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Abstract
On decreasing the temperature T , the correlation time τ of supercooled water displays a
dynamic crossover from non-Arrhenius dynamics (with T -dependent activation energy) at high
T to Arrhenius dynamics (with constant activation energy) at low T . Simulations for water
models show that this crossover occurs at the locus of maximum isobaric specific heat in the
pressure–temperature (P–T ) plane. Results of simulations show also that at this locus there is a
sharp change of local structure: more tetrahedral below the locus, and less tetrahedral above it.
Furthermore, in water solutions with proteins or DNA, simulations show that in correspondence
with this locus there is a crossover in the dynamics of the biomolecules, a phenomenon
commonly known as the protein glass transition.

To clarify the relation of the dynamic crossover with the thermodynamics of water, we
study the dynamics of a cell model of water which can be tuned to exhibit: (1) a first-order
phase transition line that separates the liquids of high and low densities at low temperatures;
this phase transition line terminates at a liquid–liquid critical point (LLCP), from which departs
the Widom line TW(P), i.e. the line of maximum isobaric specific heat in the P–T plane;
(2) the singularity-free (SF) scenario, under which the system exhibits water-like anomalies but
with no finite temperature liquid–liquid critical point.

We find that the dynamic crossover is present in both the LLCP and the SF cases.
Moreover, on the basis of the study of the probability pB of forming a bond, we propose and
verify a relation between dynamics and thermodynamics that is able to show how the crossover
is a consequence of a local relaxation process associated with breaking a bond and reorienting
the molecule. We further find a distinct difference in pressure dependence of the dynamic
crossover between the LLCP and SF scenarios, which may help in resolving which of the
scenarios correctly explains the anomalous behavior of water.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Our life depends on water, yet many unique properties of
water still present a puzzle for which different interpretations
have been proposed in the past. Water has more than sixty
anomalies, such as the increase of density upon increasing
temperature or its extraordinary large capacity of absorbing
heat, essential for regulating our body temperature. Its heat
capacity, contrarily to most of the liquids, increases at low
temperatures, where other anomalies appear. For example,

water can stay liquid at very low temperature in a metastable
supercooled state: down to −47 ◦C in plants and −92 ◦C in
laboratory at a pressure of 2 kbars [1].

In the following we briefly summarize few of the
thermodynamic and dynamic anomalies of water.

1.1. Thermodynamic anomalies of liquid water

1.1.1. Density anomaly. The density anomaly is perhaps
the oldest known puzzling behavior of water [2]. Unlike
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Figure 1. Schematic representation of response functions (a) CP (b) KT and (c) αP of liquid water as a function of temperature T . The
behavior of a normal liquid is shown as the dashed curve.

other simple liquids which expand upon heating, water expand
upon cooling below 277 K at ambient pressure. It is for this
anomaly that ice floats on water and fishes can survive in warm
waters below a layer of ice at temperatures well below 0 ◦C.
The temperature of maximum density, TMD, decreases as the
pressure is increased and disappears above ≈200 MPa. In the
(T, P) plane, the region below the locus of TMD is where the
density anomaly occurs. Computer simulations of different
models of water [3] find the TMD as in experiments. Recent
experiments on water confined in nanopores [4, 5] show that
below approximately 210 K the supercooled liquid exhibits a
density minimum and recovers a normal behavior in density.

1.1.2. Specific heat. A schematic isobaric heat capacity CP

for liquid water at atmospheric pressure is shown in figure 1(a).
CP is a measure of how enthalpy H changes with T , at constant
P , and is related to entropy fluctuations 〈(�S)2〉 [6, 7] as:

CP ≡
(

dH

dT

)
P

= T

(
∂S

∂T

)
P

= 〈(�S)2〉
kB

(1)

where S is the entropy and kB is the Boltzmann constant.
Since any thermal fluctuation should decrease with decreasing
temperature, one would expect the same behavior for CP .
Instead, for the case of water it increases sharply as the
temperature is decreased below approximately 330 K. CP

seems to diverge as a power law at about 228 K [8].

1.1.3. Isothermal compressibility. A schematic isothermal
compressibility KT for water is shown in figure 1(b). KT is
the measure of volume fluctuations 〈(�V )2〉:

KT ≡ − 1

V

(
∂V

∂ P

)
T

= 〈(�V )2〉
kBT V

. (2)

Intuitively KT should decrease upon decreasing the tempera-
ture. In the case of water, instead, it increases like CP and
seems to diverge with a power law at about 228 K [8].

1.1.4. Coefficient of thermal expansion. Coefficient of
thermal expansion αP is the measure of cross fluctuations of
volume and entropy 〈�V �S〉:

αP ≡ 1

V

(
∂V

∂T

)
P

= P

kB
2T

〈�V �S〉. (3)

αP is positive for normal liquids (figure 1(c)). Instead, in
the case of water it becomes negative at the temperature of
maximum density TMD, indicating that for T < TMD the
entropy decreases when the volume increases. In experiments,
like other response functions, αP also seems to diverge with a
power law at about 228 K [8]. Dashed curves in figures 1(a)–
(c) are the schematic representations of the behavior of normal
liquids for a comparison.

1.1.5. Diffusion anomaly. The dynamics of simple liquids
becomes slower upon pressurizing. Instead, the dynamics of
water becomes faster as the pressure is increased reaching a
maximum at a constant temperature [9]. The region of this
dynamic anomaly includes the region of density anomaly in the
(T, P) plane [10]. Computer simulations of different models
of water recover the experimental results [11–13]. They show
that the diffusion constant D decreases for decreasing P ,
until it reaches a minimum value at some negative pressure
below which the normal behavior is recovered [13–17]. The
anomalous increase of diffusion upon pressurizing is attributed
to breaking of hydrogen bonds. As the pressure is increased
more and more hydrogen bonds are broken, making the water
molecules diffuse free from their neighbors and hence the
increase of diffusion.

1.1.6. Non-Arrhenius to Arrhenius dynamic crossover at
low temperatures. Liquids with relaxation times that are an
exponential function of 1/T are said to have an Arrhenius (or
activated) behavior, while those whose relaxation times follow
a different function of 1/T are said to have a non-Arrhenius
behavior. If, instead of the relaxation time of some specific
degree of freedom, the viscosity is used to characterize the
dynamics, then the variation of viscosity as an exponential
function of 1/T is called ‘strong’ behavior, while a different
function of 1/T is called ‘fragile’ behavior [18].

Normal liquids show only one of the two behaviors:
they are or Arrhenius or non-Arrhenius, as well as they are
strong or fragile. Water, instead, is anomalous also in this
respect, because it shows a crossover from a non-Arrhenius
behavior at high T to an Arrhenius behavior at low T in the
relaxations times, as well as a (high-T ) fragile to (low-T )
strong crossover [18].

The investigation on this anomaly has received a recent
boost thanks to the experiments on water confined in
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Figure 2. Non-Arrhenius to Arrhenius crossover in the dynamics of
TIP5P model of water. The diffusion constant D as a function of
1/T [34]. At high T , the temperature dependence of D can be fit
with a power law and, at low T , D becomes Arrhenius. Inset: D
behaves as a power low of TMCT, where TMCT is a fitting parameter
(mode coupling theory temperature).

nanostructures [19–21], water hydrating biomolecules [22],
and computer simulations [19, 23–33]. Both experiments
and simulations show a non-Arrhenius to Arrhenius crossover
in relaxation times and diffusion constant D (figure 2) [34]
whose relation with the bulk-water behavior is under
investigation [18].

One possible interpretation of the anomalous properties of
water is the presence of a hypothesized liquid–liquid critical
point (LLCP) C ′ [35] in the supercooled phase. However, as
we discuss in the next sections, this is not the only possible
interpretation.

1.2. Interpretations of the anomalies of water

Many of the anomalies of water can be reproduced by several
mechanisms. For example, it has been shown that isotropic
interactions of models with a LLCP can display the anomalies
we described above [36–38], with the same hierarchy observed
in water [39–41]. However, it has been shown also that not any
isotropic potential with a LLCP displays water anomalies [42],
questioning which details of the interaction are relevant to get
the complete picture. Usually all these results are analyzed
in the framework of two main interpretations, although other
hypothesis are under discussion [18].

1.2.1. The liquid–liquid critical point (LLCP) scenario. The
experimental results discussed in the previous section can be
interpreted in a consistent way by hypothesizing the presence
of a critical point between two metastable fluid phases for
supercooled water. This critical point is the terminus of a phase
transition line that separates a low-density liquid (LDL) and
a high-density liquid (HDL). This liquid–liquid critical point
(LLCP) gives rise to the Widom line TW(P) in the supercritical
liquid region, defined as the locus where different response
functions, such CP , KT or αP , have a maximum [34, 43].
The correlation length increases on approaching C ′ along the
Widom line and diverges at C ′.

Since the experiments on bulk liquid water cannot be
performed below the homogeneous nucleation temperature

T bulk
H ≈ −38 ◦C, where the crystal formation is inevitable, it is

not possible to test whether the seeming divergence of response
functions at low temperatures is indeed a divergence or
something else. Xu et al [34] studied different models of water
and found that CP , KT , and αP indeed increase sharply as the
temperature is increased, however instead of diverging at low
temperatures they have an extremum. They further found that
the maxima of these response functions increase as the pressure
is increased and ultimately diverge [34]. This behavior of the
response functions is consistent with hypothesis of a negatively
sloped liquid–liquid phase coexistence line ending at a critical
point [34, 22, 44].

1.2.2. The singularity-free (SF) scenario. Another
thermodynamically consistent interpretation of the water
anomalies is known as ‘singularity-free’ scenario (SF) [45].
Using a cell model of water, it was proposed that the rise in
response functions upon cooling can be described entirely by
the anticorrelation in volume and entropy fluctuations with no
singularity, differently from the case of LLCP scenario. The SF
scenario predicts, as well as the LLCP scenario [34, 44, 46], a
maximum in the response functions such as KT , αP or CP ,
but, differently from the LLCP, only the maxima of KT and αP

increase upon increasing P , while the maxima of CP do not
change in height [47, 46].

Until recently [46], this was the only difference, between
the SF and the LLCP scenario, that was predicted above
T bulk

H , the temperature of the inaccessible region possibly
hiding the critical point of the LLCP scenario. In the
attempt to explore the region below T bulk

H , and clarify the
low-T phase diagram of water, many investigations have
been done recently on confined water and in water hydrating
macromolecules [4, 5, 19, 20, 22, 21, 48]. In these cases,
indeed, the crystallization can be, at least partially, avoided
even for T < T bulk

H . However, the interpretation of the results
can be controversial [34, 21]. For this reason simulations on
confined and bulk water can help in clarifying the experimental
data.

1.3. Low temperature dynamics of hydrated biomolecules

Recently it has been hypothesized, on the base of molecular
dynamics (MD) simulations [43], that a dynamic crossover
observed in biomolecules, and called biomolecules glass
transition [22, 49–61], is related to the liquid–liquid phase
transition. Specifically, Kumar et al [43] studied the dynamic
and thermodynamic behavior of TIP5P water hydrating (i) an
orthorhombic form of hen egg-white lysozyme [63] and (ii) a
Dickerson dodecamer DNA [64] at constant pressure P =
1 atm, several constant temperatures T , and constant number
of water molecules N . They calculated the mean square
fluctuations 〈x2〉 of the biomolecules from the equilibrated
configurations, averaged over 1 ns. They found that the
temperature dependence of 〈x2〉 shows a crossover at Tp ≈
245 K, for both lysozyme (figure 3(a)) and DNA (figure 3(b)).

Kumar et al next calculated CP by numerical differen-
tiation of the total enthalpy of the system (protein and wa-
ter) by fitting the simulation data for enthalpy with a fifth-
order polynomial, and then taking the derivative with respect
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Figure 3. Mean square fluctuation of (a) lysozyme, and (b) DNA showing that there is a transition around Tp ≈ 242 ± 10 K for lysozyme and
around Tp ≈ 247 ± 10 K for DNA. For very low T one would expect a linear increase of 〈x2〉 with T , as a consequence of harmonic
approximation for the motion of residues. At high T , the motion becomes non-harmonic and we fit the data by a polynomial. The dynamic
crossover temperature Tp is determined from the crossing of the linear fit for low T and the polynomial fit for high T . The error bars is
estimated by changing the number of data points in the two fitting ranges.

to T . Figures 4(a) and (b) display maxima of CP (T ) at
TW ≈ 250 ± 10 K, as well as figures 4(c) and (d) show max-
ima of the derivative |dQ/dT | of the local tetrahedral-order
parameter Q with respect to temperature at the same TW, while
figures 4(e) and (f) display a dynamic crossover at T× for the
diffusion constant of hydration water for both biomolecules.

The fact that at TW both CP and |dQ/dT | have a
maximum is consistent with the observation that crossing the
Widom line corresponds to a continuous but rapid transition of
the properties of water from those resembling the properties
of a local HDL structure for T > TW(P) to those
resembling the properties of a local LDL structure for T <

TW(P) [34, 20, 43]. A consequence is the expectation that the
fluctuations of the protein residues in predominantly LDL-like
water (more ordered and more rigid) just below the Widom line
should be smaller than the fluctuations in predominantly HDL-
like water (less ordered and less rigid) just above the Widom
line.

This is, indeed, the case with Tp ≈ TW suggesting the
correlation between the changes in protein fluctuations and the
hydration water thermodynamics. Furthermore, the fact that
Tp ≈ T× suggests that it is indeed the changes in the properties
of hydration water that are responsible for the changes in
dynamics of the protein and DNA biomolecules.

1.4. Possible interpretation of the hydration water results and
the use of a tunable cell model for bulk water

These results are in qualitative agreement with recent
experiments on hydrated protein and DNA [22] which found
the crossover in side-chain fluctuations at Tp ≈ 225 K and
are all consistent with the possibility that the protein glass
transition is related to the Widom line and to the hypothesized
LLCP [65]. However, another possibility is that the dynamic
crossover in experiments, occurring at the maximum in CP , is
due to the SF mechanism, with no increase and divergence of
the correlation length as predicted in the LLCP interpretation.
For this reason we have analyzed the two hypothesis by means
of a cell model that can reproduce both scenarios, the LLCP

and the SF, depending on the value of a single parameter [66].
We looked for differences between the two cases, with the aim
of clarifying which scenario is more suitable to describe the
experiments.

One of advantages of this approach with respect to direct
simulations of less schematic models, is that in the cell model
the relation between the dynamics and the thermodynamics can
be explicitly calculated and not only inferred by the numerical
evidences, as in MD simulations. Another advantage is that,
by tuning the cell model between the two scenarios, we
understand which differences in the dynamics are related to
the different thermodynamics of the two interpretations.

To reduce the complexity of the analysis we considered
the case of bulk water [46]. We calculated the relation between
dynamics and thermodynamics, showing that the dynamic
crossover is a direct consequence of the structural change at the
temperature of maximum CP . We expressed the relevant free
energy barrier for the local rearrangement of the molecules in
terms of the probability pB of forming bonds. By mean field
calculations and Monte Carlo (MC) simulations we found that
the variation of pB is the largest at the locus of the maximum
CP , in both scenarios [46].

Nevertheless, we found a difference between the two
scenarios. We studied the ratio between the activation energy
in the Arrhenius regime and the crossover temperature and we
found that this index increases upon increasing pressure in the
LLCP scenario, while stays constant in the SF case [46]. Since
this index can be measured in the supercooled phase of liquid
water, it could provide the first observable quantity that allows
to distinguish which scenario holds for the low temperature
phase diagram of water.

2. Hamiltonian model for water

We consider a cell model that reproduces the fluid phase
diagram of water and other tetrahedral network-forming
liquids [66]. For sake of clarity, we focus on water to explain
the motivation of the model. The model is based on the
experimental observations that on decreasing P at constant
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Figure 4. The specific heat of the combined system (a) lysozyme and water, and (b) DNA and water, display maxima at TW ≈ 250 ± 10 K
and 250 ± 12 K respectively. Derivative |dQ/dT | of the tetrahedral-order parameter for (c) lysozyme and (d) DNA hydration water, shows a
maximum at TW (Widom line temperature) suggesting that the rate of change of local tetrahedrality of hydration water has a maximum at TW.
Diffusion constant of hydration water surrounding (e) lysozyme, and (f) DNA shows a dynamic transition from a power-law behavior to an
Arrhenius behavior at T× ≈ 245 ± 10 K for lysozyme and T× ≈ 250 ± 10 K for DNA, around the same temperatures Tp, where the behavior
of 〈x2〉 has a crossover, and TW, where CP and |dQ/dT | have maxima.

T , or on decreasing T at constant P , (i) water displays
an increasing local tetrahedrality [67], (ii) the volume per
molecule increases at sufficiently low P or T , and (iii) the O–
O–O angular correlation increases [68], as in simulations [69].

The system is divided into cells i ∈ [1, . . . , N] on a
regular square lattice, each containing a molecule with volume
v ≡ V/N , where V � Nv0 is the total volume of the system,
and v0 is the hard-core volume of one molecule. The cell
volume v is a continuous variable that gives the mean distance
r ≡ v1/d between molecules in d dimensions. The van der
Waals attraction between the molecules is represented by a
truncated Lennard-Jones potential with characteristic energy
ε > 0

U(r) ≡

⎧⎪⎨
⎪⎩

∞ for r � R0

ε

[(
R0

r

)12

−
(

R0

r

)6]
for r > R0,

(4)

where R0 ≡ v
1/d
0 is the hard-core distance [66].

Each molecule i has four bond indices σi j ∈ [1, . . . , q],
corresponding to the nearest-neighbor cells j . When two
nearest-neighbor molecules have the facing σi j and σ j i in
the same relative orientation, they decrease the energy by a
constant J , with 0 < J < ε, and form a bond, e.g. a
(non-bifurcated) hydrogen bond for water, or a ionic bond for
SiO2. An alternative choice to represent the orientations of a
molecule could be to use four continuous XY variables. See
for example [70]. The choice J < ε guarantees that bonds
are formed only in the liquid phase. The bond interaction is
accounted for by a term in the Hamiltonian

HB ≡ −J
∑
〈i, j〉

δσi j σ j i , (5)

where the sum is over nearest-neighbor cells, and δa,b = 1 if
a = b and δa,b = 0 otherwise.

The model assumes that the tetrahedral coordination
number is preserved for all P and T . For water at high P
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and T a more dense, collapsed and distorted, local structure
with bifurcated hydrogen bonds (HB) is consistent with the
experiments. Bifurcated HBs decrease the strength of the
network and favor the HB breaking and re-formation. The
model simplifies the situation by assuming that (a) only non-
bifurcated, i.e. normal, HBs decrease the energy of the system
and (b) the local density changes as function of the number
of normal HBs, consistent with the observation [68] that at
low P and T there is a better separation between the first
neighbors and the second neighbors, favoring normal HBs and
the tetrahedral order.

The density decrease for the temperature of maximum
density T < TMD(P) is represented by an average increase
of the molar volume due to a more structured network. The
total volume increases by an amount vB > 0 for each bond
formed [45, 66], and hence

v = v′ + 2pBvB, (6)

where v′ is the molar volume without taking into account the
bond. The increase of the intramolecular angular correlation is
modeled by introducing an intramolecular (IM) interaction of
energy 0 < Jσ < J ,

HIM ≡ −Jσ

∑
i

∑
(k,	)i

δσik σi	 , (7)

where
∑

(k,	)i
denotes the sum over the bond indices of the

molecule i .
The total energy of the system is the sum of

equations (4), (5) and (7). We perform mean field calculations
and MC simulations in the N PT ensemble [71, 66] for a
system with J/ε = 0.5, Jσ /ε = 0.05 and Jσ = 0, vB/v0 =
0.5, q = 6. We find that the model displays a critical point
C ′ between two liquids at different density, as in the LLCP
scenario. We study two square lattices with 900 and 3600 cells,
and find no appreciable size effects.

For Jσ → 0, mean field calculations and MC simulations
show that C ′ disappears at T = 0 [72]. For Jσ = 0, the model
coincides with the one studied by Sastry et al in [45], giving
rise to the SF scenario.

3. Liquid–liquid critical point (LLCP) scenario

Below the TMD line, in the supercooled region, the model
displays a first-order phase transition between a LDL at low
P and T and a HDL at high P and T along a line terminating
in the liquid–liquid critical point C ′ [66] (figure 5(a)).

3.1. Fluctuations in the supercritical region

For P < PC′ , the pressure of C ′, we find that the constant
pressure specific heat CP (T ) and thermal expansion coefficient
|αP | have maxima that move to lower T as P is increased
(figures 7(a) and 5(b)). The loci of the maxima of CP (T )

and |αP (T )| merge close to C ′. The amplitudes of these
maxima increase on approaching C ′. This is consistent with
the expected divergence of the correlation length at C ′. The
size of |αP |max increases rapidly as C ′ is approached, while

Cmax
P increases less rapidly (figure 7(a)). The Widom line

TW(P) coincides with the loci of Cmax
P and |αP |max close to

C ′ [34, 71]. We choose TW(P) to be the mid-point between
Cmax

P and |αP |max, with an error equal to the sum of the CP and
|αP | errors.

We find that pB increases on decreasing T (figure 5(c)),
with pB � 0.8 at TW(P). The value of pB(TW) weakly
decreases for increasing P and polynomial extrapolations to
C ′ up to the fifth order lead to a value of pB(PC′ ) = 0.55 ±
0.15. Hence, close to PC′ , on crossing TW(P) there is a
large variation from pB ≈ 1/2, to pB = 1. The mean
field [71] calculation of pB (figure 5(c)) compares well with
simulations for T > TW(P) and for T � TW(P), with
increasing discrepancy at TW for increasing P . Both mean
field and simulations show that |dpB/dT | displays a maximum
that moves to lower T for increasing P (figure 5(d)). The
temperature of this maximum coincides, within error bars, with
TW(P), consistent with the relation

αP = v′

v
α′

P + 2
(vB

v

)(
dpB

dT

)
P

, (8)

where α′
P is the contribution arising from the fluctuations

without taking into account the fluctuations due to the bonds.
Moreover, |dpB/dT | is related to the change of the local
structure of the liquid, because it is proportional to the
fluctuation of the number of bonds NB,

δ2 NB ≡ 〈N2
B〉 − 〈NB〉2 = 2NkBT 2

J − PvB

∣∣∣∣dpB

dT

∣∣∣∣ . (9)

Since the proportionality factor between |dpB/dT | and NB

depends on T and P , the locus of |dpB/dT |max does
not coincides with the locus of maximum fluctuations of
(δ2 NB)max, but the two loci approach each other for increasing
P and converge to C ′ (figure 5(a)). This result for the
maximum fluctuation in the number of bonds, i.e. in the
local structure, of bulk water in the vicinity of the Widom
line on approaching C ′ is reminiscent of the observation of a
maximum in structural fluctuations on crossing the Widom line
in simulations for protein hydration water [43].

We find that |dpB/dT |max increases on approaching C ′
in the same fashion as the response functions. Hence, for
P < PC′ , at T > TW(P) the liquid has fewer bonds than
for T < TW(P), i.e., is less structured and more HDL-like,
consistent with trends seen both in experiments [67] and in
simulations [43, 73]. For Jσ > 0 the large fluctuations of pB at
C ′ shows that the LDL–HDL phase transition is a consequence
of the cooperativity of the bonds due to the non-zero IM
interaction [72].

3.2. Dynamics in the supercritical region

To study the dynamics, we calculate the relaxation time τ

as the time for the spin autocorrelation function Cσσ (t) ≡
〈Si (t)Si (0)〉 to decay to 1/e, where Si ≡ ∑

j σi j/4 quantifies
the degree of total bond ordering for site i . The behavior of
non-Arrhenius liquids can be represented by a Vogel–Fulcher–
Tamman (VFT) function

τVFT = τVFT
0 exp

[
T1

T − T0

]
, (10)
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Figure 5. (a) The phase diagram below TMD line for the water model with Jσ > 0: C ′ is the HDL–LDL critical point, end of first-order phase
transition line (thick line) [66]; symbols are maxima for N = 3600 of |αP |max (◦), Cmax

P (�), |dpB/dT |max (), and (δ2 NB)max (�); our
results show that |dpB/dT |max coincides with the Widom line TW(P) (solid line) within error bars; upper and lower dashed line are quadratic
fits of |αP |max and Cmax

P , respectively, merging at Pmax
W ; dotted line is crossing the symbols for (δ2 NB)max is a guide for the eyes; |αP |max and

Cmax
P are consistent within error bars. Maxima are estimated from panels (b), (d) and 7(a), where each quantity is shown as functions of T for

different P. (b) The absolute value of the thermal expansion coefficient of αP as a function of the temperature show a maximum for each
pressure; lines are guides for the eyes. (c) The probability pB of forming a bond (small symbols) increases for decreasing T , saturating to one
at low T , with a larger increase at higher P; the value of pB at TW(P) is shown as a large open circle; the symbol has the size of the error on
the TW(P) estimate; dashed lines are the mean field calculations for pB [71] and compare well with simulations for T > TW(P) and
T � TW(P) with a discrepancy at T � TW(P) that is higher at higher P. (d) |dpB/dT |max is the numerical derivative of pB from simulations.
In all the panels the errors, if not shown, are of the size of the symbols.
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Figure 6. Angell’s plot of the relaxation time τ at different pressures. Tg is a reference temperature at which the relaxation time is τ = 106

MC steps, arbitrarily used to rescale the temperatures. (a) At P = 0 the behavior of the relaxation is apparently Arrhenius over all the range of
explored temperatures; its behavior becomes increasingly non-Arrhenius upon increasing pressure, as shown for Pv0/ε = 0.6. (b) A closer
look of the relaxation time at P = 0 shows that it is non-Arrhenius at intermediate T , as in real water [74–76, 20].

where τVFT
0 , T1 and T0 are all fitting parameters. Our

results show that the liquid becomes more non-Arrhenius upon
increasing P (figure 6(a)).

For P = 0, we show in figure 6(b) that upon decreasing
T there is a crossover from Arrhenius to VFT at intermediate
temperatures, and then from VFT back to Arrhenius at lower T .

The Arrhenius activation energy at low T is higher than that at
high T , consistent with experiments at ambient P for both bulk
water [74, 75] and confined water [76, 20].

We find that for all P the crossover occurs at TW(P) within
the error bars (figure 7(b)), confirming the idea proposed on
the base of simulations of detailed models for water [34, 43].
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Figure 7. (a) Temperature dependence of specific heat CP for the LLCP scenario. CP has a maximum, the size of which increases with
increasing pressure and diverges as P → PC′ . (b) Dynamic crossover in the LLCP case in the orientational relaxation time τ for a range of
different pressures. The crossover occurs at temperature TW(P) marked by large hatched circles of a radius approximately equal to the error
bar on the estimate of TW(P). Solid and dashed lines represent Arrhenius and VFT fits, respectively. The dynamic crossover occurs at
approximately the same value of τ for all seven values of pressure studied.

Figure 8. (a) Temperature dependence of specific heat CP for the SF scenario. CP has a maximum, but its size does not increase with
increasing pressure, consistent with the findings of the mean field calculations of [45]. (b) Dynamic crossover in the SF scenario, with
crossover temperature at T (Cmax

P ). Symbols are as in figure 7. Also in the SF scenario the dynamic crossover is isochronic.

We observe that the low-T behavior is characterized by an
activation energy—the slope in figure 7(b)—that decreases for
increasing P , as in experiments for confined water [20].

Finally, we observe that the crossover is isochronic, i.e. the
value of the crossover time τC is approximately independent
of pressure. We find τC � 103/2 MC steps � 15 ps [17]
(figure 7(b)). This means that the time needed to reach
the maximum correlation length is almost independent of the
position along TW(P).

4. Singularity-free (SF) scenario

To further test whether the observed crossover is only a
consequence of the liquid–liquid critical point, we also studied
the dynamics in the Jσ = 0 (SF) case.

4.1. Fluctuations

In the SF scenario the behavior of probability of forming
bonds pB is similar to that observed in the LLCP case, but
pB saturates to one at low T at a lower rate with respect
to the LLCP case [45, 72]. Along the locus of maximum
compressibility K max

T , pB = 0.795 [45] is approximately
equal to pB(TW) observed along the Widom line in the LLCP

scenario. This suggests that the structural behavior along
the locus of maxima of the response functions, such as the
compressibility or the specific heat, is independent on the
presence of the LLCP C ′.

Both KT and |αP | have maxima that increase along a
line with negative slope in the T –P phase diagram. This line
coincides within the error bars to the locus of maxima of CP .
However, the CP maximum does not increase upon increasing
pressure, but remains a constant (figure 8(a)), differently from
the LLCP case.

4.2. Dynamics

We study the relaxation time τ of Cσσ (t) also for the SF
scenario and we find that τ has a dynamic crossover similar
to that seen in the LLCP case (figure 8(b)). As in the LLCP
case, the dynamic crossover is isochronic with the crossover
occurring at the same characteristic time τC � 103/2 MC steps
(figure 8(b)).

Therefore, the presence of the dynamic crossover is
consistent with both the SF and the LLCP scenario, leaving
unclear if it is possible to distinguish between the two scenarios
on the base of dynamic measurements. To clarify this point,

8
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Figure 9. Effect of pressure on the activation energy EA. (a) Demonstration that EA decreases linearly for increasing P for both the LLCP
and the SF scenarios. The lines are linear fits to the simulation results (symbols). (b) TA, defined such that τ(TA) = 1014 MC steps
>100 s [17], decreases linearly with P for both scenarios. (c) P dependence of the quantity EA/(kBTA) is different in the two scenarios. In
the LLCP scenario, EA/(kBTA) increases with increasing P, and it is approximately constant in the SF scenario. The lines are guides to the
eyes. (d) Demonstration that the same behavior is found using the mean field approximation. In all the panels, where not shown, the error bars
are smaller than the symbol sizes.

we investigate possible differences in the crossover for both
scenarios [46].

5. Difference in the pressure dependence of the
dynamic crossover in LLCP and SF scenarios

To see if there are any distinct differences in the pressure
dependence of the dynamic crossover in the LLCP and SF case,
we next calculate the Arrhenius activation energy EA(P) from
the low-T slope of log τ versus 1/T (figure 9(a)).

5.1. Monte Carlo simulations

We extrapolate the temperature TA(P) at which τ reaches a
fixed macroscopic time τA � τC. We choose τA = 1014

MC steps >100 s, based on the observation that 1 MC step
> τα ∼ 10 ps, the α-relaxation time in supercooled water,
as results from the comparison with, e. g., [17] (figure 9(b)).
We find that EA(P) and TA(P) decrease upon increasing P
in both scenarios, providing no distinction between the two
interpretations. Instead, we find a dramatic difference in the
P dependence of the quantity EA/(kBTA) in the two scenarios,
increasing for the LLCP scenario and approximately constant
for the SF scenario (figure 9(c)).

5.2. Mean field analysis

We can better understand our findings by developing an
expression for τ in terms of thermodynamic quantities, which

will then allow us to explicitly calculate EA/(kBTA) for both
scenarios. For any activated process, in which the relaxation
from an initial state to a final state passes through an excited
transition state, the relaxation time τ is related to the activation
energy �(U + PV − T S), given by the difference in free
energy between the transition state and the initial state, by the
expression

ln
τ

τ0
= �(U + PV − T S)

kBT
, (11)

where τ0 ≡ τ0(P) is the relaxation time for T → ∞.
Consistent with results from simulations and experi-

ments [77, 78], we propose that at low T the mechanism to
relax from a less structured state (lower tetrahedral order) to a
more structured state (higher tetrahedral order) corresponds to
the breaking of a bond and the simultaneous molecular reori-
entation for the formation of a new bond. The transition state
is represented by the molecule with a broken bond and more
tetrahedral IM order. Hence,

�(U + PV − T S) = J pB − Jσ pIM − PvB − T�S, (12)

where pB and pIM, the probability of a satisfied IM interaction,
can be directly calculated. To estimate �S, the increase of
entropy due to the breaking of a bond, we use the mean field
expression

�S = kB[ln(2N pB) − ln(1 + 2N(1 − pB))] p̄B, (13)

where p̄B is the average value of pB above and below TW(P).

9
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Figure 10. Comparison between mean field (lines) and Monte Carlo (symbols) calculations for the relaxation time τ for the LLCP (a) and SF
(b) scenario. In (a) the fitting parameter Log τ0 for each pressure is given in the figures; dashed lines are the corrections at high T for the
equation (14); τ0 increases upon increasing P. In (b) Log τ0 = 0 and the equation (14) holds for all the pressures.

We next test if the expression of ln(τ/τ0), in terms of �S
and equation (12),

ln
τ

τ0
= J pB − Jσ pIM − PvB

kBT
− p̄B ln

2N pB

1 + 2N(1 − pB)
(14)

describes the simulations well. Here τ0 is a free fitting
parameter. We find that equation (14) holds over all the
simulation range for the SF scenario and needs only minor
corrections at high T and P for the LLCP case (figure 10). The
corrections are expected since we are considering a relaxation
process that has larger probability at low T and P .

In the SF case τ0 = 1 MC step for any P , while in the
LLCP case τ0 increases with P . This is consistent with the
fact that at high pressure and temperatures, when there are no
hydrogen bonds, water behaves like a normal liquid, which has
larger relaxation times for higher densities.

From equation (14) we find that the ratio EA/(kBTA)

calculated at low T increases with P for Jσ /ε = 0.05, while
it is constant for Jσ = 0, as from our simulations (figure 9(d)).
Therefore, the mean field analysis is able to rationalize our
simulation results.

6. Summary

Simulations of bulk supercooled water, as those for protein
hydration water, show a crossover from non-Arrhenius to
Arrhenius dynamics of relaxation time of the hydrogen bonds.
Our study show that:

• The dynamic crossover is consistent with both the
LLCP and the SF scenarios. The crossover occurs at
a temperature close to T (Cmax

P ), which decreases for
increasing P .

• Our mean field analysis allows us to rationalize the
dynamic crossover as a consequence of a local breaking
and reorientation of the bonds for the formation of
new and more tetrahedrally oriented bonds. Above
T (Cmax

P ), when T decreases, the number of hydrogen
bonds increases, giving rise to an increasing activation
energy EA and to a non-Arrhenius dynamics. As T
decreases, entropy must decrease. A major contributor to

entropy is the orientational disorder, that is a function of
the probability pB of forming bonds, as described by the
mean field expression for �S equation (13).

• We find that, as T decreases, pB—hence the orientational
order—increases. We find that the rate of increase has
a maximum at T (Cmax

P ), and as T continues to decrease
this rate drops rapidly to zero—meaning that for T <

T (Cmax
P ), the local orientational order rapidly becomes

temperature independent and the activation energy EA

also becomes approximately temperature independent, for
the equation (12). Corresponding to this fact the dynamics
becomes approximately Arrhenius.

• We find that the crossover is approximately isochronic
(independent of the pressure) consistent with our
calculations of an almost constant number of bonds at
T (Cmax

P ).
• We observe that in both scenarios the Arrhenius activation

energy EA and the temperature TA, at which the relaxation
time is macroscopic, decrease upon increasing P . Instead,
the P dependence of the quantity EA/(kBTA) has a
dramatically different behavior in the two scenarios. For
the LLCP scenario it increases as P → PC′ , while it is
approximately constant in the SF scenario. Therefore, the
quantity EA/(kBTA) offers a means to distinguish between
the two interpretations by dynamic measurements.
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