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We explore the degree to which concepts developed in statistical physics can be usefully applied to
physiological signals. We illustrate the problems related to physiologic signal analysis with
representative examples of human heartbeat dynamics under healthy and pathologic conditions. We
first review recent progress based on two analysis methods, power spectrum and detrended
fluctuation analysis, used to quantify long-range power-law correlations in noisy heartbeat
fluctuations. The finding of power-law correlations indicates presence of scale-invariant, fractal
structures in the human heartbeat. These fractal structures are represented by self-affine cascades of
beat-to-beat fluctuations revealed by wavelet decomposition at different time scales. We then
describe very recent work that quantifies multifractal features in these cascades, and the discovery
that the multifractal structure of healthy dynamics is lost with congestive heart failure. The analytic
tools we discuss may be used on a wide range of physiologic signals. © 2001 American Institute
of Physics. @DOI: 10.1063/1.1395631#

Physiologic signals are generated by complex self-
regulating systems that process inputs with a broad range
of characteristics.1–3 Many physiological time series are
extremely inhomogeneous and nonstationary, fluctuating
in an irregular and complex manner. An important ques-
tion is whether the ‘‘heterogeneous’’ structure of physi-
ologic time series arises trivially from external and intrin-
sic perturbations which push the system away from a
homeostatic set point. An alternative hypothesis is that
the fluctuations are, at least in part, due to the underlying
dynamics of the system. The key problem is how to de-
compose subtle fluctuations „due to intrinsic physiologic
control… from other nonstationary trends associated with
external stimuli. Until recently, the analysis of the fractal
properties of such fluctuations has been restricted to
second-order linear characteristics such as the power
spectrum and the two-point autocorrelation function.
These analyses reveal that the fractal behavior of healthy,

free-running physiological systems is often characterized
by 1Õf-like scaling of the power spectra.4–8 Monofractal
signals, however, are homogeneous and have ‘‘linear’’
properties. Many physiologic time series—such as heart-
beat interval sequences—are in fact inhomogeneous, sug-
gesting that different parts of the signal have different
scaling properties. In addition, there is evidence that
heartbeat dynamics exhibits nonlinear properties.9–15

Such features are often associated with multifractal be-
havior. Up to now, robust demonstration of multifractal-
ity for nonstationary time series has been hampered by
problems related to a drastic bias in the estimate of the
singularity spectrum due to diverging negative moments.
Moreover, the classical approaches based on the box-
counting technique and structure function formalism fail
when a fractal function is composed of a multifractal sin-
gular part embedded in regular polynomial behavior.16

By means of a wavelet-based multifractal formalism, we
show that healthy human heartbeat dynamics exhibits
even higher complexity „than previously expected from
the finding of fractal 1Õf scaling… which is characterized
by a broad multifractal spectrum.17

a!Also at Harvard Medical School, Beth Israel Deaconess Medical Center,
Boston, Massachusetts 02215.
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I. INTRODUCTION

In recent years the study of the statistical properties of
heartbeat interval sequences has attracted the attention of re-
searchers from different fields.18–22 Analysis has focused ex-
tensively on interbeat interval variability as an important
quantity to help elucidate possibly nonhomeostatic physi-
ologic variability because ~i! the heart rate is under direct
neoroautonomic control, ~ii! interbeat interval variability is
readily measured by noninvasive means, and ~iii! analysis of
these heart rate dynamics may provide important practical
diagnostic and prognostic information. Figure 1 shows a car-
diac interbeat time series—the output of a spatially and tem-
porally integrated neuroautonomic control system. The time
series shows ‘‘erratic’’ fluctuations and ‘‘patchiness.’’ These
fluctuations are usually ignored in conventional studies
which focus on averaged quantities. In fact, these fluctua-
tions are often labeled as ‘‘noise’’ to distinguish them from
the true ‘‘signal’’ of interest. Generally, in the conventional
approach it is assumed that there is no meaningful structure
in apparent noise and, therefore, one does not expect to gain
any understanding about the underlying system through the
study of these fluctuations. However, by adapting and ex-
tending methods developed in modern statistical physics and
nonlinear dynamics, we find that the physiologic fluctuations
shown in Fig. 1 exhibit an unexpected hidden scaling
structure.6,13,17,23–25 Furthermore, the dynamical patterns of
these fluctuations and the associated scaling features change
with pathological perturbations. These findings raise the pos-
sibility that understanding the origin of such temporal struc-
tures and their alterations with disease ~a! may elucidate cer-
tain basic aspects of heart rate control mechanisms, and ~b!
may have potential for clinical monitoring.

II. 1Õf FLUCTUATIONS IN HEARTBEAT DYNAMICS

A quantity widely used to measure correlations in a time
series is the power spectrum, which measures the relative

frequency content of a signal. Fourier and related power
spectrum analysis have proved particularly useful for recog-
nizing the existence and role of characteristic frequencies
~time scales! in cardiac dynamics. The analysis of heartbeat
fluctuations focused initially on short time oscillations asso-
ciated with breathing and blood pressure as well as other
control.20,21 Studies of longer heartbeat records revealed
1/f -like scale-free behavior.4,5 A power spectrum calculation
assumes that the signal studied is stationary,26,27 and when
applied to nonstationary time series can lead to misleading
results. However, time series of beat-to-beat ~RR! heart rate
intervals obtained from digitized electrocardiograms are
typically nonstationary and fluctuate in an irregular manner
in healthy subjects, even at rest @Fig. 1~b!#.28,29 Because of
this property, researchers were faced with the task to con-
sider only portions of the data and to test these portions for
stationarity before performing power spectrum analysis.

To illustrate the limitations of the power spectrum analy-
sis for nonstationary time series, we consider 6 h records
~n'104 beats! of interbeat intervals for a healthy subject
during sleep and wake activity. We show that there is no true
1/f power spectrum for the interbeat intervals in the real
heart. Instead, we find that the power spectrum of the inter-

FIG. 2. ~Top! Power spectrum from 6 h records of interbeat intervals for a
healthy subject during day and night. ~Bottom! We plot the local exponent b
calculated from the power spectrum for six healthy subjects. The local value
of b shows a persistent drift, so no true scaling exists. This is not surprising,
having in mind the nonstationarity of the signals. The horizontal line shows
the value of the exponent obtained from a least square fit to the data.

FIG. 1. Consecutive heartbeat intervals are plotted versus beat number for 6
h recorded from the same healthy subject during: ~a! wake period: 12:00
p.m. to 6:00 p.m. and ~b! sleep period: 12:00 a.m. to 6:00 a.m. ~Note that
there are fewer interbeat intervals during sleep due to the larger average of
the interbeat intervals, i.e., slower heart rate.!
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beat intervals has different regimes with different scaling be-
havior and that the rounded crossover between the different
regimes is the reason why it seems, to first approximation, to
scale as 1/f ~Fig. 2!.

Recent analyses of very long time series ~up to 24 h: n
'105 beats! show that under healthy conditions, interbeat
interval increments I(n) exhibit power-law anticorrelations.6

Since I(n) is stationary, we can apply standard spectral
analysis techniques ~Fig. 3! and we show that true scaling
does exist.

The fact that the log–log plot of the power spectrum
S I( f ) vs f is linear implies

S I~ f !; f 2b. ~2.1!

The exponent b is related to the mean fluctuation func-
tion exponent a by b52a21 ~Refs. 30 and 31! and can
serve as an indicator of the presence and type of correlations.
~i! If b50, there is no correlation in the time series I(n)
~‘‘white noise’’!. ~ii! If 0,b,1, then I(n) is correlated such
that positive values of I are likely to be close ~in time! to
each other, and the same is true for negative I values. ~iii! If

21,b,0, then I(n) is also correlated. However, the values
of I are organized such that positive and negative values are
more likely to alternate in time ~‘‘anticorrelation’’!.30

For interbeat interval increments from records of healthy
subjects we obtain b.21, suggesting nontrivial power-law
long-range correlations in the heartbeat. Furthermore, the an-
ticorrelation properties of I indicated by the negative b are
consistent with a nonlinear feedback system that ‘‘kicks’’ the
heart rate away from extremes.32,33 This tendency, however,
does not only operate locally on a beat-to-beat basis, but over
a wide range of time scales up to thousands of beats ~Fig. 3!.
The emergence of such scale-invariant properties in the
seemingly ‘‘noisy’’ heartbeat fluctuations is believed to be a
result of highly complex, nonlinear mechanisms of physi-
ologic control.31,36

Extracting increments from a time series is only a first
step in effectively treating problems related to nonstationari-
ties. Note that the power spectrum of the increments in the
heartbeat intervals ~Fig. 3! does not distinguish between
wake and sleep dynamics. One needs to be better, e.g., by
taking into account the presence of polynomial trends in the
times series. We discuss such an approach in the following
section.

III. MONOFRACTAL ANALYSIS: LONG-RANGE
ANTICORRELATIONS IN THE HEARTBEAT
FLUCTUATIONS

Recently the detrended fluctuation analysis ~DFA!
method37 was introduced to detect long-range correlations in
physiological fluctuations when these are embedded in a
seemingly nonstationary time series. The advantage of the
DFA method over conventional methods, such as power
spectrum analysis, is that it avoids the spurious detection of
apparent long-range correlations that are an artifact of non-
stationarity related to linear and higher-order polynomial
trends in the data. The essence of the DFA method is as
follows: the average root-mean-square fluctuation function
F(n) is obtained after integrating and detrending the data,
i.e., subtracting the local polynomial trend in a box of size n
data points. The power-law relation between F(n) and the
number of data points n in a box indicates the presence of
scaling: the fluctuations can be characterized by a scaling
exponent a, a self-similarity parameter, defined as F(n)
;na. The DFA method has been tested on control time se-
ries of ‘‘built-in’’ long-range correlations with superposition
of a nonstationary external trend.38 It has also been success-
fully applied to detect long-range correlations in human gait,
ion channel kinetics, and highly heterogeneous DNA
sequences.7,8,37,39–41 Of note is a recent independent review
of fractal fluctuation analysis methods which determined that
DFA was one of the most robust methods.42

It is known that circadian rhythms are associated with
periodic changes in key physiological processes.3,36,44 Typi-
cally the differences in the cardiac dynamics during sleep
and wake phase are reflected in the average and standard
deviation of the interbeat intervals.43,44 Such differences can
be systematically observed from plots of the interbeat inter-
vals recorded from subjects during sleep and wake ~Fig. 1!.
In recent studies we have reported on sleep–wake differ-

FIG. 3. ~Top! Power spectrum of the interbeat interval increments from 6 h
record for the same healthy subject as in Fig. 2. Error bars are calculated as
the standard deviation of the power spectrum values for frequencies within
the binning interval. ~Bottom! The local exponent b I for the power spectrum
of the increments for the same six healthy subjects as in Fig. 2. Note that the
exponent b I fluctuates around an average value close to one, so true scaling
does exist. The horizontal line shows the value of b I obtained from a least
square fit. Note, however, that the difference between wake and sleep dy-
namics cannot be observed from the power spectra.
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ences in the distributions of the amplitudes of the fluctua-
tions in the interbeat intervals—a surprising finding indicat-
ing higher probability for larger amplitudes during
sleep.13,24,45 Next, we ask the question if there are character-
istic differences in the scaling behavior between sleep and
wake cardiac dynamics. We hypothesize that sleep and wake
changes in cardiac control may occur on all time scales and
thus could lead to systematic changes in the scaling proper-
ties of the heartbeat dynamics. Elucidating the nature of
these sleep–wake rhythms could lead to a better understand-
ing of the neuroautonomic mechanisms of cardiac regulation.

To answer this question we apply the detrended fluctua-
tion analysis ~DFA! method. We analyze 30 datasets—each
with 24 h of interbeat intervals—from 18 healthy subjects
and 12 patients with congestive heart failure.46 We analyze
the nocturnal and diurnal fractions of the dataset of each
subject, which correspond to the 6 h ~n'22 000 beats! from
midnight to 6:00 a.m. and noon to 6:00 p.m. These periods
incorporate the segments with lowest and highest heart rate
in the time series, which we and others found to be the best
indirect marker of sleep.43,44 We find that at scales above
'1 min(n.60) the data during wake hours display long-
range correlations over two decades with average exponents
aW'1.05 for the healthy group and aW'1.2 for the heart
failure patients. For the sleep data we find a systematic cross-
over at scale n'60 beats followed by a scaling regime ex-
tending over two decades characterized by a smaller expo-
nent: aS'0.85 for the healthy and aS'0.95 for the heart
failure group @Figs. 4~a! and 4~c!#. Although the values of the
sleep and wake exponents vary from subject to subject, we
find that for all individuals studied, the heartbeat dynamics
during sleep are characterized by a smaller exponent.47

This analysis suggests that the observed sleep–wake
scaling differences are due to intrinsic changes in the cardiac
control mechanisms for the following reasons: ~i! The DFA
method removes the ‘‘trends’’ in the interbeat interval signal
which are due, at least in part, to activity, and quantifies the
fluctuations along the trends. ~ii! Responses to external
stimuli should give rise to a different type of fluctuations
having characteristic time scales, i.e., frequencies related to
the stimuli. However, fluctuations in both diurnal and noc-
turnal cardiac dynamics exhibit scale-free behavior. ~iii! The
weaker anticorrelated behavior observed for all wake phase
records cannot be simply explained as a superposition of
stronger anticorrelated sleep dynamics and random noise of
day activity. Such noise would dominate at large scales and
should lead to a crossover with an exponent of 1.5. However,
such crossover behavior is not observed in any of the wake
phase datasets ~Fig. 4!. Rather, the wake dynamics are typi-
cally characterized by a stable scaling regime up to n55
3103 beats.

To test the robustness of our results, we analyze 17
datasets from six cosmonauts during long-term orbital flight
on the Mir space station under the extreme conditions of zero
gravity and high stress activity.48 Each dataset contains con-
tinuous periods of 6 h data under both sleep and wake con-
ditions. We find that for all cosmonauts the heartbeat interval
series exhibit long-range correlations with scaling exponents
consistent with those found for the healthy terrestrial group:

aW'1.04 for the wake phase and aS'0.82 for the sleep
phase. The values of these exponents indicate that the fluc-
tuations in the interbeat intervals are anticorrelated for the
wake phases and even stronger anticorrelated for the sleep
phase. This sleep-wake scaling difference is observed not
only for the group averaged exponents but for each indi-
vidual cosmonaut dataset @Fig. 4~b!#. Moreover, the scaling
differences are persistent in time, since records of the same
cosmonaut taken on different days ~ranging from the 3rd to
the 158th day in orbit!, exhibit a higher degree of anticorre-
lation in sleep.

Thus, the larger values for the wake phase scaling expo-
nents observed for healthy subjects cannot be a trivial artifact
of activity. Furthermore, the larger value of the average wake
exponent for the heart failure group compared to the other
two groups cannot be attributed to external stimuli either,

FIG. 4. Plots of log F(n) vs log n for 6 h wake ~open circles! and sleep
records ~filled triangles! of ~a! one typical healthy subject; ~b! one cosmo-
naut ~during orbital flight!; and ~c! one patient with congestive heart failure.
Note the systematic lower exponent for the sleep phase ~filled triangles!,
indicating stronger anticorrelations. ~d! As a control, we reshuffle and inte-
grate the interbeat increments from the wake ~open squares! and sleep data
~solid squares! of the healthy subject presented in ~a!. We find a Brownian
noise scaling over all time scales for both wake and sleep phases with an
exponent a51.5, as one expects for random walk-like fluctuations.
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since patients with severe cardiac disease are strongly re-
stricted in their physical activity. We note, however, that the
average sleep–wake scaling difference remains the same
~'0.2! for all three groups. Such sleep–wake changes in the
scaling characteristics may indicate different regimes of in-
trinsic neuroautonomic regulation of the cardiac dynamics,
which may ‘‘switch’’ on and off in accordance with circadian
rhythms. A very recent study confirms our finding of lower
value for the scaling exponent during sleep and shows that
different stages of sleep ~e.g., light sleep, deep sleep, rapid
eye movement stages! could be associated with different cor-
relations in the heartbeat fluctuations.49 The findings of
stronger anticorrelations,47 as well as higher probability for
larger heartbeat fluctuations during sleep,13,24,45 are of inter-
est from a physiological viewpoint, since they suggest that
the observed dynamical characteristics in the heartbeat fluc-
tuations during sleep and wake phases are related to intrinsic
mechanisms of neuroautonomic control, and support a reas-
sessment of the sleep as a surprisingly active dynamical
state. The finding of scaling features in the human heartbeat
and their change with disease or sleep–wake transition have
motivated new modeling approaches which may lead to bet-
ter understanding the underlying control mechanisms of
heartrate regulation.33

Before concluding this section we note that recent
work34 provides evidence of surprising complexity present in
the temporal organization of the heterogeneities ~e.g., trends!
in human heartbeat dynamics. Trends in the interbeat interval
signal are traditionally associated with external stimuli. To
probe the temporal organization of such heterogeneities we
introduce a segmentation algorithm35 and find that the
lengths of segments with different local mean heart rates
follow a power-law distribution. This scale-invariant struc-
ture is not a simple consequence of the long-range correla-
tions present in the heartbeat fluctuations discussed in this
section. These new findings suggest that relevant physiologi-
cal information may be hidden in the heterogeneities of the
heartbeat time series, the understanding of which remains an
open question.

IV. SELF-SIMILAR CASCADES IN THE HEARTBEAT
FLUCTUATIONS

Many simple systems in nature have correlation func-
tions that decay with time in an exponential way. For sys-
tems comprised of many interacting subsystems, physicists
discovered that such exponential decays typically do not oc-
cur. Rather, correlation functions were found to decay with a
power-law form. The implication of this discovery is that in
complex systems, there is no single characteristic time.50–52

If correlations decay with a power-law form, we say the
system is ‘‘scale-free’’ because there is no characteristic scale
associated with a power law. Since at large time scales a
power law is always larger than an exponential function,
correlations described by power laws are termed ‘‘long-
range’’ correlations—they are of longer range than exponen-
tially decaying correlations.

The findings of long-range power-law correlations23,47

and the recently reported scaling in the distributions of heart-
beat fluctuations13,45 ~i.e., ‘‘data collapse’’ of the distributions

for different time scales! suggest the absence of a character-
istic scale and indicate that the underlying dynamical mecha-
nisms regulating the healthy heartbeat have statistical prop-
erties which are similar on different time scales. Such
statistical self-similarity is an important characteristic of
fractal objects.53 However, how can this purported fractal
structure be ‘‘visualized’’ in the seemingly erratic and noisy
heartbeat fluctuations? The wavelet decomposition of beat-
to-beat heart rate signals can be used to provide a visual
representation of this fractal structure ~Fig. 5!. The brighter
colors indicate larger values of the wavelet amplitudes ~cor-
responding to large heartbeat fluctuations! and white tracks
represent the wavelet transform maxima lines. The structure
of these maxima lines shows the evolution of the heartbeat
fluctuations with scale and time. The wavelet analysis per-
formed with the second derivative of the Gaussian ~the
Mexican hat! as an analyzing wavelet uncovers a hierarchical
scale invariance @Fig. 5 ~top panel!#, which is characterized
by the stability of the scaling form observed for the distribu-
tions and the power-law correlations.13,23,47 The plots reveal
a self-affine cascade formed by the maxima lines—a magni-
fication of the central portion of the top panel shows similar
branching patterns @Fig. 5 ~lower panel!#. Such fractal cas-

FIG. 5. ~Color online! Color-coded wavelet analysis of a heartbeat interval
signal. The x-axis represents time ~'1700 beats! and the y-axis indicates the
scale of the wavelet used ~a51,2,...,80; i.e., ' from 5 to 5 min! with large
scales at the top. This wavelet decomposition reveals a self-similar fractal
structure in the healthy cardiac dynamics—a magnification of the central
portion of the top panel with 200 beats on the x-axis and wavelet scale a
51,2,...,20 on the y-axis shows similar branching patterns ~lower panel!.
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cade results from the interaction of many nonlinearly
coupled physiological components, operating on different
scales ~polynomial trends due to daily activity are filtered
out!.

Thus the wavelet transform, with its ability to remove
local trends and to extract interbeat variations on different
time scales, enables us to identify fractal patterns ~arches! in
the heartbeat fluctuations even when the signals change as a
result of background interference. Analysis of data from
pathologic conditions ~e.g., sleep apnea! show a breakdown
of these patterns.24 Fractal characteristics of cardiac dynam-
ics and other biological signals can be usefully studied with
the generalized multifractal formalism based on the wavelet
transform modulus maxima method which we discuss in the
next section.

V. MULTIFRACTALITY: NONSTATIONARITY IN LOCAL
SCALING

Monofractal signals are homogeneous in the sense that
they have the same scaling properties, characterized locally
by a single singularity exponent h0 , throughout the entire
signal.52–57 Therefore monofractal signals can be indexed by
a single global exponent—the Hurst exponent H[h0 ~Ref.
58!—which suggests that they are stationary from viewpoint
of their local scaling properties. On the other hand, multi-
fractal signals, can be decomposed into many subsets—
possibly infinitely many—characterized by different local
Hurst exponents h, which quantify the local singular behav-

ior and thus relate to the local scaling of the time series ~Fig.
6!. Thus multifractal signals require many exponents to fully
characterize their scaling properties53,55,57 and are intrinsi-
cally more complex, and inhomogeneous, than monofractals.

The statistical properties of the different subsets charac-
terized by these different exponents h can be quantified by
the function D(h), where D(h0) is the fractal dimension of
the subset of the time series characterized by the local Hurst
exponent h0 .53,55,57,59–61 Thus, the multifractal approach for
signals, a concept introduced in the context of multiaffine
functions,62,63 has the potential to describe a wide class of
signals that are more complex then those characterized by a
single fractal dimension ~such as classical 1/f noise!.

In a recent study, we establish the relevance of the mul-

FIG. 6. ~Color! Local Hurst exponents h for a multifractal signal ~top panel!
and the decomposition of this signal into subsets ~subsequent panels! with
each local Hurst exponent indicated by the color and each fractal dimension
indicated by the density of vertical bars. The x-axis represents time and the
vertical bars ~y-axis! indicate local Hurst exponents.

FIG. 7. ~Color! ~a! Consecutive heartbeat intervals measured in seconds are
plotted versus beat number from approximately 3 h record of a representa-
tive healthy subject. The time series exhibits very irregular and nonstation-
ary behavior. ~b! The top panel displays in color the local Hurst exponents
calculated for the same 3 h record shown in ~a!. The other two panels
represent two subsets of the heartbeat interval time series in ~a! each with a
local Hurst exponent ~indicated by the color! and with a different fractal
dimension ~indicated by the density of the vertical bars!. ~c! The panel
displays in color the local Hurst exponents calculated for a monofractal
signal—fractional Brownian motion with H50.6. The homogeneity of the
signal is represented by the nearly monochromatic appearance of the signal
which indicates that the local Hurst exponent h is the same throughout the
signal and identical to the global Hurst exponent H.
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tifractal formalism for the description of a physiological
signal—the human heartbeat.17 The motivation for our work
is not merely looking for yet another example of multifrac-
tality, this time in the biological sciences. In fact, if we con-
sider the neuroautonomic control mechanisms responsible
for the generation of heartbeats, it is natural to expect the
need for multifractal concepts for their description, since the
heartbeats are a result of the interaction of many physiologi-
cal components operating on different time scales. These in-
teractions are nonlinear and self-regulating ~through feed-
back control!, leading to the nonlinear character of the
output signal and to the heterogeneous features of heartbeat
time series.

In contrast, the assumption of heartbeat mono-
fractality—which has been the scope of studies in the field so
far—is unrealistic because the monofractal hypothesis as-
sumes that the scaling properties of the signal are the same
throughout time, and are characterized by the same local
Hurst exponent h @Fig. 7~c!#. However, inspection of heart-
beat signals shows them to be heterogeneous and suggests
they might require more exponents for their description.
Since the power spectrum and the correlation analysis ~DFA
method! can measure only one exponent characterizing a
given signal, these methods are more appropriate for the
study of monofractal signals. Moreover, the power spectrum
and the correlation analysis reflect only the linear character-
istics, while the heartbeat dynamics exhibits nonlinear prop-
erties. Thus the multifractal analysis may reveal new infor-
mation on the nature of the nonlinearity encoded in the
Fourier phases ~see Fig. 12 later in this work!.

The first problem, therefore, is to extract the local value
of h. To this end we use methods derived from wavelet
theory.64 The properties of the wavelet transform make
wavelet methods attractive for the analysis of complex non-
stationary time series such as one encounters in physiology.13

In particular, wavelets can remove polynomial trends that
could lead box-counting techniques to fail to quantify the
local scaling of the signal.65 Additionally, the time-frequency
localization properties of the wavelets makes them particu-
larly useful for the task of revealing the underlying hierarchy
in the cascade of fluctuations ~Fig. 5! that governs the tem-
poral distribution of the local Hurst exponents. Hence, the
wavelet transform enables a reliable multifractal analysis.65

As the analyzing wavelet, we use derivatives of the Gaussian
function, which allows us to estimate the singular behavior
and the corresponding exponent h at a given location in the
time series. The higher the order n of the derivative, the
higher the order of the polynomial trends removed and the
better the detection of the temporal structure of the local
scaling exponents in the signal.

The concept of multifractality is exemplified in Figs.
7~a! and 7~b! for a heartbeat intervals record from a healthy
subject. The heterogeneity of the healthy heartbeat is repre-
sented by the broad range of local Hurst exponents h ~colors!
present and the complex temporal organization of the differ-
ent exponents. The middle and bottom panels illustrate the
different fractal structure of two subsets of the time series
characterized by different local Hurst exponents. The value
of the local Hurst exponent for each subset is represented

with a shade of green and red, respectively. The two subsets
display different temporal structures which can be quantified
by different fractal dimension D(h). The healthy signal is
represented by a multicolor plot, reflecting multifractal be-
havior through the variety of values for the local Hurst ex-
ponents. In contrast, fractional Brownian motion ~a mono-
fractal signal! is essentially monochromatic, indicating that
the local Hurst exponent h is the same throughout the signal
@Fig. 7~c!#.

VI. MULTIFRACTALITY IN HEARTBEAT DYNAMICS

We evaluate the local exponent h through the modulus of
the maxima values of the wavelet transform at each point in
the time series using the wavelet transform modulus maxima
method.65 However, heartbeat time series contain densely
packed, nonisolated singularities which unavoidably affect
each other in the time-frequency decomposition. Therefore,
rather than evaluating the distribution of the inherently un-
stable local singularity exponents ~as shown in color in Fig.
7!, we estimate the scaling of an appropriately chosen global
measure—a partition function Zq(a), which is defined as the
sum of the qth powers of the local maxima of the modulus of
the wavelet transform coefficients at scale a. For each scale a
these local maxima values are traced along the maxima lines
obtained after the wavelet decomposition of the heartbeat
signal ~maxima lines appear in bright/white color in Fig. 5!.
As analyzing wavelet we use the third derivative of the
Gaussian function. For small scales, we expect

Zq~a !;at~q !. ~6.1!

For certain values of q, the exponents t(q) have familiar
meanings. In particular, t~2! is related to the scaling expo-
nent of the Fourier power spectra, S( f );1/f b, as b52
1t(2). For positive q, Zq(a) reflects the scaling of the large
fluctuations and strong singularities, while for negative q,
Zq(a) reflects the scaling of the small fluctuations and weak
singularities.55,57 Thus, the scaling exponents t(q) can reveal
different aspects of cardiac dynamics ~Fig. 8!. Monofractal
signals display a linear t(q) spectrum, t(q)5qH21, where
H is the global Hurst exponent. For multifractal signals, t(q)
is a nonlinear function: t(q)5qh(q)21, where h(q)
[dt(q)/dq is not constant.

A previous obstacle to the determination of the multi-
fractal spectrum of a time series has been the calculation of
the negative moments. Until the application of the wavelet
modulus maxima method, it was not possible to estimate
Zq(a) for q,0. We calculate t(q) for moments q
525,4,...,0,...,5 and scales a5231.15i, i50,...,41 from 6 h
records obtained from a healthy subject and a subject with
congestive heart failure. In Figs. 8~a! and 8~b! we display the
calculated values of Zq(a) for scales a.8. The top curve
corresponds to q525, the middle curve ~shown heavy! to
q50 and the bottom curve to q55. The exponents t(q) are
obtained from the slope of the Zq(a) curves in the region
16,a,700, thus eliminating the influence of any residual
small scale random noise due to electrocardiogram signal
pre-processing as well as extreme, large-scale fluctuations of
the signal. A monofractal signal would correspond to a
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straight line for t(q), while for a multifractal signal t(q) is
nonlinear. Note the clear differences between the t(q) curves
for healthy and heart failure records @Fig. 8~c!#. The con-
stantly changing curvature of the t(q) curves for the healthy
records suggests multifractality. In contrast, t(q) is almost

linear for the congestive heart failure subject, indicating
monofractality.

We analyze both daytime ~12:00 to 18:00! and nighttime
~0:00 to 6:00! heartbeat time series records of healthy sub-
jects, and the daytime records of patients with congestive
heart failure. These data were obtained by Holter monitoring.
Our database includes 18 healthy subjects ~13 female and 5
male, with ages between 20 and 50, average 34.3 years!, and
12 congestive heart failure subjects ~3 female and 9 male,
with ages between 22 and 71, average 60.8 years! in sinus
rhythm.46

FIG. 9. ~Color online! ~a! Multifractal spectrum t(q) of the group averages
for daytime and nighttime records for 18 healthy subjects and for 12 patients
with congestive heart failure. The results show multifractal behavior for the
healthy group and distinct change in this behavior for the heart failure
group. ~b! Fractal dimensions D(h) obtained through a Legendre transform
from the group averaged t(q) spectra of ~a!. The shape of D(h) for the
individual records and for the group average is broad (Dh'0.25), indicat-
ing multifractal behavior. On the other hand, D(h) for the heart failure
group is very narrow (Dh'0.05), indicating loss of multifractality. The
different form of D(h) for the heart failure group may reflect perturbation of
the cardiac neuroautonomic control mechanisms associated with this pathol-
ogy. Note that, for q52, the heartbeat fluctuations of healthy subjects are
characterized by h'0.1, which corresponds to a'1.1 for the interbeat in-
terval series obtained from DFA analysis ~Sec. III!.

FIG. 8. ~Color online! Scaling of the partition function Zq(a) with scale a
obtained from daytime records consisting of '25 000 beats for ~a! a healthy
subject and ~b! a subject with congestive heart failure. ~c! Multifractal spec-
trum t(q) for the individual records in ~a! and ~b!.
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Next, we obtain the fractal dimension D(h). It is related
to t(q) through a Legendre transform,

D~h !5q
dt~q !

dq
2t~q !. ~6.2!

For all healthy subjects, we find that t(q) is a nonlinear
function @Figs. 8~c! and 9~a!#, which indicates that the heart
rate of healthy humans is a multifractal signal. Figure 9~b!
shows that for healthy subjects, D(h) has nonzero values for
a broad range of local Hurst exponents h. The multifractality
of healthy heartbeat dynamics cannot be explained by activ-
ity, as we analyze data from subjects during nocturnal hours.
Furthermore, this multifractal behavior cannot be attributed
to sleep-stage transitions, as we find multifractal features
during daytime hours as well.66 The range of scaling
exponents—0,h,0.3—with nonzero fractal dimension
D(h), suggests that the fluctuations in the healthy heartbeat
dynamics exhibit anticorrelated behavior ~h5

1
2 corresponds

to uncorrelated behavior while h.
1
2 corresponds to corre-

lated behavior!.
In contrast, we find that heart rate data from subjects

with a pathological condition—congestive heart failure—
show a clear loss of multifractality @Figs. 9~a! and 9~b!#. For
the heart failure subjects, t(q) is close to linear and D(h) is
nonzero only over a very narrow range of exponents h indi-
cating monofractal behavior ~Fig. 9!.

Our results show that, for healthy subjects, local Hurst
exponents in the range 0.07,h,0.17 are associated with
fractal dimensions close to one. This means that the subsets
characterized by these local exponents are statistically domi-
nant. On the other hand, for the heart failure subjects, we
find that the statistically dominant exponents are confined to
a narrow range of local Hurst exponents centered at h
'0.22. These results suggest that for heart failure the fluc-
tuations are less anticorrelated than for healthy dynamics
since the dominant scaling exponents h are closer to 1

2. Thus,
our findings support previous reports of long-range anticor-
relations in healthy heartbeat fluctuations ~see caption to Fig.
9!.23

We present color panels with the local Hurst h exponent
for six healthy individuals ~Fig. 10! and six subjects with
congestive heart failure ~Fig. 11!. Each panel represents a 6 h
long record. The color code for these panels is the following:
with increasing value of h, the spectrum goes from red to
green to blue. A wider range of colors indicates a higher
degree of multifractality. For this reason, records from
healthy individuals should be more polychromatic. On the
other hand, records from heart failure patients should be
more monochromatic ~with a single color predominating!,
indicating loss of multifractality. In addition, the color spec-
trum for the healthy individuals is shifted to the red and for
the heart failure patients is shifted to the blue. This is in
agreement with the results in Fig. 9 where the peak of the
multifractal spectrum D(h) is centered at smaller values of h
for the healthy group and at larger values of h for the heart
failure group. These findings may have a potential for
diagnosis.67

VII. MULTIFRACTALITY AND NONLINEARITY

The multifractality of heart beat time series also enables
us to quantify the greater complexity of the healthy dynamics
compared to pathological conditions. Power spectrum and
detrended fluctuation analysis define the complexity of heart
beat dynamics through its scale-free behavior, identifying a
single scaling exponent as an index of healthy or pathologic
behavior. Hence, the power spectrum is not able to quantify
the greater level of complexity of the healthy dynamics, re-
flected in the heterogeneity of the signal. On the other hand,
the multifractal analysis reveals this new level of complexity
by the broad range of exponents necessary to characterize
the healthy dynamics ~Fig. 9!. Moreover, the change in shape
of the D(h) curve for the heart failure group may provide
insights into the alteration of the cardiac control mechanisms
due to this pathology.

To further study the complexity of the healthy dynamics,
we perform two tests with surrogate time series. First, we

FIG. 10. ~Color online! Panels obtained from healthy individuals illustrating
how the local Hurst exponent h ~vertical color bars! changes with time
~x-axis!. Each panel represents a 6 h record. A broad range of colors indi-
cates broad multifractal spectrum.
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generate a surrogate time series by shuffling the interbeat
interval increments of a record from a healthy subject. The
new signal preserves the distribution of interbeat interval in-
crements but destroys the long-range correlations among
them. Hence, the signal is a simple random walk, which is
characterized by a single Hurst exponent H5

1
2 and exhibits

monofractal behavior @Fig. 12~a!#. Second, we generate a
surrogate time series by performing a Fourier transform on a
record from a healthy subject, preserving the amplitudes of
the Fourier transform but randomizing the phases, and then
performing an inverse Fourier transform. This procedure
eliminates nonlinearities, preserving only the linear features
of the original time series. The new surrogate signal has the
same 1/f behavior in the power spectrum as the original
heart beat time series; however, it exhibits monofractal be-
havior @Fig. 12~a!#. We repeat this test on a record of a heart
failure subject. In this case, we find a smaller change in the
multifractal spectrum @Fig. 12~b!#. The results suggest that

the healthy heartbeat time series contains important phase
correlations canceled in the surrogate signal by the random-
ization of the Fourier phases, and that these correlations are
weaker in heart failure subjects. Furthermore, the tests indi-
cate that the observed multifractality is related to nonlinear
features of the healthy heartbeat dynamics. A number of re-
cent studies have tested for nonlinear and deterministic prop-
erties in recordings of interbeat intervals.9–11,14,15 Our results
suggest an explicit relation between the nonlinear features
~represented by the Fourier phase interactions! and the mul-
tifractality of healthy cardiac dynamics ~Fig. 12!.

FIG. 11. ~Color! Panels obtained from subjects with congestive heart failure
illustrating how the local Hurst exponent h ~vertical color bars! changes with
time ~x-axis!. Each panel represents a 6 h record. An almost monochromatic
appearance indicates narrow multifractal spectrum, i.e., loss of multi-
fractality.

FIG. 12. ~Color! ~a! The fractal dimensions D(h) for a 6 h daytime record
of a healthy subject. After reshuffling and integrating the increments in this
interbeat interval time series, so that all correlations are lost but the distri-
bution is preserved, we obtain monofractal behavior—a very narrow point-

like spectrum centered at h[H5
1
2. Such behavior corresponds to a simple

random walk. A different test, in which the 1/f -scaling of the heart beat
signal is preserved but the Fourier phases are randomized ~i.e., nonlinearities
are eliminated! leads again to a monofractal spectrum centered at h'0.07,
since the linear correlations were preserved. These tests indicate that the
observed multifractality is related to nonlinear features of the healthy heart
beat dynamics rather than to the ordering or the distribution of the interbeat
intervals in the time series. ~b! The fractal dimensions D(h) for a 6 h
daytime record of a heart failure subject. The narrow multifractal spectrum
indicates loss of multifractal complexity and reduction of nonlinearities with
pathology.
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VIII. SUMMARY AND OPEN QUESTIONS

The discovery of multifractality in a physiological time
series and its breakdown with pathology is significant from a
number of perspectives.

First, contemporary analysis of heartbeat fluctuations,
and the study of physiological time series in general, have
emphasized two important, but apparently unconnected prop-
erties: ~i! the presence of nonlinearities and ~ii! 1/f -behavior
~monofractality!. The monofractal hypothesis assumes that
the scaling properties of the signal are the same throughout.
Yet the heterogeneous nature of the heartbeat interval time
series clearly indicates nonlinear features. The finding of a
multifractal mechanism for heart rate control provides a uni-
fying connection between nonlinear and fractal properties
and, indeed, indicates that they are aspects of a more funda-
mental type of mechanism. In particular, we show that both
the multifractal character and the nonlinear properties of the
signal are encoded in the Fourier phases ~Fig. 12!. The origin
and nature of these Fourier phase interactions is an open
question.

Second, our analysis indicates that the healthy heartbeat
is described by a broad range of scaling exponents h with a
well-defined set of bounding parameters, hmin and hmax . Fur-
thermore, certain exponents appear to be ‘‘forbidden’’ ~h
,hmin and h.hmax! and the exponents present occur with a
given structure characterized by the function D(h).

Third, our findings may lead to new diagnostic applica-
tions. Further detailed studies on a larger number of datasets
are needed to establish the advantages of given methods
compared to others and to find optimal combinations of
methods for diagnostic and prognostic purposes.

Fourth, our analysis is based on a ‘‘microscopic’’ ap-
proach which can identify the statistical properties of the
self-affine cascade of heartbeat fluctuations at different
scales ~Fig. 5!. Our finding of multifractality quantifies the
complex dynamics of this cascade and suggests that a multi-
plicative mechanism might be the origin of this phenomena.
The detailed features of the cascades and how they relate to
other processes with cascades ~e.g., turbulence! remain to be
addressed.

On a more general level, our approach provides a way of
testing a broad range of 1/f -type signals to see if they repre-
sent multifractal or monofractal processes. As such, these
findings should be of interest to a very wide audience given
the historic interest in elucidating the nature of different
types of 1/f noise.

Finally, from a physiological perspective, the detection
of robust multifractal scaling in the heart rate dynamics is of
interest because our findings raise the intriguing possibility
that the control mechanisms regulating the heartbeat interact
as part of a coupled cascade of feedback loops in a system
operating far from equilibrium—an extraordinarily complex
behavior which in physical systems has been connected with
turbulence and related multiscale phenomena.68–70 Further-
more, the present results indicate that the healthy heartbeat is
even more complex than previously suspected, posing a chal-
lenge to ongoing efforts to develop realistic models of the

control of heart rate and other processes under neuroauto-
nomic regulation.18,33,71–73
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