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As economic entities become increasingly interconnected, a shock in a financial network can provoke
significant cascading failures throughout the system. To study the systemic risk of financial systems, we
create a bi-partite banking network model composed of banks and bank assets and propose a cascading
failure model to describe the risk propagation process during crises. We empirically test the model with 2007
US commercial banks balance sheet data and compare the model prediction of the failed banks with the real
failed banks after 2007. We find that our model efficiently identifies a significant portion of the actual failed
banks reported by Federal Deposit Insurance Corporation. The results suggest that this model could be
useful for systemic risk stress testing for financial systems. The model also identifies that commercial rather
than residential real estate assets are major culprits for the failure of over 350 US commercial banks during
2008–2011.

T
here have been dramatic advances in the field of complex networks in recent years1–6. The Internet, airline
routes and electric power grids are all examples of networks in which connectivity between network
components is essential. Because of the strong connectivity, catastrophic cascading failure of nodes in

networks can happen when the system is under a shock, especially if the shocked nodes represent hubs, or have
high centrality measures in the network7–11. So, in order to minimize the systemic risk, these networks should be
designed to be robust to external shocks. In the wake of the recent global financial crisis, increased attention has
been given to the study of the dynamics of economic systems and to systemic risk in particular. The widespread
impact of the current EU sovereign debt crisis and the 2008 world financial crisis show that as economic systems
become increasingly interconnected, local exogenous or endogenous shocks can provoke global cascading system
failure that is difficult to reverse and that cripples the system for a prolonged period of time. Thus policy makers
are compelled to create and implement safety measures that can prevent cascading system failures or soften their
systemic impact. Based on the success of complex networks in modeling interconnected systems, applying
complex network theory to study economical systems has been under the spot light12–17.

There are two channels of risk contagion in the banking system, (i) direct interbank liability linkages between
financial institutions and (ii) contagion via changes in bank asset values. The former, which has been given
extensive empirical and theoretical study18–22, focuses on the dynamics of loss propagation via the complex
network of direct counterpart exposures following an initial default. The latter, based on bank financial state-
ments and financial ratio analysis, has received scant attention. A financial shock that contributes to the bank-
ruptcy of a bank in a complex network will cause the bank to sell its assets. If the market’s ability to absorb these
sales is less than perfect, the market prices of the assets that the bankrupted bank sells will decrease. Other banks
that own similar assets could also fail because of loss in asset value and increased inability to meet liability
obligations. This imposes further downward pressure on asset values and contributes to further asset devaluation
in the market. Damage in the banking network thus continues to spread, and the result is a cascading of risk
propagation throughout the system23,24. In this paper we model the risk contagion via changes in asset values in
the banking system.

In the past 2008 financial crisis, 371 commercial banks failed between 1/1/2008 and 7/1/2011. The Failed Bank
Lists from the Federal Deposit Insurance Corporation33 (FBL-FDIC) records the names of failed banks and the
time when the banks failed. We use this list as an experimental benchmark to our model. The other dataset that we
use is the US Commercial Banks Balance Sheet Data (CBBSD) from Wharton Research Data Services32, which
contains the amounts of assets in each category that the US commercial banks had on their balance sheets (see
Method section for more detail). We use this dataset as an input to our model.
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The contributions of this paper are as follows. We first analyse the
properties of the failed banks from FBL-FDIC, examining the
weights in specific assets as well as equity to asset ratios. We then
construct a bipartite banking network that is composed of two types
of nodes, (i) banks and (ii) bank assets. Link between a bank and a
bank asset exists when the bank has the asset on its balance sheet. We
also develop a cascading failure model to simulate the crisis spread-
ing process in the bipartite network. We then populate the model by
the banks’ balance sheet data (CBBSD) for 2007, and run the cascad-
ing failure model by initially introducing a shock to the banking
system. We compared the failed banks identified by model with
the actual failed banks from the FBL-FDIC from 2008 to 2011, and
find that our model simulates well the crisis spreading process and
identifies a significant portion of the actual failed banks. Thus, we
suggest that our model could be useful to stress test systemic risk of
the banking system. For example, we can test each particular asset or
groups of assets influence on the overall financial system i.e. if the
agricultural assets drop by 20% in value, we can study which banks
could be vulnerable to failure, and offer policy suggestions to prevent
such failure, such as requirement to reduce exposure to agricultural
loans or closely monitor the exposed banks. Finally, we show that
sharp transition can occur in the model as parameters change. The
bank network can switch between two distinct regions, stable and
unstable, which means that the banking system can either survive
and be healthy or completely collapse. Because it is important that
policy makers keep the world economic system in the stable region,
we suggest that our model for systemic risk propagation might also
be applicable to other complex financial systems, e.g., to model how
sovereign debt value deterioration affects the global banking system
or how the depreciation or appreciation of certain currencies impact
the world economy.

Results
Properties of failed banks. To build a sound banking system
network and systemic risk cascading failure model, we need to
study the properties of the failed banks. The asset portfolios of

commercial banks contain such asset categories as commercial
loans, residential mortgages, and short and long-term investments.
We model banks according to how they construct their asset
portfolios (upper panel of fig. 1). For each bank, the CBBSD
contains 13 different non-overlapping asset categories, e.g., bank i
owns amounts Bi,0, Bi,1, …, Bi,12 of each asset, respectively. The total
asset value Bi and total liability value Li of a bank i are obtained from
CBBSD dataset. The weight of each asset m in the overall asset
portfolio of a bank i is then defined as wi,m ; Bi,m/Bi. From the
perspective of the asset categories, we define the total market value
of an asset m as Am:

P
i Bi,m. Thus the market share of bank i in

asset m is si,m ; Bi,m/Am.
To study the properties of failed banks between 2008 and 2011, we

focus on the weight of each bank’s assets. For certain assets, we find
that the asset weight distributions for all banks differ from the asset
weight distributions for failed banks. Figures 2(a) and 2(c) show that,
unlike survived banks, failed banks cluster in a region heavily
weighted with construction and development loans and loans
secured by nonfarm nonresidential properties. Failed banks have less
agricultural loans in their asset portfolios compared to survived
banks (fig. 2(d)). These results confirm the nature of the most recent
financial crisis of 2007–2011 in which bank failures were largely
caused by real estate-based loans, including loans for construction
and land development and loans secured by nonfarm nonresidential
properties25. In this kind of financial crisis, banks with greater agri-
cultural loan assets are more financially robust26. Figure 2(e) shows
that failed banks tend to have lower equity to asset ratios, i.e. failed
banks generally had higher leverage ratios than survived banks dur-
ing the financial crisis of 2008–201127.

Cascading failure propagation model. To study the systemic risk of
the banking system as complex networks, we construct a cascading
failure model based on the facts presented in the previous section.

We first build a bipartite network which contains two types of
nodes, banks on one hand and bank assets on the other. Link exists
between a bank and an asset when the bank has the asset on its

Other
banks

Figure 1 | Bank-asset bipartite network model with banks as one node type and assets as the other node type. Link between a bank and an asset exists if
the bank has the asset on its balance sheet. Upper panel: illustration of bank-node and asset-node. Bi,m is the amount of asset m that bank i owns. Thus, a
bank i with total asset value Bi has wi,m fraction of its total asset value in asset m. si,m is the fraction of asset m that the bank holds out. Lower panel:
illustration of the cascading failure process. The rectangles represent the assets and the circles represent the banks. From left to right, initially,
an asset suffers loss in value which causes all the related banks’ total assets to shrink. When a bank’s remaining asset value is below certain threshold
(e.g. the bank’s total liability), the bank fails. Failure of the bank elicits disposal of bank assets which further affects the market value of the assets. This
adversely affects other banks that hold this asset and the total value of their assets may drop below the threshold which may result in further bank failures.
This cascading failure process propagates back and forth between banks and assets until no more banks fail.
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balance sheet. No links between banks or between assets exist. To
simulate the cascading failure process, we develop and apply the
following model with three parameters p, g and a (illustrated in
fig. 1):

1. We initially shock certain asset m, reducing the Total Market
Value of asset m to p fraction of its original value, p g [0, 1].
The smaller the p is, the larger the shock. When p is 0, the total
market value of asset m is wiped out. When p is 1, no shock is
imposed.

2. When the market deteriorates, each bank i that owns the
shocked asset m will experience Bi,m(1 2 p) reduction in value,
where Bi,m is the amount of asset m that is on bank i’s balance
sheet.

3. When the total asset value of a bank declines to a level below the
level of promised payments on the debt, it causes distress or
default. The total asset value that triggers an incidence of dis-
tress lies somewhere between the book value of total liabilities
and short-term liabilities. In the corporate sector default ana-
lysis, Moody’s Analytics used the sum of short-term debt, inter-
est payments and half of long-term debt28–30 as the distress
barrier. However, in the past financial crisis, external aid from
other financial institutes or from the government played a sig-
nificant role in distorting this distress barrier, thus even when a
bank’s total value of assets was below its liabilities, the bank
could still survive. We describe these combined effects using
random number r that is uniformly distributed in range [0, g],
where g g [0, 0.5] is a parameter controlling tolerance of a
bank’s assets being below its liabilities. We define the distress
barrier to be (1 2 r)?Li, such that a bank fails when Bi , (1 2
r)?Li. For such distress barrier with evolving randomness, the
probability P(Bi, Li) for a bank i to fail can be written as

P Bi, Lið Þ~
0 if Bi§Li

Li{Bið Þ=gLi if g=0, LiwBiw 1{gð ÞLi

1 if 1{gð ÞLiwBi

8
><

>:
ð1Þ

4. We assume that when a bank i fails, the overall market value of
each asset m that the failed bank owns suffers aBi,m value
deduction, where a g [0, 1] is a third parameter in the model
that describes the market’s reaction to a bank failure. The unit

price of asset m becomes
Am{aBi,m

Am
of its original price. That is

because the failed banks need to sell assets to meet their liab-
ilities and the market’s ability to absorb this sale is not perfect,
which leads to price decrease of the affected assets. The loss of
the market value of each asset m is proportional to Bi,m, the
amount of asset m that the failed bank i owns. Depending on
the liquidity of an asset, a can be between 0 and 1. When an
asset is extremely liquid, the market value of the asset will not be
adversely affected by asset sales, a 5 0. When the market is
extremely illiquid, then the value of asset could potentially have
zero value. Thus the aggregated total market value of asset Am
will be reduced to Am 2 Bi,m, which corresponds to a 5 1.

5. Further deterioration of asset values can then contribute to
failure of more banks. Thus the damage in the bipartite network
spreads between banks and assets bidirectionally until the cas-
cading failure stops.

Usually financial crises start with a burst of economic bubbles. The
correspondence of the model’s initial shock parameter p in reality
can be described as the drop of certain asset value at the beginning of
a crisis. For example, when the dot-com bubble burst, the technology
heavy NASDAQ Composite index lost 66% percents of its value,
plunging from the peak of 5048 in March 10, 2000 to the 1720 in
April 2, 200135.

Empirical test and analysis. To empirically test our model, we
introduce a shock into the banking system by reducing (1 2 p)
percentage of the value of a single asset m. We then monitor the
progression of bank failure until the cascading process stops. We
examine two distinct groups of banks 1) all the analyzed banks
from CBBSD dataset, and 2) the banks from the FDL-FDIC failed
bank list. We then study the fraction of banks that were identified as
survived by our model in both groups. We plot both of these fractions
versus the sizes of initial shocks in fig. 3, for parameter g 5 0. The
four plots correspond to four typical assets being initially shocked
respectively. Figure 3(a) and figure 3(c) show that when the
commercial real estate loans, i.e. loans for construction and land
development and loans secured by nonfarm nonresidential
properties, suffer initial shock respectively, the survival rate of the
banks from the first group (all banks), according to our model, is
distinctly above the survival rate of the second group of banks
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Figure 2 | Comparison of probability density functions (PDF) of weight of typical assets and equity ratios between all banks and FDIC listed failed
banks for 2007. (a) PDF of the weight of loans for construction and land development in banks’ total asset. (b) PDF of the weight of loans secured
by 1-4 family residential properties in banks’ total assets. (c) PDF of the weight of loans secured by nonfarm nonresidential properties in banks’ total
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(FBL-FDIC failed banks list). This illustrates that when the
commercial real estate loans are initially shocked, the model can
identify the actual failed banks efficiently. Figures 3(b) and 3(d)
show that when we impose initial shock on loans secured by 1–4
family residual properties or agricultural loans, the model does not
clearly separate the two groups of banks. This result indicates that the
commercial bank failures during the 2008 financial crisis stems from
value deterioration of commercial real estate loans.

To quantitatively test the efficiency of the model in identifying
failed banks, we use the receiver-operating-characteristic (ROC)
curve analysis, which plots the fraction of true positives out of the
positives and the fraction of false positive out of the negatives for a
binary classifier system. ROC curve analysis is a standard method in
signal detection theory as well as in psychology, medicine and bio-
metrics31. We choose a parameter combination of p, g and a to run
the model to determine which banks fail, and compare this predic-
tion with the FDIC list of failed banks. The true positive rate is
defined as the fraction of the actual failed banks that are also iden-
tified as failed in our model. The false positive rate is the fraction of
banks that are not on the FDIC list of failed banks but are identified as
failing by our model. Each point in the ROC curve corresponds to
one parameter combination. A complete random guess would give
points along the diagonal line from the left bottom to the top right
corner. The more a point is above the diagonal line, the stronger
predictive power the model has.

We firstly impose the initial shock to the construction and land
development loans and plot the ROC curves in the top row of fig. 4.
As fig. 4(a) shows, when the false-positive rate is below 0.2 we have a
relatively high true-positive to false-positive ratio. For example, the
four black dots in fig. 4(a) represent the false-positive rate and true
positive rate pairs (0.06, 0.5), (0.1, 0.61), (0.15, 0.72) and (0.2, 0.78)
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Figure 3 | Fraction of survived banks after cascading failures as function
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significantly lower than the blue dashed lines separating clearly the failed
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dashed lines, similarly as in the case under (a). (d) Initial shock on
agricultural loans. The red solid lines are slightly higher than the blue
dashed line, not showing clear distinction between failed and non failed
banks.
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respectively. The pair (0.06, 0.5) corresponds to the parameter com-
bination (a, g, p) 5 (0.14, 0.26, 0.6), which means using this para-
meter combination, the model can identify 50% of the actual failed
banks that are on the FBL-FDIC with cost of 6% false positive pre-
diction. Overall, the ROC curve is bended well above the diagonal
curve, which means the model captures a significant portion of the
real-world behavior and has predictive power.

However, fig. 4(a) alone is not enough to justify our complex
networks model as necessary model to describe the systemic risk in
this banking system. If all of the actual failed banks owned a large
amount of loans for construction and land development, then these
banks will fail in the model in the first round of failure after this type
of asset is initially shocked. In that case, we only need to look at the
weight of this asset in the banks’ portfolio to identify the failed banks.
However, we find that the failure of banks does not only occur
because of the initial shock to specific assets, but also because of
the amplified damage by positive feed back in the complex banking
network. The interdependency between banks and the complexity of
network structure are crucial to this amplified damage in the system.
To demonstrate our findings we conduct separately ROC curve ana-
lysis for the first-step prediction (bank failures caused directly by the
initial shock on an asset) as well as for the consecutive-steps predic-
tion (bank failures caused by a cascading failure process) as shown in
figs. 4(b) and 4(c). We find that in addition to the first-step effective
predictions, the consecutive-steps of the model further efficiently
identify failed banks that can not be identified by the first-step
(ROC curve is above the diagonal line). Fig. 4(d) further shows the
number of failed banks correctly identified through the first and
consecutive steps of the cascading failure simulation for the four
parameter combinations selected from fig. 4(a) (black dots in the
figures). In all four cases, the number of failed banks predicted by
the consecutive steps represents a significant fraction of the total
number of failed banks identified. This result shows that some banks
did fail only because of the the complex interconnections between
banks in the system, which contributes to the risk contagion in the
system. Thus, our model captures the complexity feature of the
banking system and can offer prediction better than predictions
made only based on balance sheet but without considering interac-
tions between banks.

In addition to construction and land development loans, we also
test our cascading failure model by simulating initial shock on other
assets. The ROC curves in the bottom row of fig. 4 show that the loans
secured by nonfarm nonresidential properties, when initially
shocked, have lower predictive power (smaller true-positive to
false-positive ratio) compared to the case when initial shock is
imposed on loans for construction and land development. ROC
curve tests for assets of loans secured by 1–4 family residential prop-
erties and agricultural loans, as shown in figs. 5(a) and 5(b), exhibit
curves that are almost diagonal, indicating that initial shocks on these
two assets have no predictive power on the failure of the banks in the
2007–2011 financial crisis. A truly random behavior would render
points along the diagonal line (the so-called line of no discrimina-
tion) from the bottom left to the top right corners.

The above ROC curve results suggest that the construction and
land development loans and the loans secured by nonfarm nonresi-
dential properties were the two asset types most relevant in the failure
of commercial banks during the 2007–2011 financial crisis. It is
largely believed that the past financial crisis is caused by residential
real estate assets. However, we do not find evidence that loans
secured by 1–4 family residential properties are responsible for com-
mercial banks failures. This result is consistent with the conclusion of
ref. 25 that the cause of the commercial banks failure between 2007–
2011 were largely caused by commercial real estate-based loans
rather than residential mortgages.

Our final exploration is of the percolation-like property exhibited
by the bank-asset bipartite network. Complex networks usually
exhibit percolation phase transitions. As the dependent parameter
changes, the giant component of connected clusters in the network
can drop to zero at the critical point. In the bank-asset bipartite
network model we go beyond the giant component of connected
clusters and study all survived banks. Thus, percolation theory can
not be applied. However, we find that a percolation-like phenom-
enon also exists in this model. We study the number of survived
banks after the cascading failure process, tuning one parameter
and keeping the other two parameters fixed. We find that the number
of survived nodes in networks can change dramatically with a small
change of parameters. The parameter combination is chosen as the
first example in figure 4(d), a 5 0.14, g 5 0.26, and p 5 0.6. We show

Figure 5 | ROC curves of predictions of failed banks by our cascading failure model when (a) loans secured by 1-4 family residence properties and
(b) agricultural loans are initially shocked respectively. The straighter the ROC curve is, the closer it is to random case, meaning the less predictive power
in regard to the failure of the commercial banks during the 2007–2011 financial crisis.
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that the fraction of surviving banks changes smoothly as parameters
p and g change (see figs. 6(a) and 6(c)). But as a changes, the fraction
of surviving banks changes abruptly at a critical point and displays a
first-order-like abrupt phase transition (fig. 6(b)). We show that the
first-order-like phase transition also exists for p and g for a certain
parameter combination pool. As an example, we choose another
parameter combination (a 5 0.35, g 5 0.2, and p 5 0.6). We show
in the right panel of fig. 6 that a first-order-like phase transition exists
for all three parameters, which means the system is at risk of abrupt
collapse. Figure 6(d) shows that, when the initial shock parameter p
for an asset is below a certain threshold, even if the other asset market
values are undamaged, almost all banks default because the cascading
failure of this single asset (construction and land development loans)
significantly affects the overall financial system. Figure 6(e) shows
that when the effect of bank failures on asset market values is suffi-
ciently large, the whole banking system is at risk of collapse.
Figure 6(f) shows that when g is large, i.e., when the bank distress
barrier of default is more relaxed, the robustness of the system
improves significantly. Thus, the bank-asset bipartite network
behaves differently for different parameter combinations. Figure 7
plots the phase diagram for this bank network. Two different regions
exist for parameters p and a. In region I, the bank network system is
in a stable state, i.e., after cascading failure a significant number of
banks will still survive. In region II, the cascading failure process
contributes to the collapse of the entire bank network. Given that
the bank network as a complex system exhibits these two distinct
states, it is extremely important that policy makers institute rules that
will keep the banking system in the stable region.

Discussion
In this paper, we develop a bipartite network model for systemic risk
propagation and specifically study the cascading failure process in
the banking system. We first study the properties of the defaulting
banks during the 2007–2008 financial crisis, and find that they differ
from the properties of the survived banks. We then construct a
bipartite banking network that is composed of (i) banks on one hand
and (ii) bank assets on the other. We also propose a cascading failure
model to simulate the crisis spreading process in banking networks.
We introduce a shock into the banking system by reducing a specific
asset value and we monitor the cascading effect of this value reduc-
tion on banks and on other asset values. We test our model using
2007 balance sheet data by identifying the empirically failed banks

between 2008 and 2011, and find through ROC curve analysis that
our model simulates well the crisis spreading process and identifies a
significant portion of the actual failed banks from the FDIC failed
bank database.

Furthermore, studying the cascading failure of banks step by step
shows that the complex structure of the bank network indeed con-
tributes to the spreading of financial crisis, which makes a complex
network model necessary in describing and predicting the behavior
of the banking system. Thus, we suggest that our model could be
useful to stress test systemic risk of the banking system. For example,
we can stress test the model to predict which banks could be in
danger and how many banks could fail if the agricultural assets drop
20% in value. We then offer policy suggestions such as requirement
to reduce exposure to agricultural loans or closely monitor vulner-
able banks. Then the model also indicates possible ways to mitigate
the propagation of financial crisis. From the model we know that risk
in the banking system propagates bidirectionally between assets and
banks. Suppressing propagation either way could be very helpful to
mitigating such catastrophes. The first way is to provide liquidity to
the market, thus when distressed banks need to sell assets, the market
will not overreact. The second way to curb systemic risk contagion is
to ensure that banks are solvent and have healthy balance sheets, i.e.
no excess leverage, higher capital requirements, appropriate levels of
liquid assets, etc. in order to be able to absorb shocks to the asset
value. Possible measures could be to pay a periodic fee to a super-
vising institution during non-crisis periods in exchange for obtaining
emergency liquidity, as proposed by Perotti et al.34.

Lastly, we show that as the parameters of the system change the
bank network can switch between two distinct regions, stable and
unstable, which are separated by a so-called phase transition bound-
ary. We suggest that the bank network be understood in complex
system terms and that its closeness to the phase transition boundary
be diligently monitored in order to forestall system failure.

We suggest that our model for systemic risk propagation might be
applicable to other complex systems, e.g., to study the effect of sov-
ereign debt value deterioration on the global banking system or to
analyze the impact of depreciation or appreciation of certain curren-
cies on the world economy.

Note added in proof: After this work was completed, we learned of
the independent work of Caccioli et al.35, also addressing the chal-
lenges of systemic risk due to overlapping portfolios. Their inde-
pendent results are complementary to ours.

Methods
Data sets and explanations. We use two data sets in this paper. The first is the
Commercial Banks - Balance Sheet Data (CBBSD) from Wharton Research Data
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Figure 6 | Survival rate of banks when asset 0 (loans for construction and
land development) is initially shocked as function of one parameter with
the other two parameters fixed. Average over 300 independent
realizations with 95% confidence interval. Left panel: parameter
combination a 5 0.14, g 5 0.26 and p 5 0.6; right panel: parameter
combination a 5 0.35, g 5 0.2 and p 5 0.6.
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Figure 7 | Phase diagram for parameter alpha and p, when g 5 0.26. The
network is stable in region I. Significant part of banks in the network
would still survive after cascading failure. In region II, almost all the banks
in the network fail after cascading failure.
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Services32 for the time period 1/1/1976 to 12/31/2008, which contains the amounts of
13 specific assets and the total assets, total liabilities, and total equities for each bank.
We enumerate the assets from 0 to 12 to simplify the problem and categorize the
assets into real estate loans, other loans, and other assets. These assets are listed in
Table I. We study the data for the year 2007, which contains 7,846 US banks. All banks
have total assets data, but 21,171 data spots out of the total 7,846 3 13 5 101,998 data
spots for specific assets are blank. For banks with complete data, it is confirmed that
the total asset value equals the sum of individual asset. The absent data causes the sum
of the individual assets to be lower than the total assets. Furthermore, in some cases,
the sum of the individual assets can be smaller than the bank’s total liabilities, which
leads the banks to fail before any shock is introduced in the model. Thus we need to
ensure that the sum of the individual asset values is equal to the total assets value, by
allocating the difference between the total asset and available individual assets to the
missing assets. If a bank has more than one missing asset, the distribution of the
difference to the assets is proportional to the average amount of these assets on the
balance sheets of other banks.

The step-by-step methodology is described as follows:

1. For each bank i, we calculate the weight wi,m~
Bi,m

Bi
of asset m in the bank’s

portfolio.
2. We then calculate the average weight of each asset wh im~

P
iwi,m

N , where N is the
total number of banks.

3. From the total asset and known specific assets, we calculate the total amount for
the unknown assets, which is (Bi 2 Sknown assets Bi,m). We then distribute this
total amount to each unknown asset by their average weight (Æwæm)ratios. For
example, if a bank i lacks data on asset x and asset y, the amount of asset x is

calculated as Bi,x~ Bi{
P

m=x,yBi,m
! " wh ixP

m~x,y wh im
.

The second dataset that we use is the Failed Bank List from the Federal Deposit
Insurance Corporation (FBL-FDIC)33, which shows that 371 banks failed during the
1/1/2008 – 7/1/2011 period and that only 27 banks failed during the 2000–2007
period. We use this representative dataset to empirically test our model for the 2008
financial crisis. Of the 371 banks in the FBL-FDIC dataset, 278 banks are included in
the Commercial Banks - Balance Sheet Data dataset in 2007.
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