependent spatially embedded networks which are characterized by β < 1 will,
for any q > 0, abruptly disintegrate. Since for percolation of lattice networks it is
known that for any dimension d < 6, β < 1 [80], we expect that also interdependent
systems embedded in d = 3 (or any d < 6) will collapse abruptly for any finite
fraction of dependency q. Indeed, Dobson et al. [93] analyze the statistics of many
real world outages events and show that they are commonly resulted by cascading
failure. Our results show that an important possible mechanism in these events is the
interdependencies in spatial networks.
Consider a system of two interdependent networks, i = 1 and i = 2, where a

fraction 1−pi of nodes of each network is initially randomly removed. We assume that
only the nodes which belong to the giant component of the remaining networks which
constitute a fraction P∞,i(pi) of the original network remain functional. Each node
that has been removed or disconnected from the giant component causes its dependent
node in the other network to also fail. This leads to further disconnections in the other
network and to cascading failures. The size of the networks’ giant components at the
end of the cascade is given by P∞,i(xi), where xi are the solutions of the self consistent
equations [52]

x1 = p1q1P∞,2(x2) + p1(1− q1) (18)

x2 = p2q2P∞,1(x1) + p2(1− q2), (19)
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Fig. 1. Results for a RR network formed of SF networks. (a) The giant component P∞ as
a function of p for different values of m and q for λ = 2.5. (b) The critical threshold pIc and
(c) the corresponding giant component at the threshold P∞(pIc) as a function of coupling
strength q for m = 2 and m = 3. The symbols in (a) represent simulation results, obtained
by averaging over 20 realizations for N = 2× 105 and number of networks n = 6 (squares)
and n = 4 (circles). The lines represent theoretical results. We can see in (a) that the system
shows a hybrid phase transition for m = 2 and qc < q = 0.62 < qmax = 1/(m − 1). When
q < qc the system shows a second order phase transition and the critical threshold is p

II
c = 0.

However, in the simulation when p is small (but not zero) P∞ = 0. This happens because
pIIc = 0 is valid only when the network size N = ∞ and M = ∞, but in simulations we
have finite systems. Furthermore, when qc < q < qmax the system shows a hybrid transition
shown in (a) and (c), and when q > qmax all the networks collapse even if one node fails. We
call this hybrid transition because P−∞ > 0, which is different from the case of ER networks
with first order phase transition where P−∞ = 0. After [71].

where qi is the fraction of nodes in network i which depends on nodes in the other
network. Here we assume no restrictions on the selection of the directed dependency
links. The results for the case of “no-feedback-condition”, where the dependency
links are bidirectional [52], are qualitatively the same. The function P∞,i(x) can be
obtained either analytically or numerically from the percolation behavior of a single
network.
For simplicity, we focus on a symmetric case, where both networks have the same

degree distribution P (k) and same topology, and where p1 = p2 ≡ p and q1 = q2 ≡
q. Still, the results are valid for any system of interdependent spatially embedded
networks (like planar graph) which belong to the same universality class. In particular,
in order to study the role of spatial embedding, we compare the percolation transition
in the case of a pair of interdependent lattices (Fig. 2a) to the case of a pair of
interdependent random-regular (RR) networks (Fig. 2c). The RR networks have the
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c d

a b

Fig. 2. A system of interdependent networks is characterized by the structure (dimension)
of the single networks as well as by the coupling between the networks. In random networks
with no space restrictions, such as ER and RR, the connectivity links (blue lines) do not
have a defined length. In contrast, in spatially embedded networks nodes are connected only
to nodes in their geometrical neighborhood creating a two-dimensional network, modeled
here as a square lattice. The (red) arrows represent directed dependency relations between
nodes in different networks, which can be of different types: (a) coupled lattices (b) coupled
lattice-random network (c) coupled random networks (d) real-world spatial network
(European power grid) coupled with random network. Models (b) and (d) belong to the
same universality class. After [82].

same degree distribution, P (k) = δk,4, as for the lattices with the only difference that
the lattice-networks are embedded in space, in contrast to RR networks.
In the symmetric case, Eqs. (18) and (19) can be reduced to a single equation

x = pqP∞(x) + p(1− q), (20)

where the size of the giant component at steady state is P∞(x). For any values of
p and q, the solution of Eq. (20) can be graphically presented as the intersection
between the curve y = pqP∞(x) + p(1 − q) and the straight line y = x representing
the right-hand-side and the left-hand-side of Eq. (20) respectively. The form of P∞(x)
for conventional percolation is obtained from numerical simulations of a single lattice
and analytically for a single RR network [61]. From the solution of Eq. (20) we obtain
P∞(p) as a function of p for several values of q. This P∞(p) is the new percolation
behavior for a system of interdependent networks, shown in Fig. 4a, for the case of
coupled lattices and in Fig. 4b for the case of coupled RR networks. In the case of
interdependent lattices, only for q = 0, no coupling between the networks (the single
network limit), the transition is the conventional second-order percolation transition,
while for any q > 0 the collapse is abrupt in the form of first-order transition. In
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Fig. 3. Schematic solution of the critical point of (a) coupled lattices and (b)
coupled random-regular (RR) networks. The left-hand-side and right-hand-side of
Eq. (20) are plotted as a straight (red) line and a (blue) curve respectively. The tangential
touching point, x∗, marked with a (black) circle, represents the new percolation threshold
in the system of interdependent networks. In the case of coupled lattices (panel a), due to
the infinite slope of the curve at pc, x

∗ is always larger than pc and, thus, there is always
(for any q > 0) a discontinuous jump in the size of the giant component as p decreases.
In contrast, in coupled random networks (panel b) the slope of the curves is finite for any
value of x. Therefore, there exist q < qc for which x

∗ is equal to pc, leading to a continuous
behavior in the network’s size.

marked contrast, in the case of interdependent RR networks, for q > qc ∼= 0.43 the
transition is abrupt, while for q < qc the transition is continuous.
A discontinuity of P∞(p) is a result of a discontinuity of x(p), represented graphi-

cally as the tangential touching point of the curve and the straight line (see schematic
representation in Fig. 3). At this point, p ≡ p� is the new percolation threshold in the
case of interdependent networks, and x = x� yields the size of the giant component at
the transition, P �∞ ≡ P∞(x�), which abruptly jumps to zero as p slightly decreases.
The condition for a first-order transition p = p�, for a given q, is thus given by solving
Eq. (20) together with its tangential condition,

1 = p�qP ′∞(x
�). (21)

The size of the giant component at the transition P �∞ depends on the coupling strength
q such that reducing q leads to smaller value of x� and thus smaller discontinuity
in the size of the giant component. In general, P∞(x) of a single network has a
critical threshold at x = pc such that P∞(x � pc) = 0 while P∞(x > pc) > 0 and
monotonically increases with x [80]. As long as x� > pc, the size of the discontinuity is
larger then zero. However, for a certain critical coupling q ≡ qc, x� → pc and the size
of the jump becomes zero. In this case the percolation transition becomes continuous.
Therefore, the critical dependency qc below which the discontinuous transition

becomes continuous, must satisfy Eqs. (20) and (21) for x→ pc given by
pc = p

�
c(1− qc) (22)

1 = p�cqcP
′
∞(pc). (23)

A dramatic different behavior between random and spatial coupled networks is derived
from Eq. (23). This difference is a consequence of the critical behavior of percolation
in a single network. In the case of a single random network P ′∞(x) is finite for any
value of x. This allows an exact solution of Eq. (23), yielding a finite non-zero value for
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Fig. 4. Percolation transition of interdependent lattices compared to interdependent random
networks. The size of the giant component P∞ at steady state after random failure of a
fraction 1−p of the nodes of (a) two interdependent lattice networks with periodic boundary
conditions (PBC) and (b) two random-regular (RR) networks. All networks are of size 16×
106 nodes and the same degree distribution P (k) = δk,4. The coupling between the lattices
and between the RR networks changes from q = 0 to q = 0.8 with step 0.1 (from left to
right). The solid lines are the solutions of Eq. (20) and the symbols represent simulation
results. In the case of interdependent lattices, only for q = 0 (no coupling, i.e., a single
lattice) the transition is the conventional second-order percolation, while for any q > 0 the
collapse is abrupt in the form of first-order transition. This is in marked contrast to the case
of interdependent RR networks, where only for q > qc ∼= 0.43 the transition is abrupt, while
for q < qc the transition is continuous. A characteristic behavior in a first-order percolation
transition in coupled networks is the sharp divergence of the number of iterations (NOI)
when p approaches p�c [60] as seen for (c) coupled lattices for any q > 0 and for (d) coupled
RR networks for q > qc. Models of coupled lattices with PBC have the same behavior as
models without. After [82].

qc. However, for the case of a single lattice network the derivative of P∞(x) diverges
at the critical point, P ′∞(pc) = ∞, yielding qc = 0. Therefore, from Eq. (23) follows
that any coupling q > 0 between lattices leads to an abrupt first order transition, as
indeed suggested by simulations reported in Fig. 4.
The behavior of the percolation order parameter of a single network near the

critical point is defined by the critical exponent β, where P∞(x→ pc) = A(x− pc)β .
Since for single 2d lattice β = 5/36 < 1, it follows that P ′∞(x) diverges for x → pc
for all networks embedded in two dimensional space [80,83]. In contrast, for random
networks, such as Erdös-Rényi (ER) and Random-Regular (RR), β = 1 which yields
a finite value of P ′∞(pc) [80,83] and therefore a finite value for qc.

4 Attack strategies

The resilience of a complex network to random attack or to malicious attacks based
on targeting special nodes (by degree, betweenness etc.) has been studied extensively
in recent years [4,5,13,84]. It has been shown that the robustness of the network
under such an attack is highly dependent on it topology. Resilience to geographic
localized attacks has been studied for a number of scenarios and on specific single
networks [85–87]. Currently, a general theoretical approach of geographically localized
attacks that considers the effects of cascading failures due to interactions between net-
works is being developed [88]. Indeed localized attacks with positive feedback caused
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by interdependencies has been shown to have catastrophic consequences such as in
the 2003 Italian blackout [45,47].

4.1 Targeted attacks

In real-world scenarios, initial system failures seldom occur randomly and can be
the result of targeted attacks on central nodes. Such attacks can also occur in less
central nodes in an effort to circumvent central node defenses, e.g., heavily-connected
Internet hubs tend have more effective firewalls. Targeted attacks on high degree nodes
[4,6,7,13,43] or high betweenness nodes [89] in single networks dramatically affect
their robustness. To study the targeted attack problem on interdependent networks
[13,57,90–92] we assign a valueWα(ki) to each node, which represents the probability
that a node i with ki degree will be initially attacked and become inactive, i.e.,

Wα(ki) =
kαi∑N
i=1 k

α
i

,−∞ < α < +∞. (24)

When α > 0, higher-degree nodes are more vulnerable to intentional attack. When
α < 0, higher-degree nodes are less vulnerable and have a have a lower probability of
failure. The case α = 0, W0 =

1
N
, represents the random removal of nodes [45].

In the interdependent networks model with networks A and B described in
Ref. [45], a fraction 1 − p of the nodes from one network are removed with a prob-
ability Wα(ki) [Eq. (24)]. After this removal, the cascading failures are the same as
those described in Ref. [45]. To analytically solve the targeted attack problem, Huang
et al. [57] developed an equivalent network A′, such that the targeted attack problem
on interdependent networks A and B can be solved as a random attack problem on
interdependent networks A′ and B [57,92].

4.2 Localized attacks

Modern critical infrastructures are embedded in space and have extensive interdepen-
dencies [48,49,51,79]. Entities in one network (e.g., power generation/distribution,
communications, transportation, etc.) are dependent upon entities in another and
failures in one network can trigger failures in another. It has been shown that these de-
pendencies lead to substantially decreased robustness and can even yield abrupt first
order transitions which are absent in isolated networks [45–47,51,52,54,59,69,70,82].
Spatially embedded interdependent networks have been studied under random attack,
where a new kind of abrupt collapse is found. This collapse is characterized by the
spreading of cascading failures and requires a finite fraction of nodes to be removed
[63,82]. However, a purely random failure of a finite fraction of nodes in a very large
network can be unrealistic. A more realistic scenario is a failure of group of neighbor-
ing nodes due to a natural disaster like the 2011 Tōhoku earthquake and tsunami or
due to a malicious attack affecting all networks in a given region (e.g., a nuclear strike)
or only certain infrastructures (e.g., an electromagnetic pulse or chemical/biological
attack). The resilience of a system of interdependent networks to an attack of this
sort, which we call “localized attack,” has not been addressed before.
Recent work has suggested a new type of targeted attacks. Berezin et al. [88] show

that there exists a critical damage size with radius rch, above which localized damage
will spread and destroy the entire system and below which the damage will remain
in place. This critical size is determined solely by intensive system quantities and
thus, in contrast to random failures, constitutes a zero-fraction of the system in the
limit of large systems (N →∞).
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4.3 The affect of modular structure on network resilience

Network science has become a leading approach to the study of emergent collective
phenomena in complex systems, with a wide range of applications to fundamental real
word systems [44]. Much research has focused on the function of networks, mainly
their resilience and stability to attacks [34], and the structure of networks, mainly in
terms of communities, or modules, in networks [94]. Many real world systems have
been shown to exhibit a modular structure, which is key to their behavior and func-
tioning. For example, recent studies of biological networks show that the deletion
of nodes connecting between modules can have a deleterious effect on the network
integrity [95], efficiency [96,97], and stability [98].
Some of the structural properties that have been found to play a very important

role recently have been the existence of communities, cliques, in networks, and the
modular organization of networks. The modular structures or communities have been
shown to be relevant in our current understanding of the structure and dynamics of
complex systems. Detecting communities is of great importance in sociology, biology
and computer science, disciplines where systems are often represented as graphs. This
problem has been found to be difficult and not yet satisfactorily solved, despite the
huge effort of a large interdisciplinary community of scientists working on it over the
past few years, Communities could also be considered in the new frameworks of in-
terdependent and multiplex networks [99].
Shai et al. [99] have presented the first theoretical description of the effect of modu-

lar structure on the function and resilience of networks. To this end, they investigated
the percolation process on networks consisting of a varying number of modules, m,
when attacking the interconnected high betweenness nodes. The analytical solution
reveals two percolation regimes separated by a critical number of modules m∗: for
m < m∗ one needs to remove all interconnected nodes to break the system, while the
remaining modules are almost not affected internally. This regime is characterized
by an abrupt first order percolation transition. In contrast, for m > m∗ one needs
to remove only a fraction of the interconnected nodes, and consequently the system
continuously collapses. This is due to the fact that for m > m∗ the number of in-
terconnected nodes is high and partial removal of these already breaks the modules
internally, and thus enhancing the collapse of the whole system.
The analytical and numerical investigation of the effect of modularity on net-

work stability has important implications for real world networks, such as cognitive
and neural brain networks. The modular architecture of neural structural and func-
tional networks is considered a fundamental principle of the brain. This non-random
modular architecture is crucial for the brain’s functional demands of segregation and
integration of information. In fact, disrupted brain modular organization is related to
neuropathology, such as schizophrenia, autism, Alzheimer’s and impulsivity. At the
cognitive level (the level of information processing in the brain), network analysis is
mainly focused on language and memory networks; however, the effect of modularity
and its importance in cognitive network organization is still unclear. Thus, this work
provides the first analytical and simulation evidence into the effect of modularity on
network resilience and vulnerability. These results have many real world applications,
from the optimal design of infrastructure, new insights and understandings of brain
disorders, and efficient immunization approach in modular networks, where epidemic
spreading can be prevented at a low cost by immunizing interconnected nodes.

5 Repair, recovery, and optimization of networks and networks
of networks

In this section we present two theoretical frameworks recently developed, which can be
applied to promote repair and recovery in networks and networks of networks. While
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the two frameworks have been developed for single networks, they are currently being
expanded to the case of interdependent network of networks, with and without spatial
constraints.

5.1 Repair and optimization strategies

Recently, Schneider et al. [34] have developed an efficient mitigation method and dis-
covered that with relatively minor modifications in the topology of a given network
and without increasing the overall length of connections, it is possible To mitigate con-
siderably the danger of malicious attacks. The presented efficient mitigation method
against malicious attacks is based on Developing and introducing a unique measure for
robustness. The authors show that the common measure for robustness of networks
in terms of the critical fraction of attacks at which the system completely Collapses,
the percolation threshold, may not be useful in certain scenarios. This measure, for
example, ignores situations in which the network suffers a significant damage, but
still Keeps its integrity. Besides the percolation threshold, there are other robustness
measures based, for example, inHans the shortest path, or on the graph spectrum.
However, these are less frequently used for being too complex or less intuitive. In
contrast, the unique robustness measure presented by Schneider et al. [34], which
considers the size of the largest component during all possible malicious attacks, is
as simple as possible and only as complex as necessary. The robustness measure is
defined as

R =
1

N

∑
s(q), (25)

where N is the number of nodes in the network, and s(q) is the fraction of nodes in
the largest connected cluster after removing a fraction q of nodes. The normalization
factor 1/N ensures that the robustness of networks with different sizes is comparable.
The range of values for R is between 1/N and 0.5, where these limits correspond,
respectively, to a star network and a fully connected network.
In Fig. 5A and Fig. 5B we show the backbone of the European Union (EU)

power grid and the location of the European PoP and their respective vulnerability
in Fig. 5C and Fig. 5D. The dotted lines in Fig. 5C and Fig. 5D represent the size
of the largest connected component of the networks after a fraction q of the most
connected nodes have been removed. Instead of using the static approach to find the
q most connected nodes at the beginning of the attack, we use a dynamical approach.
In this case the degrees are recalculated during the attack, which corresponds to a
more harmful strategy. As a consequence, in their current structure, the shutdown of
only 10% of the power stations and a cut of 12% of PoP would cause 90% of nodes
to fail.
To avoid such a dramatic breakdown and reduce the fragility of these networks,

here we propose a strategy that modifies only a small number of power lines or cables
without increasing the total length of the links (limiting cost) and the number of links
of each node. These small local changes not only mitigate the efficiency of malicious
attacks, but at the same time preserve the functionality of the system. In Figs. 5C
and D the robustness of the original networks are given by the areas under the dashed
curves, whereas the areas under the solid lines correspond to the robustness of the
improved networks. Therefore, the green areas in Figs. 5C and D demonstrate the
significant improvement of the resilience of the network for any fraction q of attack.
This means that terrorists would cause less damage or they would have to attack many
more power stations, and hackers would need to attack more PoP to significantly
damage the system.
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Fig. 5. Mitigation of malicious attacks on the power supply system in Europe and the
global Internet at the level of service providers. In (A) we show the EU power grid with
N = 1254 generators and M = 1811 power lines and in (B) the Internet with N = 1098
service providers and M = 6089 connection among them, where only the European part is
shown. The red edges correspond to the 5% connections that we suggest to replace by the
green ones. The network fragmentation under a malicious attack is shown for (C) EU power
generators and for (D) PoP. The dashed lines in (C) and (D) corresponds to the size of the
largest component in each original system and the solid lines to typical redesigned networks
after changing 5% of the connections. The green areas give the mitigation of malicious attack,
which correspond to improving robustness by 45% for the EU power grid and 55% for the
PoP. After [34].

5.2 Recovery in networks

Although some research has focused on the transient dynamics as failure propagation,
there is an entire class of real-world dynamic complex systems in which networks
can spontaneously recover after their collapse, and the mechanism for this network
global recovery has not yet been adequately understood. The Internet can initially
fail after a severe attack and then, after a period of time, recover. A human brain
can spontaneously recover after an epileptic attack. A traffic network returns to its
normal state after a period of gridlock. A financial network may, after a period of
time, recover after having a large fraction its constituents fail.
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Recently, Majdandzic et al. [100] developed a framework for understanding dy-
namic networks that demonstrate an ability to spontaneously recover. It is assumed
that any node in the network can fail independently of other nodes (internal failure)
with a probability of p dt during a time interval dt = 1. Next, it is assumed that any
node can fail due to external causes, e.g., if it has a substantially damaged neighbor-
hood. A simple threshold rule is used to define a substantially damaged neighborhood:
it is a neighborhood containing fewer than or equal to m active nodes, where m is
an integer. If node j has more than m active neighbors during dt, its neighborhood
is “healthy”, but if node j has < m active neighbors during the interval dt, there is
a probability r dt that node j will externally fail. Finally, we assume that there is
a reversal process, a recovery from failures. Node j recovers from an internal failure
after a time period τ �= 0, and it recovers from an external failure after time τ ′. For
simplicity, we set τ ′ = 1. If there are no recoveries (τ = τ ′ =∞) the system reduces
to the Watts model [1] generalized and rigorously solved in Ref. [101]. We find that in-
troducing dynamic recovery leads to spontaneous network collapse and recovery – the
phase switching phenomena. Furthermore, by varying the parameters an interesting
phase diagram can be obtained showing two phases of stable and unstable regimes as
well metastable regime where hysteresis behavior can be observed.
This framework presents a possible methodology to promote recovery in real world

networks and network of networks. Since the results presented by Majdandzic et al.
[100] demonstrate that with the presence of a probability of recovery, the network
can flip from active to inactive states. Thus, in the case of attacks on specific parts
of the network and decline in network functionality, repairing specific nodes in the
network could sufficiently initiate the flipping of the network back into an active state.
Thus, we propose this methodology as a repair strategy for real world networks under
attack.

6 Summary and future outlook

The current challenges in network theory are the need to develop a new framework
to deal with such coupled and interdependent systems, where not only the structural
properties are considered, but dynamic and spatial considerations, as well as coupling
and dependency between networks are also taken into account. The employment of
ideas and techniques from complex network theory and the proposed theory of coupled
and interdependent networks to understand and quantify the role of connections and
dependencies within a system and between different ones opens the possibility to
manage and control the complexity, optimize the systems structure and function
and reduce their vulnerability to failures and mitigate the effects of different attack
strategies. At the technological level, such understanding will help in developing smart
infrastructures that are able to predict and adjust to different conditions and able
to respond successfully in real time to abnormal load shedding, thus avoiding, for
example, blackouts, traffic jams, or inefficiencies and shortages in the supply of oil
and gas. The commercial and industrial systems strongly require an efficient and
resilient logistic network to avoid excessive inventories and the lack of robustness
against cyclic perturbations, which affect the production costs and, consequently,
the competitiveness. In social systems, the new network science will enable early
identification of social crises, and provide methods to mitigate social catastrophes.
As our society is dependent on a large variety of infrastructure, it has become crucial
to identify and understand the affect of different attack strategies, and how they affect
the targeted network, and then propagate to other coupled and dependent networks.
Such understanding would then be integrated with repair strategies, as discussed in
section 5, to develop strategies for a fast and efficient repair of the system. Thus, the
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aim of this paper was to review both sides of this coin – attack and repair strategies –
which would result in resilient and sustainable infrastructure for the daily functioning
in the modern socio-techno-economic world.
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