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1. Introduction

Understanding the complex nature of financial markets re-
mains a great challenge, especially in light of the most recent
financial crisis. Recent studies have investigated large data-sets
of financial markets, and have analysed and modelled the static
and dynamic behaviour of this very complex system (Fama
1965, Lo and Craig MacKinlay 1990, Campbell et al. 1997,
Lux and Marchesi 1999, Cont and Bouchaud 2000, Bouchaud
and Potters 2003, Sornette 2004, Voit 2005, Eisler and Kertesz
2006, Takayasu 2006, Brock et al. 2009, Sinha et al. 2010,
Abergel et al. 2011), suggesting that financial markets exhibit
systemic shifts and display non-equilibrium properties.

One prominent feature in financial markets is the presence of
observed correlation (positive or negative) between the price
movements of different financial assets. The presence of a

*Corresponding authors. Email: dkenett@bu.edu (D. Y. Kenett), eqing2700@gmail.com (X. Huang)

high degree of cross-correlation between the synchronous time
evolution of a set of equity returns is a well-known empirical
fact (Markowitz 1952, Campbell et al. 1997, Elton et al. 2009).
The Pearson correlation coefficient (Pearson 1895) provides
information about the similarity in the price change behaviour
of a given pair of stocks. Much effort has been devoted to
extracting meaningful information from the observed corre-
lations in order to gain insights into the underlying structure
and dynamics of financial markets (Laloux et al. 1999, Plerou
et al. 1999, Laloux et al. 2000, Morck et al. 2000, Cizeau
et al. 2001, Embrechts et al. 2002, Forbes and Rigobon 2002,
Campbell et al. 2008, Campbell et al. 2008, Krishan et al. 2009,
Podobnik et al. 2009, Aste et al. 2010, Pollet and Wilson 2010,
Tumminello et al. 2010, Kenett et al. 2011a, Huang et al. 2013).

A large body of work has dealt with the systemic risks in the
financial system in the presence of co-movement of financial
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assets. To understand how risks propagate through the entire
system, many studies have focused on understanding the syn-
chronization in financial markets that is especially pronounced
during periods of crisis (Haldane and May 2011, Bisias et al.
2012). Recent advancements include the CoVaR methodology
(Adrian and Brunnermeier 2011), and Granger causality anal-
ysis (Granger 1969, Billio et al. 2012). These measures focus
on the relationship of one variable on a second variable, for
a given time period. Finally, much work has been focused on
the issue of conditional correlation (Engle 2002) and event
conditional correlation (Maugis 2014), and its applications
in financial markets. However, a missing dimension of these
methodologies is the investigation of many-body interaction
between financial assets.

Despite the meaningful information provided by investigat-
ing the correlation coefficient, it lacks the capacity to provide
information about whether a different stock(s) eventually con-
trols the observed relationship between other stocks. Causality,
and more specifically the nature of the correlation relationships
between different stocks, is a critical issue to unveil. Thus, chal-
lenge is to understand the underlying mechanisms of influence
that are present in financial markets. To overcome this issue,
the use of the partial correlation coefficient (Baba et al. 2004)
was recently introduced (Kenett et al. 2010).

A partial (or residual) correlation measures how much a
given variable, say j , affects the correlations between another
pair of variables, say i and k. Thus, in this (i, k) pair, the partial
correlation value indicates the correlation remaining between
i and k after the correlation between i and j and between k
and j have been subtracted. Defined in this way, the difference
between the correlations and the partial correlations provides a
measure of the influence of variable j on the correlation (i, k).
Therefore, we define the influence of variable j on variable i , or
the dependency of variable i on variable j , as D(i, j), to be the
sum of the influence of variable j on the correlations of variable
i with all other variables. This methodology has originally
been introduced for the study of financial data (Kenett et al.
2010, Kenett et al. 2012a; 2012b, Maugis 2014), and has been
extended and applied to other systems, such as the immune
system (Madi et al. 2011), and semantic networks (Kenett et al.
2011b).

Previous work has focused on how variable j affects variable
i , by averaging over all (i, k) pairs, thus quantifying how
variable j affects the average correlation of i with all other
variables. While this has provided important information that
has been both investigated and statistically validated, our goal
here is to present a more general and robust method to sta-
tistically pick the meaningful relationships without first aver-
aging over all pairs. Unlike the previous work, in which the
average influence of j on the correlation of i with all others
was calculated, and then statistically validated, here, we first
filter for validated links, and then average the influence. In
order to achieve this, we expand the original methodology and
use statistical validation methods to filter the significant links.
This statistically validated selection process reveals signifi-
cant influence relationships between different financial assets.
This new methodology allows us to quantify the influence
of different factors (e.g. economic sectors, other markets or
macroeconomic factors) have on a given asset. The information
generated by this methodology is applicable to such areas as

risk management, portfolio optimization and financial conta-
gion, and is valuable to both policy-makers and practitioners.

The rest of this paper is organized as follows: In section 2, we
introduce the partial correlation approach to quantify influence
between financial assets. We present the new extensions of
the methodology, which allows the selection of statistically
significant influence links between different assets. In sections
3 and 4, we present two possible applications of the methodol-
ogy. In section 3, we focus on how the methodology provides
new insights into market structure and its stability across time,
while in section 4, we present a practical application, which
provides information on the how a company is influenced by
different economic sectors, and how the sectors interact with
each other. Finally, in section 5, we discuss our results and
provide additional insights into further applications of this
methodology.

2. Quantifying underlying relationships between financial
assets

The aim of this paper is to introduce a methodology that sheds
new light on the underlying relationships between financial
assets. Building on previous work (Kenett et al. (2010)), we
present a robust and statistically significant approach to ex-
tracting hidden underlying relationships in financial systems.

2.1. Data

For the analysis reported in this paper, we use daily adjusted
closing stock price time series from four different markets, data
provided by the Thomson Reuters Datastream. The markets
investigated are the US, the UK, Japan and India, (see table 1
for details, also Kenett et al. (2012b)). We only consider stocks
that are active from January 2000 until December 2010. Vol-
ume data was used to identify and filter illiquid stocks from the
sample. Table 1 presents the number of stocks remaining after
filtering out the stocks that had no price movement for more
than 6% of the 2700 trading days.

2.2. Stock raw and partial correlation

To study the similarity between stock price changes, we calcu-
late the time series of the daily log return, given by

ri (t) = log[Pi (t)/Pi (t − 1)], (1)

where Pi (t) is the daily adjusted closing price of stock i at day
t . The stock raw correlations are calculated using the Pearson
correlation coefficient (Pearson 1895)

ρ(i, j) = ⟨r(i) − ⟨r(i)⟩⟩ · ⟨r( j) − ⟨r( j)⟩⟩
σ (i) · σ ( j)

, (2)

where ⟨⟩ represents average over all days, and σ (i) denotes the
standard deviation.

In some cases, a strong correlation not necessarily means
strong direct relation between two variables. For example,
two stocks in the same market can be influenced by common
macroeconomic factors or investor psychological factors. To
study the direct correlation of the performance of these two
stocks, we need to remove the common driving factors, which
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Table 1. Summary of data sample.

Market Stocks used Index used # before # filtered

US S&P 500 S&P 500 500 403
UK FTSE 350 FTSE 350 356 116
Japan Nikkei 500 Nikkei 500 500 315
India BSE 200 BSE 100 193 126

are represented by the market index. Partial correlation quanti-
fies the correlation between two variables, e.g. stocks returns,
when conditioned on one or several other mediating variables
(Baba et al. 2004, Shapira et al. 2009, Kenett et al. 2010).
Specifically, let X, Y be two stock return time series and M
be the index. The partial correlation, ρ(X, Y : M), between
variables X and Y conditioned on variable M is the Pearson
correlation coefficient between the residuals of X and Y that are
uncorrelated with M . To obtain these residuals of X and Y , they
are both regressed on M . The partial correlation coefficient can
be expressed in terms of the Pearson correlation coefficients as

ρ(X, Y : M) ≡ ρ(X, Y ) − ρ(X, M)ρ(Y, M)
√[

1 − ρ2(X, M)
] [

1 − ρ2(Y, M)
] . (3)

In figure 1(a), we plot the correlation vs. partial correlation
(using the index as the conditioning variable) between stocks
that belong to the S&P 500 index. The figure shows that all
points are below the diagonal straight line, which means the
influence from the index to the correlation between any pair
of stocks is always positive. Furthermore, when two stocks X
and Y both have business relation with a third common stock
Z , their prices can be both affected by the performance of the
third stock, thus showing similar price movements even after
removing the effect of the index. By removing the influence
from the third company, we can see the importance of the role
that the third stock acts in the correlation of two stocks. The
partial correlation coefficient between X and Y conditioned on
both M and Z is

ρ(X, Y : M, Z)

≡ ρ(X, Y : M) − ρ(X, Z : M)ρ(Y, Z : M)
√[

1 − ρ2(X, Z : M)
] [

1 − ρ2(Y, Z : M)
] . (4)

In order to quantify the influence of stock Z on the pair of
X and Y , we focus on the Influence quantity

d(X, Y : Z) ≡ ρ(X, Y : M) − ρ(X, Y : M, Z). (5)

This quantity is large when a significant fraction of the partial
correlation ρ(X, Y : M) can be explained in terms of Z .
In previous research, Kenett et al. defined this quantity by
d∗(X, Y : Z) ≡ ρ(X, Y ) − ρ(X, Y : Z), which holds for
general cases (Kenett et al. 2010). However, for the stock
market case specifically, the fraction of ρ(X, Y ) that can be
explained by Z contains two parts, index influence and stocks
Z influence, because stock Z can also contains information
of the index. Usually, the influence from the index prevails
and exceeds the influence from any other individual stock.
For example, when X and Y are competitors and partners,
respectively, to stock Z , performances of X and Y should have
negative correlation because of Z . In this case, the influence
from Z to the correlation between stocks X and Y should

be negative. However, because of the dominant correlation
between these two stocks and the index, the d∗(X, Y : Z) is
still positive. Thus, we suggest to remove the influence of the
market before studying the influence of a stock Z on a pair of
stocks. In the scatter plot of the partial correlation conditioned
on the index vs. the partial correlation conditioned on both
index and an individual stock (figure 1(b)), the points distribute
at both sides of the diagonal line, meaning a significant fraction
of d(X, Y : Z) is negative.

The average influence d(X : Z) of stock Z on the correla-
tions between stock X and all the other stocks in the system is
defined as

d(X : Z) ≡ ⟨d(X, Y : Z)⟩Y ̸=X . (6)

It is important to note that d(X : Z) approximates the net
influence from stock Z to stock X , excluding the influence
from the index.

2.3. Test of statistical significance

In a system of size N , there exists N (N − 1)(N − 2)/2 partial
correlation interactions, d(X, Y : Z), when all possible stock
combinations are considered. To simplify the description of
the system, only the non-trivial interactions with a certain
significance level are selected. To identify the significance
of partial correlation, we provide two methods: (1) Fisher’s
transformation-based approach; and (2) empirical-based
approach.

2.3.1. Fisher transformation statistical significance
test. We first introduce the Fisher’s transformation method.
According to ref. (Fisher 1915), when X and Y follow a bi-
variate normal distribution and X (t), Y (t) pairs to form the
correlation are independent for t = 1 . . . n, a transformation
of the Pearson correlation

z(ρ) = 1
2

ln
(

1 + ρ

1 − ρ

)
= artanh(ρ) (7)

approximately follows normal distribution N ( 1
2 ln

(
1+r
1−r

)
,

1√
N−3

), where r is the population correlation coefficient and N
is the sample size. The Fisher transformation holds when ρ is
not too large and N is not too small. Furthermore, the Fisher’s z-
transform of the partial correlation coefficients approximately
follows (Fisher 1924)
⎧
⎨

⎩
z (ρ(X, Y : M)) ∼ N

(
1
2 ln

(
1+r(X,Y :M)
1−r(X,Y :M)

)
, 1√

N−3

)

z (ρ(X, Y : M, Z)) ∼ N
(

1
2 ln

(
1+r(X,Y :M,Z)
1−r(X,Y :M,Z)

)
, 1√

N−3

)

(8)
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Figure 1. (a) Scatter plot of correlation vs. partial correlation conditioned on index. It is possible to observe that all points are below the
diagonal straight line, which means the influence from the index to the correlation between any pair of stocks is always positive. (b) Scatter
plot of partial correlation conditioned on index vs. partial correlation conditioned on both index and a third stock. It is possible to observe that
the points distribute at both sides of the diagonal line, meaning a significant fraction of d(X, Y : Z) is negative (mainly for low ρ(X, Y : M)
values). In both figures, X, Y, Z represent return time series of stocks, M represents return time series of S&P 500 index. The red curve is the
diagonal straight line.

which leads to

z(ρ(X, Y : M)) − z(ρ(X, Y : M, Z))

∼ N
(

1
2

ln
(

1 + r(X, Y : M)

1 − r(X, Y : M)

)

− 1
2

ln
(

1 + r(X, Y : M, Z)

1 − r(X, Y : M, Z)

)
,

√
2

N − 3

)
. (9)

When ρ(X, Y : M) is significantly different from ρ(X, Y :
M, Z), d(X, Y : Z) is significantly different from zero. Thus,
the Student’s t-test is used to determine if ρ(X, Y : M) and
ρ(X, Y : M, Z) are different. Since N is large, the degree
of freedom is also large, where the t-test is approximately the
same as the Z-test (Chou 1975). In the next section, we propose
a complementary empirical statistical significance test.

2.3.2. Empirical statistical significance test. Next, we in-
troduce the empirical time series shuffling statistical signif-
icance method. While the Fisher transformation is easier to
implement and faster to calculate, it requires some assumptions
regarding the underlying distributions of the investigated time
series.

For each of the sample time series, we perform the empirical
significance test by first shuffling the sequence of the returns.
The shuffling process destroys correlations between each pairs
of stocks returns, and between stock returns and benchmark
return, i.e. ρ(X, Y ) and ρ(X, M) should be zero, which leads
to d(X, Y : Z) equal to zero. By plotting the distribution of
d̂(X, Y : Z), we can find the thresholds of different significant
levels for d(X, Y : Z). In figure 2, we shuffle the return time
series of 403 S&P500 stocks, and the index, and plot the distri-
bution of d̂(X, Y : Z) (solid black curve).As a comparison, we
plot the Gaussian distribution with same average and standard
deviation value in brown colour. From the comparison, it is
possible to observe that the empirical distribution of d̂(X, Y :
Z) has fat tails, and significantly deviates from the case of a
gaussian distribution observed for random or shuffled data. The
dashed lines represent the positions of one-tailed 1, 5 and 10%
significance levels or two-tailed 2, 10 and 20% significance
levels. We suggest to make use of the two-tailed test, due to

the fact that the significant negative influence is also important.
The red curve in figure 2 presents the distribution of empirical
d(X, Y : Z). For the case of the S&P500 companies example
presented in figure 2, significance level of 2% corresponds to
a z − value (equation 9) z > 1.6449; confidence level of
10% corresponds to z > 1.2816; and confidence level of 20%
corresponds to z > 0.8416 (see table 2).

While the two methods are interchangeable in respect to the
resulting significance levels, there are additional benefits in
using the empirical approach. The empirical shuffling method
conserves the distribution of returns without requiring ad-hoc
assumptions on the underlying distribution of the data. Fur-
thermore, the empirical approach can also be expanded to meet
stricter requirements. For example, if the short-term time series
structure is required to be conserved, the whole time series can
be divided into segments with a given length and we can than
shuffle the segments without changing the sequence of time
series within the segments. The empirical approach requires
randomizing time series, calculating N 3 partial correlation co-
efficients and making a distribution out of these coefficients,
which for a large number of variables requires a huge amount of
calculation power for real-time real-data analysis. In practice,
making use of the empirical approach is preferable; however,
if the empirical is not feasible, then the Fisher transformation
can be used as an estimation method.

The empirical statistical significance test allows a selection
of significant influence relationships between the investigated
financial assets. In previous work (Kenett et al. (2010)), this
was achieved by using different network-based approaches,
which than further allowed to investigate the nature of these
relationships. Below, we propose two new applications of this
methodology, using the empirically statistically significant val-
ues of d(X, Y : Z). The significance level used throughout the
paper is the z > 1.6449, corresponding to two-tailed 2%.

3. Market structure and its stability

High correlation between two stocks at a given time does not
necessarily guarantee high correlation in the future, because the
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Figure 2. Empirical statistical significance test of influence between financial assets. We present the distribution of influence from one stock
to pair of stocks, for the case study of 403 S&P500 companies, for a period of 11 years. The black curve represents the distribution of the
influences, d̂(X, Y : Z), calculated from the shuffled time series. The dashed lines denotes the positions of one-tailed 1, 5 and 10% significance
levels or two-tailed 2, 10 and 20% significance levels. The distribution of d̂(X, Y : Z) has an average value 9.9 · 10−8, standard deviation
σ = 3.6 ·10−4, skewness 9.5 ·10−7 and kurtosis 9.83. The brown curve represents the Gaussian distribution with the same average value and
standard deviation as the black curve. The red curve is the distribution of influences, d(X, Y : Z), calculated from the empirical stock return
time series. We suggest to make use of the two-tailed test, due to the fact that the significant negative influence values are also important. For
the two-tailed test, significance level of 2% corresponds to z > 1.6449; confidence level of 10% corresponds to z > 1.2816; and confidence
level of 20% corresponds to z > 0.8416. The inset shows the full empirical distribution.

Table 2. Summary of two-tail significance thresholds.

Significance level (%) Threshold

1 0.00152
2 0.00108
5 0.00081
10 0.00057
20 0.00037

behaviour of stocks in financial markets is extremely dynamic.
In certain markets, companies change their strategies faster
than in the other markets, which can be uncovered by the
partial correlation analysis of the behaviour of their stocks. If
the companies tend to keep their past strategies, then the level
of partial correlation between two companies’ stocks tends to
be stable. In markets where companies switch their strategies
more quickly, two companies which had similar behaviour in
the previous year might have quite different behaviour in the
next year. In such markets, partial correlation between stocks
should be more volatile.

We apply the partial correlation influence analysis to study
the stability of the market structure. Specifically, we define the
average influence d(X) of stock X on all the other stocks in
the market as

d(X) ≡ ⟨d(X : Z)⟩ , (10)

where ⟨⟩ is the average over all Z stocks. We rank the stocks
by their d(X) values, which we consider as a representation
of the structure of the market. By dividing the 11-year pe-
riod into 44 quarterly periods, we can compare similarity of

the market structures (ranking of stocks) in different years.
Kendall τ rank correlation coefficient (Kendall 1938) is ap-
plied to measure the similarity of the orderings for different
periods. Let (x1(t), x1(t ′)), (x2(t), x2(t ′)), . . . , (xn(t), xn(t ′))
be a set of rankings of the variables X for different periods
t and t ′, respectively. Any pair of observations (xi (t), xi (t ′))
and (x j (t), x j (t ′)) are said to be concordant if both xi (t) >
x j (t) and xi (t ′) > x j (t ′) or if both xi (t) < x j (t) and xi (t ′) <
x j (t ′). Otherwise, they are said to be discordant. The Kendall
τ coefficient is defined as

τ = number of concordant pairs − number of discordant pairs
1
2 n(n − 1)

,

(11)
where if two rankings are the same, τ is one, if two rankings

are independent, τ is zero, and if two rankings are discordant,
τ equals minus one.

In figure 3, we present the Kendall τ coefficient for each
different quarter pairs for the four investigated markets.
Generally speaking, each market shows that the longer the time
interval, the smaller the rank correlation coefficient, meaning
lower similarity between the market structures for the two
quarters which are compared. Comparing the rank correlations
for the four markets, we find that S&P 500, FTSE 350 and
Nikkei 500 stocks show strong market stability patterns, while
Indian BES 200 stocks almost do not demonstrate any stable
patterns. This can be understood by considering that developed
markets tend to keep their market structure longer than fast
developing markets. Furthermore, it is possible to observe
that for the US market, there were structural changes in the
market following the ‘dot com’ crisis of 2000 and the ‘credit
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S&P 500
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Figure 3. Kendall τ correlation coefficient of stock rankings in different quarters. The total investigated period of 11 years is divided into
44 quarters. For each quarter, we calculate the average influence of each stock, and rank the stocks according to their influence. We then use
the Kendal τ correlation to quantify the similarity between every possible quarter pair, for the four investigated markets. The colour code is
used to present the strength of the correlation, ranging from blue for negative rank correlation to red for positive rank correlation.

crunch’ crisis of 2008. These can be identified in figure 3 by
the red rectangle in the upper left corner for the former (Q4
of 2000 till Q4 of 2001), and the red rectangle in the bottom
right corner for the latter (Q4 of 2007 till Q4 of 2008). These
rectangles present a strong similarity in the structure during the
two crises, followed by consecutive quarters with low values
of three rank correlations, representing the change in structure.
Studying the other markets, it is also possible to observe the
structural changes resulting from the 2008 financial crisis in
the UK, but not in the structure of Japan or India.

To further quantitatively study the market stability, we plot
the correlation coefficient of two rankings against the time
interval of these two rankings (figure 4). By averaging the
correlation coefficients for each time interval, we can study
how correlation coefficients decay as time evolves. We find
the decay of the τ rank correlation coefficients follow an ap-
proximate exponential process, τ = τ0e−t/λ, as shown in the
insets in figure 4. Parameter τ0 describes the consistency of
the rankings between two consecutive quarters. The larger
τ0 is, the more consistent two consecutive ranking are. The
λ parameter describes the characteristic time after which the
correlation coefficient decays. Larger λ values mean longer
persistence period, and thus, describe the change in influence
ranking across time. These two parameters together describe
the stability of the markets. For the investigated markets, we
obtain the following values: US—τ0 = 0.28, λ = 16.2; UK—
τ0 = 0.22, λ = 19.8; Japan—τ0 = 0.2, λ = 18.8; and
India—τ0 = 0.17, λ = 42.9. As can also be observed in
figure 3, τ0 has the largest value for the S&P500 case, and
smalls value for the BES200 case; however, the persistence in
India is largest (as represented by the values of λ). We observe
that the results for the Indian market differ from the other three
markets. This is possibly related to the differences observed
between developing and developed markets.

Put together, these analyses provide new insights into the
dynamics of financial markets. Using the τ0 and λ parameters,
can help in monitoring structural changes in the market, and
their persistence. Thus, this methodology presents a unique
tool for regulators and policy-makers to monitor the stability
and robustness of financial markets.

4. Quantifying the influence of economic sectors

As our society becomes more and more integrated, production
activities from different industries depend upon and influence
each other. Categorizing a company into only one industrial
sector, cannot reflect its whole performance and associated
risk. Many listed companies in the stock market belong to
conglomerates, conducting their business in different industry
sectors; hence, these companies’ performance will naturally
be influenced by multiple industries. Even if a company only
conducts its business in one sector, its performance can still be
influence by other sectors because of the division of labour in
modern society. For example, Alcoa Inc. as the world’s third
largest producer of aluminium is listed in the materials sector
in NYSE. However, the production of Alcoa Inc. requires ded-
icated supply of energy, e.g. Alcoa accounts for 15% of State
of Victoria’s annual electricity consumption inAustralia. Thus,
their performance is also heavily influenced by and contributes
to the performance of the energy sector. In this section, we
present an application of the partial correlation methodology
to study the multiple-sector influence on stocks. We use the
sector classification from the Global Industry Classification
Standard (GICS).

To study the influence on a stock X from different sectors,
we first calculate the influence d(X : Z) (equation 6) from all
other stocks Z . The analysis in this section is performed for the
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Figure 4. Kendall tau correlation coefficient between rankings vs. time interval between rankings. By averaging the correlation coefficients
for each time interval, we can study how correlation coefficients decay as time evolves. We find the decay of the τ rank correlation coefficients
follow an approximate exponential process, τ = τ0e−t/λ. Parameter τ0 describes the consistency of the rankings between two consecutive
quarters. The larger τ0 is, the more consistent two consecutive rankings are. The λ describes the speed that the correlation coefficient decays
as time evolves. Larger λ means longer decay period and smaller decay speed. These two parameters together describe the stability of the
markets. For the investigated markets, we obtain the following values: US—τ0 = 0.28, λ = 16.2; UK—τ0 = 0.22, λ = 19.8; Japan—
τ0 = 0.2, λ = 18.8; and India—τ0 = 0.17, λ = 42.9.

entire investigated time period. Next, we calculate the average
influence by sector, in which we use the sector categorization
information of other stocks, as follows

d S
X = 1

NS

NS∑

ZS=1

d(X : ZS), (12)

where X represents the investigated stock, S represents a given
sector, NS is the number of stocks in sector S and ZS represents
the stocks in sector S. The average influence d S

X reflects the
level of influence that stock X receives from sector S. After
we normalize the average influence, we can attribute stock X ’s
performance to sectors’ performances with coefficients

βS
X = d S

X∑
S d S

X

. (13)

In figure 5, we present an example of four typical stocks to
show the pie picture of βS

X . We can see from the figure that in
the case ofAlcoa Inc., we observe significant influence from the
energy, materials and industrials sector. In the case of Franklin
Templeton Investments, we find that the largest influence is
from the financials sector. In the case of GE, we find that the
main influence stems from the materials, utilities and financial
sector. Finally, studying the example of Apple, we find that
there is a more homogeneous division of the influence between
the different sectors. This could possibly indicate that out of
these four companies,Apple is the most diverse in its activities,
being influenced almost uniformly by different sectors of the
economy.

Finally, we perform a validation test on the partial correlation
analysis results, investigating whether the result of multi-sector
influence on stocks is plausible. To this end, we first rank all
the stocks in the S&P500 data-set by their fraction of influence
(βS

X ) from the financials sector. We then investigate what are
the economic sectors influencing these stocks, according to the
rank. We find that the top stocks in the ranking according to our
partial correlation analysis are dominantly classified into the
financials sector. We repeat this analysis for all other economic
sectors. Indeed, all other sectors show that our analysis is in
agreement with the GICS sector classification. To quantita-
tively show this agreement, we calculate the correct prediction
rate. According to the GICS, we find the total numbers of
stocks (NS) in all sectors. From the ranking of stocks according
to the influence from a given sector, we select the NS top
stocks. We then calculate the fraction of these top stocks that
are classified by GICS into that certain sector as the correct
prediction rate. If the partial correlation analysis prediction
is in total agreement with the formal classification, then this
correct prediction rate should be 1. If the prediction corre-
sponds to the case of random picking, this correct prediction
rate should be NS

N , where N is the total number of stocks.
In figure 6(c), we show that the partial correlation analysis
of sector keeps a high correct prediction rate for all sectors,
except the telecommunications sector, which could be related
to the small number of telecommunication stocks that are part
of the S&P500 index. An alternative interpretation to these
results is that the financials and energy sectors are both highly
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Figure 5. Fraction of influence from each sector to example stocks, Alcoa Inc., Apple Inc., Franklin Templeton Investment and General
Electrical. we present an example of four typical stocks to show the pie picture of βS

X . We can see from the figure that in the case of Alcoa
Inc., we observe significant influence from the energy, materials and industrials sector. In the case of Franklin Templeton Investments, we
find that the largest influence is from the financials sector. In the case of GE, we find that the main influence stems from the materials, utilities
and financial sector. Finally, studying the example of Apple, we find that there is a more homogeneous division of the influence between
the different sectors. This could possibly indicate that out of these four companies, Apple is the most diverse, as its business is affected by
different sectors of the economy.
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Figure 6. Partial correlation test of the extent of sectorial influence. To this end, we first rank all the stocks in S&P 500 by their fraction of
influence (βS

X ). We plot the fraction of true prediction of stocks’ sector from partial correlation analysis (red solid curve). The blue dashed
curve is for the case of random picking strategy, for the purpose of comparison.

cohesive sectors of economic activity. This means that the
activity in these economic sectors is mainly contained inside
each sector, with little influence of external economic sectors.
Other sectors, such as Industrials and Materials, have stronger
dependencies on other sectors, and are strongly influenced
other sectors’ activities. Repeating this analysis for shorter
periods of time, or combining the analysis with a moving
window approach, could provide meaningful insights into the
degree of interdependencies between the different economic
sectors over time.

After studying the amount of influence that stocks receive
from different sectors, we find that some sectors tend to
influence the same stocks concurrently. We thus study the

Pearson correlation of influences from two sectors to the same
stocks, i.e. ρ(d Si , d S j ), where d Si represents the vector vari-
able of influence from sector i to all stocks. Applying this
definition of sector correlation to the S&P 500 data results in
values that are presented in the first panel of figure 7. We find
that in the S&P 500 index, the pairs of industrials sector and
consumer discretionary sector, materials sector and industri-
als sector and the communications sector and the technology
sector are very close to each other, in terms of their influence.
Whenever a stock is highly influenced by one of these sectors,
the other in the pair also tends to be influential to this stock.
We also notice some dark blue areas, e.g. the correlation be-
tween the utilities sector and the consumer discretionary sector,
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Figure 7. The correlation of influences from two sectors to the same stocks, i.e. ρ(d Si , d S j ), where d Si represents the vector variable of
influence from sector i to all stocks. We represent the correlation using a heat map of closeness between sectors in different markets, using a
colour code to represent the strength of the correlation, ranging from blue for full anti correlation, to red, for complete correlation. We observe
that for the S&P 500 data, the pairs of industrials sector and consumer discretionary sector, materials sector and industrials sector and the
communications sector and the technology sector are very close to each other, in terms of their influence, and an anti-correlation between
the utilities sector and the consumer discretionary sector. For the case of the other three investigated markets—the UK FTSE 350 index, the
Japanese Nikkei 500 index and the India BES 200 index—we find that all show high correlation between materials sector and industrials
sector.

which means when a stocks is highly influence by one of them,
the other tends to be of little influence to the stock. We also
study the UK FTSE 350 index, the Japanese Nikkei 500 index
and the India BES 200 index. They all commonly show high
correlation between materials sector and industrials sector.

5. Summary

This work presents a more general, statistically robust frame-
work of the dependency network methodology introduced by
Kenett et al. (2010). Using the dependency network method-
ology, we apply the partial correlation analysis to uncover
dependency and influence relationship between the different
companies in the investigated sample. Here, we present a new
statistically robust approach to filtering the extracted influ-
ence relationships, by either using a theoretical or an empir-
ical approach. The influence method introduced in this study
is generic and scalable, making it highly accessible to both
policy-makers and practitioners.

We present two possible applications of this methodology.
First, we study the stability of financial market structure and
show that developed markets such as the US, UK and Japan ex-
hibit higher degree of market stability compared to developing
countries such as India. Second, we show that one stock can
be influenced by different sectors outside of its primary sector
classification. This provides a new tool for the classification of
economic sectors of activities.

While financial analysts are usually specialized in one in-
dustry sector, a broader perspective of equity research is re-
quired to grasp the insights of stock performance expectations.

While the method was demonstrated using equity data, it is
generic and can be applied to other asset types, and cross-
asset relationships. The presented methodology provides new
information on the interaction between different assets, and
different economic sectors. Such information is valuable not
only for investors and their practitioners, but also for regulators
and policy-makers.
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