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Abstract. We analyse the results of kinetic gelation and propose a diagram compatible 
with the existing data. We introduce the concept of ‘limited’ and ‘full’ universality. The 
former refers to systems with an identical subset of critical exponents; the latter refers to 
systems with an identical set of critical exponents. The evidence suggests that kinetic 
gelation and random percolation are in the same limited universality class. It appears that 
the concentration of initiators plays the role of an active parameter, similar to that of the 
interplane coupling in quasi-two-dimensional king models. 

A complete understanding of the properties of the gelation process is a challenge to 
polymer scientists (see, e.g., the articles in Stanley and Ostrowsky (1985)). Recently the 
kinetic aspects of the growth of polymers during gelation has become the focus of 
considerable interest (Manneville and de Sbze 1981). A model for the process of 
additive copolymerisation, which is commonly referred to as kinetic gelation, has been 
studied extensively in several variations (Herrmann et al 1982, 1983, B a n a  et a1 1984, 
1985, Chhabra et al l984,1985a, b, 1986, Hong er a1 1984a, b, Pandey 1984, Herrmann 
1984, 1985, 1986). Compared to percolation, the static model for gelation, kinetic 
gelation, has shown some subtle peculiarities. If we assume that the concepts of 
universality classes and critical crossover remain valid for irreversible growth models 
like kinetic gelation, several questions arise. What is the universality class of kinetic 
gelation? Is there some crossover between kinetic gelation and percolation? Is the 
kinetic aspect of kinetic gelation responsible for a more limited universal behaviour 
than the usual one? It is the aim of this letter to use the existing results to formulate 
answers to some of the above questions and to suggest further work to help resolve 
ambiguous situations. 

We consider the lattice version of the model. Each lattice site is occupied by a 
monomer of functionality f, which is a measure of the maximal number of bonds the 
monomer can form with its neighbours. Additionally, radicals are randomly placed 
on a fraction CI of the lattice sites. The radicals are allowed to diffuse randomly to 
neighbouring sites provided that the monomers concerned have formed fewer bonds 
than their initial functionality. The movement of radicals leads to the formation of 
chain-like structures and crosslinks. If two radicals are at the same site at the same 
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time then they annihilate each other. All monomers that are connected to each other 
through bonds belong to the same cluster. The gel point is reached when for the first 
time a cluster spanning the whole lattice appears. It is found that the number of s-site 
clusters, n,, scales close to the gel point. Since the number of bonds formed increases 
monotonically with time, the total number of steps made by all the radicals at any 
instant per unit volume, called the concentration p ,  is a reasonable measure of time. 
The gel point is given by a critical value p c .  For a more detailed description of the 
model, see e.g. Herrmann (1985, 1986). 

Some parameters that can be varied in this model are: 
(i) the relative concentrations of monomers of different functionalities c2,  c,, 

(ii) the concentration of radicals CI, 
(iii) the dimension of the system d. 

etc, . . . , 

Critical properties are expected to be dependent, at the very least, on dimension and 
we consider the pertinent results for d equal to two and three. Most computer 
experiments investigated the variation of the critical properties with CI for systems 
consisting exclusively of tetrafunctional monomers (f = 4). 

Quantities of interest are the critical exponents v, which describes the divergence 
of the pair connectedness length, and y, which describes the divergence of the mean 
cluster size x = Z  s2ns as a function of E (  = p - p c ) .  Also of interest is the ratio R of 
the mean cluster size at a fixed value of E below p c  to the corresponding mean cluster 
size above p c .  

In two dimensions, Hong et a1 (1984a, b) looked at the critical properties of kinetic 
gelation with a constant amount of initiators. Their main conclusion is that y and v 
are indistinguishable from their classical percolation values for c, > 0.005. For very 
low CI( - 0.0004), Hong et a1 found an effective exponent vi: - 0.64 (as opposed to 
v-l = 0.75 in percolation) although there is no evidence that the fractal dimension, 4, 
has changed. However this change from percolation exponents may be due to finite-size 
effects, as the lower length cutoff is not the lattice spacing, but the length 1 = c;”~, 
i.e. the average distance between initiators. 

For system size L-  1 one therefore finds an effective exponent veE given by the 
usual finite-size scaling relation 

(la) 
where p,(L)  is the ‘bond percolation threshold’ for a finite size L, and p c = p c ( c o )  the 
true bond percolation threshold. For such small values of initiators, p c  = 0 and pc( L) - 
N / L d  where N is the number of bonds in a chain generated by the walk of a single 
initiator. This walk, which has the property of avoiding itself and of being terminated 
only when self-trapped, for small concentrations of tetrafunctional units barely differs 
from the kinetic growth walk (KGW) recently introduced (Majid et a1 1984, Family 
1984, Hemmer and Hemmer 1984, Lyklema and Kremer 1984, Havlin et a1 1984) to 
describe the growth of a polymer chain. Since the fractal dimension of the KGW, dKGW, 
is given by N - L d ~ 0 w ,  from (1 a )  

Ip,( L )  -pel - L - l ’ ” C R  

(1b) 
- 1  V,e = d - dKGW. 

For d =2, the values of dKGW range from 1.47 for small N to the self-avoiding walk 
value 4/3 for large N (Peliti 1984), and vi: = 0.53-0.66. This explains the result of 
Hong er a1 (1984a, b). For d = 3 dKG, has an effective value of d,,, = 1.9 for N d 5000 
(Majid et a1 1984, 1985) with a very slow crossover to the self-avoiding walk value 
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leading to vif: - 1.1, which coincides with the percolation critical exponent v. Therefore 
for d = 3 one does not expect any apparent change from percolation exponents, and 
this expectation is confirmed numerically. 

For d = 3, numerical results show that the exponents p, v and y are independent 
of CI, but R was found to decrease from the random percolation value of -10 at high 
CI to about 4 for CI = 0.003. In addition, the numerically observed fractal dimension 
of the backbone, dFB=2.22*0.10 was found to be about the same as the fractal 
dimension of the entire incipient infinite cluster (Chhabra et a1 1985a, 1986). This is 
in marked contrast to percolation, where d, = 2.53 rt 0.03 whereas d FB = 1.74* 0.04 
(Herrmann and Stanley 1984). 

The variation of pc reported in the literature (Jan et a1 1983a, b, Herrmann et al 
1983) shows the expected crossover behaviour of a system in the presence of an active 
parameter (Harbus and Stanley 1973) where we anticipate a new universality class in 
the limit CI + c*. Here c* is defined as that concentration of initiators below which 
the formation of an infinite network is suppressed by the self-trapping of the radicals; 
c* can, for all practical purposes, be assumed to be zero in three dimensions. The 
slope of pc(  CI) - pc( c*)  against Cr indicates a crossover exponent, 1/ 4 = 0.2 ( d  = 2) 
and 1/+=0.3 ( d  =3)  (see figure 1). If the new universality class, with exponents 
different from those of percolation, is indeed the limit CI + c*, then the critical ampli- 
tudes A, are expected to vary as (Harbus and Stanley 1973) 

(IC) 
where yperc is the percolation value of the susceptibility exponent and y ( c * )  the 
exponent of the new class. This behaviour will be tested in subsequent work. 

Another feature of kinetic gelation which is different from lattice percolation is the 
presence of oscillations in the cluster size distribution n, as a function of s (Chhabra 
et al 1984, 1985b, 1986, Herrmann 1985, 1986). This anomalous feature may seem to 
imply the existence of novel universal features, especially if the relative amplitude of 

A,(c,) - ~ ~ p r c - Y ( ~ * ) ) I ~  

0.01 
0.01 0.1 1.0 lo-& 10-2 10-1 

C I  C l  

Figure 1. Log-log plot showing the dependence on the concentration of initiators c, of 
the percolation threshold p c .  The linearity of the plots for d = 2, 3 supports the analogy 
with the crossover problem in which the role of the parameter is played by c, and the role 
of the critical temperature T - T, is played by p - p c .  (a) [ p,( c , )  - p J  c:)]  against c, for d = 2 
kinetic gelation for C,  in the range 0.01-0.16. The crossover exponent, l /+,  is -0.2. ( b )  
Specifically, [ P , ( C , )  - p c ( c ? ) ]  is plotted against c, ford = 3 kineticgelation for C, in the range 
3 x to 3 x lo-? The crossover exponent, l/+, is approximately 0.3. 
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the oscillations remains finite as s + 03, i.e., if s'n, does not reach a limit as s +CO. We 
now show that an amplitude ratio different from that of percolation cannot be explained 
by the presence of oscillations in the cluster size distribution n, alone. The size of the 
critical region, however, may be influenced by the presence of such oscillations. For 
percolation one has asymptotically 

n, = qOS-'F( & S O )  (2) 
where now E = ql(p - p c ) ,  qo and q, are non-universal constants, F is a universal scaling 
function and r and U are universal exponents. For the 'susceptibility' (or mean cluster 
size) one gets, with y = (3  - T ) / u  (Herrmann 1985): 

loa 2 x =  s n , =  qo s ' - ' F ( ~ s " )  ds. 
finite clusters 

Let now x be ESO. One then obtains (Herrmann 1985, 1986) 

forp>pc .  

(3 )  

(4) 

Thus x-/x+ is a universal quantity since both qo and q,  cancel out. 
Now postulate that the cluster size distribution n, for kinetic gelation is 

n, = aos-'F(s"E)g(s ,  E )  ( 5 )  

where now E = a , ( p  - p c ) .  Further, we assume that F (x )  is the same scaling function 
as percolation and g ( s ,  E )  embodies the oscillatory behaviour. As E + 0, we assert that 
g(s, E )  tends to some limiting function g ( s ) .  The assumption that F (x )  is the same 
function as for percolation is motivated by the fact that the exponents for both systems 
are identical, and this places severe constraints on the scaling function (Reatto 1970). 
Now let us  substitute x = sue into equation ( 5 )  

where a. and a, are non-universal quantities and the integrals run from -cc to 0 for 
p < p c  and from 0 to 03 for p > p c .  We replace g[ (XI E )  by its average value g, since 
for small E the function g is rapidly oscillating compared to the function F(x) .  Thus 

Thus R is predicted to be the same as in percolation, since g has also cancelled out. 
The main conclusion from the above argument is that if the scaling function F (x )  

is the same for kinetic gelation as for percolation, the critical amplitude ratios for both 
systems are the same but the critical region for kinetic gelation is likely to be smaller, 
dictated by the fact that E should be small enough for g ( s )  to be replaced by its average 
value. This means that the typical cluster size in the critical region must be much 
larger than the period of the oscillations. Since this period becomes quite large as cI 
becomes small, this may become a severe requirement. Indeed, it is possible that this 
small critical region was in fact not reached in some of the numerical studies of the 
amplitude ratio. 
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The measured fractal dimension of the backbone of the incipient infinite cluster 
of lattice kinetic gelation appears to be quite distinct from the fractal dimension of 
the backbone of the incipient infinite cluster in lattice percolation. This reflects the 
fact that biconnected paths are quite common in kinetic gelation, due to the growth 
process from the restricted random walk of the radicals. As observed by de Arcangelis 
et a1 (1985) and Meakin et a1 (1989,  an infinite number of exponents must be used 
to completely characterise some fractals, specifically the percolation backbone and the 
DLA surface. In the past, the rule of thumb was that the critical exponents (7, v, p)  
and critical amplitude ratios characterise the universality class. It is possible therefore 
to have ‘limited’ universality in that the usual critical exponents (p,  y, v, etc) are 
identical, but others, e.g. the backbone dimension, the fracton dimension and others 
may be different. This feature is also noticed in the forest fire model (MacKay and 
Jan 1984) where the fractal and chemical dimensionalities are identical to those of 
percolation, but the absence of loops leads to backbone and fracton dimensionalities 
different from those observed for percolation. 

In conclusion, we propose that kinetic gelation and percolation may be in the same 
limited universality class: namely the exponents yT and yh are identical but other 
exponents describing the geometric properties may be different. The numerically 
observed differences in the amplitude ratios could be ascribed to the fact that kinetic 
gelation may have a rather small critical region due to the presence of a large but finite 
intermediate length scale on which such structures as oscillations in the cluster size 
distribution are observed. An analysis of the crossover behaviour of kinetic gelation 
for cI + c* seems to indicate that the limit cI + c* may in some sense be a multicritical 
point having the characteristics of kinetic gelation, i.e. a value of R smaller than that 
of percolation. Thus we expect that in this limit the scaling function F ( x )  may well 
be different from that of percolation. A possibility is that for any finite c, kinetic 
gelation is described by percolation in a sense that some of the geometrical properties 
of the incipient infinite cluster, such as the fractal dimension of the backbone, appear 
to be different. The limit cI +- c* may indicate a specific new universality class and we 
observe its presence through the existence of characteristic crossover phenomena, as 
in the classical theory of thermal critical phenomena. More accurate measurements 
are required to check the expected crossover behavior for the critical amplitude ratio. 
We also propose that other ‘dynamic’ exponents such as d ,  should be measured, since 
both d ,  and d:B  are physically relevant in the description of transport phenomena. 

We wish to thank R Bansil, J Kertisz, W Klein and D Stauffer for useful discussions. 
This work was supported by NSF, ONR and NSERC of Canada, as well as the Swiss 
National Foundation. 
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