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Calling patterns in human communication dynamics
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Modern technologies not only provide a variety of communication
modes (e.g., texting, cell phone conversation, and online instant
messaging), but also detailed electronic traces of these communi-
cations between individuals. These electronic traces indicate that
the interactions occur in temporal bursts. Here, we study intercall
duration of communications of the 100,000 most active cell phone
users of a Chinese mobile phone operator. We confirm that the
intercall durations follow a power-law distribution with an expo-
nential cutoff at the population level but find differences when
focusing on individual users. We apply statistical tests at the indi-
vidual level and find that the intercall durations follow a power-law
distribution for only 3,460 individuals (3.46%). The intercall dura-
tions for the majority (73.34%) follow a Weibull distribution. We
quantify individual users using three measures: out-degree, per-
centage of outgoing calls, and communication diversity. We find
that the cell phone users with a power-law duration distribution
fall into three anomalous clusters: robot-based callers, telecom
fraud, and telephone sales. This information is of interest to both
academics and practitioners, mobile telecom operators in particular.
In contrast, the individual users with a Weibull duration distribution
form the fourth cluster of ordinary cell phone users. We also dis-
cover more information about the calling patterns of these four
clusters (e.g., the probability that a user will call the c-th most
contact and the probability distribution of burst sizes). Our findings
may enable a more detailed analysis of the huge body of data con-
tained in the logs of massive users.

human dynamics | phone user categorization | social science |
nonlinear dynamics | social networks

U nderstanding the temporal patterns of individual human
interactions is essential in managing information spreading
and in tracking social contagion. Human interactions (e.g., cell
phone conversations and e-mails) leave electronic traces that al-
low the tracking of human interactions from the perspective of
either static complex networks (1-6) or human dynamics (7).
Because static networks only describe sequences of instantaneous
interacting links, temporal networks in which the temporal pat-
terns of interacting activities for each node are recorded have
recently received a considerable amount of research interest (8, 9).
Investigations of interevent intervals between two consecutive
interacting actions, such as e-mail communications (7, 10), short-
message correspondences (11-13), cell phone conservations (14,
15), and letter correspondences (16-18), indicate that human
interactions have non-Poissonian characteristics. Previous studies
were conducted either on aggregate samples (14, 15, 19) or on
a small group of selected individuals (7, 10-12, 16-18), but the
communication behavior of individuals is not well understood.
We study the complete voice information for cell phone users
supplied by a Chinese cell phone operator and study the interevent
time between two consecutive outgoing calls (intercall duration).
Our studies are performed at both the individual and group levels.
To ensure better statistics, the top 100,000 cell phone users with
the largest number of outgoing calls are chosen as our data
sample, each having more than 997 outgoing calls. We propose
a bottom-up approach to investigate individual cell phone
communication dynamics: (1) finding the functional form of the
distribution of each individual’s intercall durations, (2) grouping
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individuals with the same distribution, and (3) understanding the
calling patterns for each group. We apply an automatic fitting
technology to each mobile phone user and filter out two groups of
users according to their intercall duration distributions. One group
comprises individuals with a power-law duration distribution (3,464
individuals) and the other comprises individuals with a Weibull
duration distribution (73,339 individuals). We demonstrate that the
two groups exhibit different calling patterns and that the individuals
from the power-law group exhibit anomalous communication
behaviors (e.g., the group includes individuals sending spam).

Results

Distribution at the Population Level. There are 5,921,696 different
individuals in our dataset (see the data description in Materials and
Methods). For each individual, we estimate the intraday intercall
durations (d seconds) (see definition of intraday intercall durations
in Materials and Methods), and we find that 4,635,536 individuals
have nonempty intraday durations (2, > 0), which we consider one
unique sample when we investigate the distribution at the pop-
ulation level. To this end we also analyze the aggregate level where
the data comprise only the durations of the top 100,000 individuals.
Fig. 14 shows the empirical distributions of the two samples of
aggregate data. Both curves exhibit excellent power-law behaviors
in the range of (80, 2,000) s. We apply the least-square method and
find that a linear fit gives the power-law exponent y,; = 0.873 for
all of the individuals and 105 =0.942 for the top 100,000 indi-
viduals, respectively. We compare the empirical distributions
obtained from our dataset with the empirical distributions of
intercall durations based on a different dataset provided by a Eu-
ropean cell phone operator (14) (see also the supplementary in-
formation of ref. 20) and note that the empirical distributions of
both datasets share very similar patterns for d < 10°, where only
intraday intercall durations are taken into consideration. The
reported power-law exponent y=0.9 in ref. 20 is approximately
equal to the estimated exponents vy,; shown in Fig. 14. A similar
functional form with a power-law exponent y =0.7 is also reported
in ref. 15 for intercall durations smaller than 10°. This similarity is
further consolidated by fitting the empirical duration distributions
by means of a formula of power law with an exponential cutoff.
Fig. 14 shows a clear deviation from the power-law distribution
in the tails of both curves, which is usually interpreted as an ex-
ponential cutoff. To test which distribution better fits the data, we
apply Kolmogorov—Smirnov (KS) statistics by means of which the
smaller the value, the better the fit. We set the truncation value at
2,000 s and find that for all individuals the tail is better fit by the
Weibull distribution (KS=0.016) than by the exponential distri-
bution (KS=0.063). Similarly, for the top 10° individuals, the
Weibull distribution (KS=0.006) also fits the data better than
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Fig. 1. Probability distribution of the intercall durations (d seconds). (A)

Distribution of intercall durations at the population level. The circle markers
are shifted vertically by a factor of 0.1 for better visibility. (B) Plots of the
statistic KS with respect to the truncated value di,, for Weibull and expo-
nential distribution. (C) Plots of the power-law exponent y with respect to
the average number of outgoing calls {nc,) for different groups. The solid
line stands for the power-law exponent of the whole sample. (D) Probability
distribution of mean intercall durations for different samples of individuals.

the exponential distribution (KS=0.066). Fig. 1B for varying
truncation values shows a plot of KS as a function of d,,,. The KS
statistic displays a more stable behavior for the Weibull fit than for
the exponential fit, indicating that the Weibull distribution is better
able to capture the tail behavior than the exponential distribution.

We further divide the sequence of individuals according to the
number of outgoing calls into 46 groups, sorted in ascending order.
The first group comprises 135,536 individuals, and the remaining 45
groups each comprise 100,000 individuals. We calculate the em-
pirical distributions of the aggregate intercall durations for each
group and find that all of the distributions share patterns similar to
those shown in Fig. 14. Fig. 1C shows a plot of the estimated power-
law exponents with respect to the average number of outgoing calls.
All of the power-law exponents are lower than 1, and the mean
value is 0.896 + 0.033.

Fig. 1D shows the probability distributions of the individual
average intercall durations calculated for (i) all of the individuals,
(if) the individuals with n; > 50, and (i) the top 100,000 individ-
uals, respectively. All three curves exhibit an approximate M-shape
characterized by two peaks. For the sample of all individuals there is
a large number of low-frequency individuals who do not use a cell
phone regularly. The influence of these low-frequency callers is
eliminated in the distributional curve of n; > 50. We compare this
distributional curve with the distribution of the top 100,000 individ-
uals and find that they exhibit the same M-shape with a central valley
at approximately d =650, strongly indicating the presence of two
groups of individuals possessing different calling patterns across the
sample. One group is of individuals that have low average intercall
duration values, indicating a high frequency of outgoing calls, and the
other is of individuals that have large average intercall duration
values, indicating a relatively low frequency of outgoing calls. We will
later demonstrate that the group with a high frequency of outgoing
calls is dominated by individuals with a power-law duration distri-
bution and that the group with a low frequency of outgoing calls is
dominated by the individuals with a Weibull duration distribution.

Classification of Cell Phone Users. According to the above analysis
at the aggregate level, we propose to classify the individuals
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according to their duration distributions. Motivated by ref. 21, but
here for each individual cell phone user, because we are focusing
on the tail of the distribution, we assume the candidate duration
distributions to be left-truncated and we assign each of them a
distribution that is either power law or Weibull. We estimate the
truncation value dn, associated with distribution parameters by
finding the minimum KS statistic. We then apply statistical tests
to check the significance of the fitting parameters (Materials and
Methods, Fitting Distributions and Statistical Tests). Finally, based
on statistical tests, we find that there are 3,464 individuals whose
intraday durations follow a power-law distribution and 73,339
individuals whose intraday durations follow a Weibull distribution
(Materials and Methods, Determining the Distribution Form).

Fig. 24 shows that the empirical duration distributions for
three randomly chosen individuals (2308772, 28012863, and
52701654) whose intraday intercall durations follow a power-law
distribution. The solid lines correspond to the power-law fits with
power-law exponents y=2.15, y=2.03, and y=1.69 for individ-
uals 2308772, 28012863, and 52701654, respectively. Fig. 2B plots
the distribution of the estimated power-law exponents y for all
individuals with an intraday intercall duration that follows
a power-law distribution and finds that none of the power-law
exponents are lower than 1.5. This is in sharp contrast to the
power-law exponents lower than 1 that we found for the aggre-
gate durations in Fig. 1C. Note that there is a large fraction of
individuals whose power-law exponents are between 1 and 3,
which are the characteristic values for the Lévy regime (1,3).
Note that the exponent 2 corresponds to the famous Zipf law.
Having all of the power-law exponents, we calculate the mean
(r)=2.00+0.32.

We investigate the distribution of the aggregate intraday inter-
call durations by treating the individual durations from the power-
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Fig. 2. Classified results of individuals with power-law distributions of in-
traday intercall durations. (A) Probability distributions of intraday durations
for three randomly chosen individuals. The markers of individual 28012863
and 52701654 are shifted vertically by a factor of 1072 and 10~ for better
visibility. The solid lines are the best MLE fit to the power-law distributions,
which gives the power-law exponents y=2.15, y=2.03, and y=1.69 for
individuals 2308772, 28012863, and 52701654, respectively. (B) Distribution
of the estimated power-law exponents. (C) Probability distribution of col-
lective intercall durations by aggregating the durations of different indi-
viduals from the power-law group as one sample. The solid line is the best fit
to the data by means of the least-square method, which gives an estimation
of power-law exponent y=1.69. (D) Probability distribution of the mean
intercall durations for the power-law group.
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Fig. 3. Classified results of individuals with Weibull distributions of intraday
intercall durations. (A) Probability distributions of intraday durations for
three randomly chosen individuals. The markers of individual 5196860 and
6466665 are shifted vertically by a factor of 1072 and 10~* for better visi-
bility. The solid lines are the best MLE fit to the Weibull distributions, which
give the Weibull exponents f=0.54, f=0.64, and $=0.51 for individual
3263120, 28012863, and 6466665, respectively. (B) Distribution of the Wei-
bull exponents and the solid curve stands for the fits to normal distri-
bution. (C) Probability distribution of collective intercall durations by
aggregating the durations of different individuals from the Weibull group as
one sample. The solid line is the best fit to the data by means of the least-square
method, which gives an estimation of power-law exponent y=0.882. (D)
Probability distribution of the mean intercall durations for the Weibull group.

law group as one unique sample. To this end, for the aggregate
dataset in Fig. 2C, we find a power law with exponent y = 1.69. We
find another striking feature in the power-law tail: the Weibull
shape disappears. Fig. 2D plots the probability distribution of the
mean of intercall durations of the individuals in the power-law
group, where the peak agrees well with the left peak in Fig. 1D.
Fig. 3 plots the probability distribution of intracall durations
for three randomly chosen individuals (3263120, 28012863, and
6466665) whose intercall durations follow a Weibull distribution.
The solid lines are the best maximum likelihood estimation (MLE)
fits to the Weibull distribution, and the corresponding Weibull
exponents are f=0.54, f=0.64, and f=0.51 for individuals
3263120, 28012863, and 64666065, respectively. Having the Weibull
exponents for all individuals from the Weibull group, we calculate
the mean value of the Weibull exponents (§) =0.64 +0.12. Fig. 3B
shows the distribution of the Weibull exponents p. For sake of
comparison, we also present a normal distribution with the param-
eters obtained by MLE fits on the sample of Weibull exponents f.
The overlapping between the empirical data and the normal distri-
bution indicates that the exponent  follows the normal distribution.
Fig. 3C shows the distribution of intercall durations for the
Weibull group at the aggregate level. Note that the functional
forms of the distribution in Fig. 3C and the empirical distributions
in Fig. 14 are similar, suggesting that the distributions of the ag-
gregate samples are dominated by individuals with Weibull dura-
tion distributions. Fig. 3D plots the probability distribution of the
mean intercall durations for the individuals in the Weibull group.
The peak is in good agreement with the right peak in Fig. 1D.
We next investigate the distribution of intercall durations for
the remaining 23,197 individuals. We find that for a small fraction
of individuals (close to 2%), the intercall durations approximately
follow a power law, as shown in Fig. 44. Because our statistical
tests reject the null hypothesis that individuals follow a power law,
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these individuals are excluded from the power-law group. We find
that more than 97% of the individuals have Weibull tail dis-
tributions, as shown in Fig. 4B. However, the fact that the fitting
range is lower than 1.5 orders of magnitude [83% of the individ-
uals are in the range of (1,1.5)] disallows these individuals from
being classified in the Weibull group. Fig. 4C shows a very small
number of individuals whose intercall durations cannot be de-
scribed by either power-law or Weibull distributions. Because
most of the individuals have Weibull-tail distributions, the dis-
tributions of aggregate intercall durations and the mean intercall
durations exhibit patterns very similar to the results obtained from
the Weibull group (Figs. 4 D and E and 3 C and D).

Calling Patterns for Power-Law and Weibull Groups. Using three
measurements, we quantitatively distinguish the calling patterns
of the individuals belonging to two different classified groups.

i) The out-degree k; describes the number of different callees
for a specified cell phone user.

i) The percentage of outgoing calls oy, is defined by dividing
the number of outgoing calls by the total number of calls—
note that the number sending spams (junk message pusher) is
characterized by 7oy = 1.

iti) The communication diversity ¢. Motivated by the social di-
versity proposed in ref. 22, we define the communication di-
versity ¢; as a function of Shannon entropy to quantify how the
cell phone users split the number of calls to their friends:

- ipy log (m)

__ =
i= log(k;) ’ (1]

Here k; is the out-degree and p;; is the probability defined as
pi=nj/ni=nl/ Z]kn’,’, where n} is the number of outgoing calls
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Fig. 4. Analysis of the remaining individuals. (A) Probability distribution of
intercall durations for three individuals, whose durations approach to power-
law behaviors without passing the statistical tests. (B) Probability distribution of
intercall durations for three individuals, whose duration distributions are like
Weibull shape but not confirmed by the statistical tests. (C) Plots of duration
distributions for three individuals, whose distribution shapes are uncommon.
(D) Probability distribution of collective intercall durations by aggregating the
durations of different individuals from the Weibull group as one sample. The
solid line is the best fit to the data by means of the least-square method, which
gives an estimation of power-law exponent y =0.879. (E) Probability distribu-
tion of the mean intercall durations for the remaining individuals.
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Fig. 5. Calling patterns for the individuals from power-law and Weibull
group. (A) Distribution of the percentage of outgoing calls ro,; and the call
diversity ¢ for power-law group. (B) Plots of out-degree k with respect to
communication diversity ¢ for power law group. Three ellipses correspond to
the three clusters of individuals. (C) Similar as A but for Weibull group. (D)
Similar as B but for Weibull group.

from individual i to individual j and 7} is the total number of
outgoing calls for individual i. A higher ¢; value indicates that the
caller’s outgoing calls are split more evenly to his friends and a
smaller ¢; value implies that most of the caller’s outgoing calls are
to only one of his friends. Note that we define ¢; =0 when k; =1.

To distinguish between the calling patterns of the power-law
group of Fig. 2 and the Weibull group of Fig. 3, in Fig. 5 we plot
the distribution of the percentage of outgoing calls 7, and the
distribution of the communication diversity ¢. Fig. 5 4 and C
compare strikingly different patterns: (i) in the power-law group,
the probability p(r,y) is @ monotonically increasing function of
Tout that reaches a maximum value at oy =1 (the characteristic
value for spam), but in the Weibull group, the frequency p(rou:) is
a nonmonotonic function of r; that has its maximum value close
to the center at ro, =0.56, and (if) in the power-law group, the
probability p(¢) exhibits three pronounced peaks at ¢=0,
¢=0.84, and ¢ =1, but in the Weibull group, the probability p(¢)
has only one peak at ¢ =0.82. We further estimate the average
value of the percentage of outgoing calls (rou) =0.89+0.13 for
the power-law group and (rou)=0.57+0.11 for the Weibull
group. Our analysis indicates that the individuals in the power-
law group exhibit more extreme calling behaviors than those in
the Weibull group (e.g., highly frequent call initiation, a high
percentage of outgoing calls, and either all calls to only one
callee or equally distributing calls among all callees).

Fig. 5 B and D plots the out-degree k with respect to the
communication diversity ¢ and thus provides additional evidence
that the behavior of individuals in the power-law group differs
greatly from the behavior of individuals in the Weibull group. The
individuals in the power-law group form three clusters in the (¢, k)
plane, which are highlighted by the three ellipses in Fig. 5B. The
three clusters are also consistent with the three peaks of f(¢) in
Fig. 54. Fig. 5D, on the other hand, shows only one large cluster
for the Weibull group. Taking the two panels together, we see that
the communication diversity ¢ increases with the out-degree k on
average. In the power-law group we further assign the individuals
with ¢ <0.1 to cluster 1, the individuals with 0.7 <¢$ <0.9 and
50<k <200 to cluster 2, and the individuals with ¢>0.9 and
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k >700 to cluster 3. We find that there are 762, 710, and 1,369
individuals, respectively, with average degrees of 21.76, 114.98,
and 2083.3, respectively, in which the mean percentage of out-
going calls is 0.99, 0.80, and 0.94 in clusters 1, 2, and 3, re-
spectively. We assign the individuals in the Weibull group to
cluster 4 and find that the average degree and mean percentage of
outgoing calls are 245.13 and 0.57, respectively. From our analysis,
we first infer that the individuals in power-law cluster 1—the ones
characterized by a high frequency of call initiation, a small number
of callees, or an allocation of almost all outgoing calls to only one
callee—are robot-based users. We next see that the individuals in
cluster 3—the ones characterized by high frequency of call initi-
ation, a large number of callees, and an even distribution of out-
going calls among all callees—are associated with telecom frauds
and telephone sales. We also note that the individuals in cluster 4
are ordinary cell phone users. We next describe further differ-
ences in cell phone communication activities among the four
clusters (e.g., the probability that a caller will call the c,-th-most
contact and the burst size probability during burst periods).
Because most of the calls (mean 99.5% and min 94%) made by
individuals in cluster 1 are to only one contact, we now calculate
the probability that individuals belonging to the other three
clusters will only call the ¢,-th-most contact. To rule out the in-
fluence of newly entering cell phone users, we take into account
only those individuals listed in the data on the starting date of
June 28, 2012. Fig. 6 shows the average calling frequency f(c,) of
the ¢,-th-most contact friends for the individuals with the same
degree in cluster 2. There is a linear relationship between f{(c,) and
In ¢, in Fig. 64, which indicates an exponential distribution in the
number of outgoing calls to different contacts (23). We see that
the slope obtained between f(c,) and In ¢, increases as the out-
degree k increases, but the lack of individuals prevents us from
finding the functional form between the slopes and the out-degree
values k. We also observe power-law behavior between f{c,) and ¢,
in cluster 3 of Fig. 6B. The least-square linear fits provide an es-
timate for power-law exponent 0.52 and also show that the be-
havior of the power-law exponent is not affected by the out-degree
k. Fig. 6C plots f (c,)b versus In ¢, for cluster 4, where b is associ-
ated with the maximum correlation coefficient of least-square

0.05

50 120 190 260 330 400
k

Inc,

Fig. 6. Rank ordering plot showing the average calling frequency f(c,) of
the c,-th-most contacted friend for the users with the same degree. (A) Plots
of f(c,) as a function of In ¢, for cluster 2. (B) Loglog plots of f(c,) with respect
to ¢, for cluster 3. (C) Plots of f(c,)b versus In ¢, for cluster 4. (D) Scatter plots
of b with respect to k for cluster 4.
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Fig. 7. Distribution of burst sizes e, in burst periods. (A) Cluster 1 (PDF). (B)
Cluster 2 (CDF). (C) Cluster 3 (PDF). (D) Cluster 4 (PDF).

linear fits to f(c,)” versus In ¢, by varying b from 0.01 to 0.99 with
a step of 0.01. The linear relationship between f(c,)” and In ¢,
suggests that the number of outgoing calls to contacts follows
a stretched exponential distribution (23, 24). In Fig. 6D we show
the exponent b plotted with respect to the out-degree k, where we
observe a striking linear relationship: b = —4.836 x 10~#k +0.329.
Here we report that the probability to call the c,-th-most contact is
in sharp contrast to the results reported in ref. 25, where a Zipf
law with a power-law exponent 1.5 is observed when, in contrast to
our “microscopic” study, individuals are not grouped according to
their distributions of intercall durations.

It was recently proposed that the distribution of burst sizes
indicates the presence of memory behaviors in the timing of
consecutive events (15), where the deviation from exponential
distributions is a hallmark of correlated properties. For a given
series of events, a burst period is a cluster of consecutive events
following their previous events within a short time interval At,
which is an arbitrarily assigned value in empirical analysis. The
burst size ¢, is defined as the number of events in a burst period.

Based on our dataset, Fig. 7 shows the probability distribution
of burst sizes e, in burst periods at the aggregate level for the
four clusters by setting Az = 100, 300, 600, and 1,000 s. In Fig. 74
we find the probability distributions of e, for cluster 1. Although
we find a very good power-law relationship between p(e;,) and e,
with an exponent 2.677 for At = 100 s, the distributions deviate
from power-law distributions and tend to exponential dis-
tributions for At = 300, 600, and 1,000 s. Fig. 7B shows that the
probability distribution of e, exhibits excellent exponential dis-
tributions for varying values of At for cluster 2. Fig. 7C plots the
probability distributions of e, for cluster 3. We see the power-law
behavior of p(e,) with an exponent 2.61 only when Ar=300 s.
When At = 600 and 1,000 s, p(ep) switches from power-law be-
havior to a bimodal pattern (with exponential tails). Fig. 7D
shows that the probability distributions of e, corresponding to
different values of Az for individuals in cluster 4 all display very
good power-law behavior, and that the power-law decay expo-
nent is 3.6. Comparing our distribution with the distribution
reported in Fig. 24 in ref. 15, we find that the distribution shapes
are very similar for cluster 4, the only difference being that the
extremely large brust sizes e, > 500 disappear in the plots for the
individuals with very long burst sizes assigned into cluster 1.

1604 | www.pnas.org/cgi/doi/10.1073/pnas.1220433110

Discussion

Contrary to common belief, we find that only 3.46% of callers have
intercall durations that follow a power-law distribution. The ma-
jority of callers (73.34%) have intercall durations that follow
a Weibull distribution. Further examination reveals that callers with
a power-law distribution exhibit anomalous and extreme calling
patterns often linked to robot-based calls, telecom frauds, or tele-
phone sales—information valuable to both academics and practi-
tioners, especially mobile telecom providers. We note that Weibull
distributions are ubiquitous in such routine human activities as
intervals for online gamers (26) and intertrade intervals in stock
trading (27, 28).

Although most of the individuals exhibit Weibull distributions
of the intercall durations, the distribution at the population level is
a power law with an exponential cutoff, consistent with other
works using mobile phone communication data from other sour-
ces (15, 20). We argue that a superposition of individuals’ het-
erogeneous calling behaviors leads to the exponentially truncated
power-law distribution at the population level, showing the im-
portance of different characteristic scales.

Although individual callers exhibit heterogeneities across
the entire population and their personal activities are also
heterogeneous, individual callers can be grouped into clusters
according to their similarities. The findings reported in this article
enable us to construct dynamic models at an individual level that
agree with empirical collective properties. Every reasonable dy-
namic model for cell phone use should include the major findings
of this article (i.e., that individuals are not identical and do not
exhibit identical behavior). Our strategy is to propose models
based, not on individuals, but on clusters of individuals. Thus, to
accurately model the trigger process in human activity, we need
a precise classification of individuals according to the similarities
in their activities and also a detailed investigation of the complete
activity log for each individual.

Materials and Methods

Data Description. Our data, which are provided by a cell phone provider in
China, contain all of the calling records covering two periods. One is from June
28,2010 to July 24, 2010, and the other is from October 1, 2010 to December 31,
2010. For unknown reasons, the calling logs for a few hours on certain days
(October 12, November 5, 6, 13, 21, and 27, and December 6, 8, 21, and 22) are
missing, and they are excluded from our analysis, which results in a total of 109 d.
For each entry of record, we have the information of caller number, callee
number, call starting time, call length, and call status. The caller and callee number
is encrypted to protect personal privacy. The call status indicates whether the call
is terminated normally. Note that we only take into account normal calls that
begin and end normally. The calls that are not completed or are interrupted are
discarded. To better explain our data, Fig. 8A shows the call records for a given
individual subscriber, where a call starts at ¢ and ends at t°. We usually have:

B <<t <th < [2]
Further examination is made to check whether t¢ is less than t; , for each
individual. The records that do not obey the equation tf <t;,, can be at-
tributed to the recording errors introduced by the system, and the i+ 1-th
call record is discarded.
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Fig. 8. Definition of intraday intercall durations. (A) Schematic chart of call
logs for an individual. (B) Intraday pattern of the number of calls.
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Definition of Intraday Intercall Durations. As shown in Fig. 84, the intercall
duration is defined as the time that elapses between two consecutive calls and
it can be calculated via d; =t} —t; ;. To avoid the influence on the results of
discontinuous recording days, which produce very large intercall durations, we
restrict the durations to a period of 1 d (the typical human circadian rhythm).
Although it might seem obvious to separate the days at midnight (00:00 AM),
late night calls (made by lonely people, lovers, and friends) are common, so we
divide the days at 4:00 AM, which is the time point associating with the lowest
call volume in a 24-h period (Fig. 8B). This allows us to take into account the
people who go out and stay awake later as well. Our restriction is equivalent to
excluding intercall durations that span the dividing point (4:00 AM).

Fitting Distributions and Statistical Tests. A simple approach based on MLE fits
and KS tests is used to check whether the candidate distributions (power-law
or Weibull) can be used to fit the individual intraday intercall durations.
Because people are more interested in the distribution form of large dura-
tions, we assume that the durations larger than a truncated value d,,;, are
described by the candidate distributions, such that:

p<d) Nd?yaddein [3]
p(d) = apd’~'exp(—ad”), d > dmin. [4]
We also determine the lowest boundary dp,;, as an additional parameter.

Once dmin is obtained, the distribution parameters can be estimated by
means of MLE fits to the left-truncated candidate distribution. Hence, the
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accuracy of estimated dp,, plays an important role in estimating accurate
distribution parameters. Inspired by the method proposed in ref. 21, the best
dnin is associated with the truncated sample with the smallest KS value. The
truncated sample is obtained by discarding the durations below dy;, in the
original duration sample. After the lowest d,i, and the corresponding dis-
tribution parameters are obtained, we use the KS test and CvM test to check
the fitting. The null hypothesis Hy for our KS test and CvM test is that the
data (d > dnyin) are drawn from the candidate distribution (power-law dis-
tribution or Weibull distribution).

Determining the Distribution Form. The sample of individual intraday intercall
durations, which we assume conforms to a power-law distribution, must (i) pass
either of the two tests at the significant level 0.01 and (i) exhibit a fitting range
of no less than 1.5 orders of magnitude. For Weibull distributions, in addition to
the two above conditions, the Weibull exponent p of the intraday duration
sample must be in the range (0, 1). Because a power-law distribution is a two-
parameter model and a Weibull distribution is a three-parameter model, we first
filter out the individuals with durations that follow a power-law distribution and
then inject the remaining individuals into the Weibull filtering procedure.
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