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Abstract. – We study the filling process of a two-dimensional silo with inelastic particles by
simulation of a granular-media lattice gas (GMLG) model. We calculate the surface shape and
flow profiles for a monodisperse system and we introduce a novel generalization of the GMLG
model for a binary mixture of particles of different friction properties where, for the first time,
we measure the segregation process on the surface. The results are in good agreement with a
recent theory, and we explain the observed small deviations by the nonuniform velocity profile.

Mixtures of grains tend to separate as a response to virtually any type of external pertur-
bation [1], an effect that can be a major problem in some practical situations, and useful in
others. Indeed, understanding the underlying processes of segregation phenomena in granular
mixtures is an intriguing problem of interest to scientists from a wide range of disciplines.

Segregation occurs when a mixture is poured onto a horizontal base and a pile builds up.
When the grains of the mixture differ in size, the large grains tend to gather at the bottom
of the pile [2], while when the grains have different shapes, the more faceted grains are found
preferentially near the top. An even more surprising effect can be observed when a mixture of
small rounded and large faceted grains is poured between two parallel plates: stratification is
observed —i.e., the grains organize spontaneously into stripes [3].

Particle size distribution crucially influences segregation. However, the particles generally
differ not only in size but also in other properties, such as frictional ones. Frictional effects play
a relevant role in band formation in 3-D rotating drums, in segregation in thin rotating drums,
and also segregation and stratification in 2-D silos. Thus the study of the particular case
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where segregation is caused solely by differences in friction coefficients tells the contribution
of friction to these segregation processes.

The description of segregation in the case of a bidisperse pile is nontrivial. A theory was
proposed for the two-dimensional case [4], which is a generalization of a method developed [5]
for avalanches in piles of monodisperse particles that treats the static bulk and the fluidized
surface (the rolling phase) separately, and a set of continuum equations describes the dynamics
of the flowing region and the interactions between the two phases. Solutions have been found
for the steady-state filling of a 2D silo for the case of monodisperse particles. The theory also
provides predictions for the surface and segregation profiles in a binary mixture consisting of
grains with different friction properties but the same size [4].

It is important to test these theoretical predictions for two reasons. First, the complete
description requires a number of constitutive relations between the relevant variables of the
problem; these are usually unknown and are assumed to have analytically treatable functional
forms, which should be verified. Second, in order to derive closed formulae for the profiles,
several assumptions are made, so the limits of these approximations are of interest. Hence
we have carried out a program of computer simulations using the granular-media lattice gas
(GMLG) model, which has been used for several granular systems, such as pipe flows, shaken
boxes, and static piles [6-8]. An advantage of the simulation approach is that quantities can
be measured that are inaccessible in laboratory experiments.

In the GMLG model [6], one generalizes a fully discrete hydrodynamic algorithm [9] in order
to include energy dissipation through particle collisions and friction. The indistinguishable
point-like particles are either at rest or else they travel with unit momentum along the bonds
of a triangular lattice. The particles are scattered at the lattice nodes at integer times and
then they are transferred to the nearest-neighbor sites in parallel.

We adapt the GMLG algorithm to the case of two types of particles with different friction
properties, which we call up and down particles [4]. Using probability variables, we intro-
duce material parameters in a stochastic way. The restitution coefficient is described by a
parameter ε, which is the probability that energy is conserved in a collision (an example of
the application of this rule is shown in fig. 1a). Momentum is conserved if the particles in a
collision are not connected, even in an indirect way, to the wall.

The compact static part of the pile behaves like a solid with a large mass, where friction
effects are taken into account. When moving particles interact with the bulk, their momentum
can be transferred through the force chains to the walls of the vessel. For two types of grains,
we define four different friction coefficients µαβ , (α, β ∈↑, ↓), giving the probability of a moving
particle of type α to stop when arriving at a bulk site containing a particle of type β (fig. 1b).
Bulk particles are rest particles that are supported by another bulk particle or by the vessel.
The particles have equal size, their distinction being introduced through different friction
coefficients.

We study the steady-state filling process of a two-dimensional “silo”, i.e. a long rectangular
box of lateral size L. The silo is filled with a steady flux of particles Q next to the right
wall. Two typical snapshots are shown in fig. 2 for a monodisperse system of particles and
for a binary mixture. The theory focuses on the limit of very slow, but still continuous filling.
In general, the steady-state slope depends on the incoming particle flux but this dependence
vanishes at low rates. We find that for Q ≤ 0.5 particle

update step
, the slope will indeed be independent

of the filling rate, while we still observe smooth and nonintermittent growth. For even smaller
incoming flux (Q < 0.1 in the above units) the pile grows intermittently. This avalanche
regime was studied in ref. [6] in detail.

In steady filling of a monodisperse species, theory predicts that the thickness of the rolling
particle layer, R(x), decreases linearly down the slope [4], and that the local slope θ(x) is close
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Fig. 1. – (a) Illustration of the implementation of the restitution coefficient through a triple collision.
If energy is conserved —with probability ε— the particles are scattered. If the collision is dissipative
—with probability (1− ε)— the particles stop. (b) An example of the application of the friction rule,
when a moving particle (white) of type α arrives at a bulk site (shadow) with a particle of type β.
With probability µαβ , the particle of type α loses its energy and becomes part of the bulk, while with
probability 1 − µαβ its momentum is conserved and the node is not considered to belong any longer
to the static phase.

Fig. 2. – Two simulation snapshots for the steady filling of a silo, which is being filled with (a) uniform
particles, (b) a mixture of two different types of particles. Note that each pixel represents a lattice
node that can be occupied by up to six particles. In (b) black and white dots denote lattice nodes
where the ↓ and ↑ particles are in majority, respectively (θ↑ > θ↓). The more sticky ↑ particles are
found preferentially at the top.

to the angle of repose θrep everywhere but near the bottom of the pile (see also ref. [8] for the
case of a sandpile in an open cell),

R(x) =
Q

vL
x, θ(x) = θrep −

v

γx
. (1)

Here γ describes the rate of exchange between the bulk and the rolling phase, v/γ is of the
order of the grain size, and the flow velocity v is assumed to be constant in space and in time.
Next we test these predictions by calculating R(x), defined in the simulation by the average

number of rolling particles at each x, and the height of the pile, ∂h(x)/∂x ≡ tan θ(x). We
take data when the steady state is reached, and we repeat the measurements at time intervals
during which the pile grows about two lattice sites in height. We average the data over an
ensemble of 10–100 systems. The number of particles at the end of each run is typically of the
order of 105.
Figure 3 shows the simulated profiles for the monodisperse case. Figure 3a illustrates the

fact that (see eq. (1))

R(x) ∝ x (2)

with reasonable precision. The slight deviation from linearity can be understood due to
corrections to the velocity profile. Equation (2) comes from a conservation of grains argument,
assuming that the velocity of the rolling grains v is constant along the slope. However, at
the bottom, where the slope is less steep we expect the particles to slow down and this is
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Fig. 3. – Profiles of the growing pile in the steady state of the monodisperse system. (a) The average
number of rolling particles, R(x). The inset shows that Rt(x) (see eq. (3)) is indeed proportional to
x to a good approximation, with fitting parameter λ = 0.1 lattice unit

update step
. (b) The height of the surface,

h(x). At each measurement the mean height is subtracted, since the pile is constantly growing. In
figs. 3-5 quantities are given in natural units of the simulation method: lengths are measured in lattice
constants, times in update steps.

also observed in the simulations. If we take this into account theoretically by introducing a
first-order correction to the velocity, v(θ) = v0 + λ(θ − θrep), we arrive at an implicit formula
for R(x) (solutions for λ = 0 were derived in ref. [4]):

Rt(x) ≡ R(x) +
λQ

v0Lγ
ln

(

R(x)
v0
Q

)

=
Q

v0L
x. (3)

By transforming our data with this solution, we obtain an excellent fit (fig. 3a inset).
From the height profile (fig. 3), we see that the slope at the upper part is almost constant,

and a region can be found at the bottom where the surface flattens out. The singularity at
x = 0 (eq. (1)) cannot be seen, since both in real systems and in simulations there is a cut-off
due to the grain size, but the profile does bend up (for small ε) near x = 0. This effect has
also been observed experimentally [10]. The singularity can be avoided by re-defining the
interaction term between the rolling and static grains.
If the silo is filled with a mixture of particles (fig. 2b), the growth process is considerably

more complicated. In general, instead of one single angle of repose there are two continuous
sets of generalized angles of repose for the two species [3] —denoted by θ↑ and θ↓— since the
local critical angles depend also on the volume fraction of the species in the bulk. The curves
are characterized by four variables θαβ , which are the critical angles for particles of type α
rolling on a pure static phase consisting of grain type β. The angles θαβ are determined by
the friction coeficients µαβ . As in ref. [4], we assume that both curves are constant. Then
the number of critical angles reduces to two constants θ↑ = θ↑↑ = θ↑↓ and θ↓ = θ↓↓ = θ↓↑ (or
equivalently, µ↑ and µ↓) [3].
The rolling phase in the steady state is described by the number of rolling particles for each

species Rα(x) (with α ∈↑, ↓), and the static phase by the bulk volume fractions Φ↑(x), and
Φ↓(x), where Φ↑ + Φ↓ = 1. We distinguish two regions, where different analytic results have
been obtained [4]. The outer region includes almost the entire pile surface except for a narrow
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Fig. 4. – Profiles in case of a granular mixture for ψB ≈ 0.5. (a) Rolling particles. The continuous
lines are fits calculated using eqs. (4) and (5). The inset shows that v↑R↑ + v↓R↓ ∝ x. (b) Volume
fraction of the ↓ particles in the static bulk. (For the ↑ particles Φ↑ = 1− Φ↓.) The continuous line
shows the calculated profile according to eq. (7) using the measured r exponent.

zone, the inner region, close to the bottom of the pile. We will focus on the flow properties in
the outer region. The profile R(x) ≡ R↑(x) + R↓(x) is given by eq. (1), while the profiles of
the components can be expressed in terms of an exponent r:

R↑(x) =
R(x)

1 +
Q↓
Q↑

(

L
x

)r , (4)

R↓(x) =
R(x)

1 +
Q↑
Q↓

(

x
L

)r . (5)

The exponent r also plays a role in the determination of the bulk volume fractions Φ↑ and Φ↓:

Φ↑(x) =

(

1 + r
R↓(x)

R(x)

)

R↑(x)

R(x)
, (6)

Φ↓(x) =

(

1− r
R↑(x)

R(x)

)

R↓(x)

R(x)
. (7)

Here a homogeneous rolling phase with constant velocity v ≡ v↑ = v↓ is assumed, and Q↑ and
Q↓ are the fluxes of each species. The exponent r depends on the structure of the collision
matrix describing the interaction between the bulk and rolling phase.
To analyze the simulation data, we calculate the exponent r from the measured R(x) and

Rα(x) profiles for all x. The most significant test of the theory is the existence of r; if r is
well-defined, the volume fraction profiles can be calculated and compared to the measured
ones.
Figure 2b shows a snapshot of the simulation for a mixture with µ↑ = 0.25 (θ↑ = 57

o) and
µ↓ = 0.152 (θ↓ = 48

o). We see the segregation of the mixture with the more sticky species
(↑) at the top of the pile. Figure 4a shows typical moving-particle profiles. It is apparent that
there is a slight higher-order deviation from linearity in the case of R(x), as opposed to the
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Fig. 5. – The value of the exponent r calculated at each site x for ψA = 0.15 and ψB = 0.5; r is
well-defined except for the uppermost part of the pile.

prediction of eq. (2). The discrepancy is small, but it is significant enough that the theoretical
profiles based on a linear approximation of the curve do not fit the simulation results. However,
if we use the measured R(x) for calculating the rolling-particle profiles, eqs. (4) and (5) hold
to a better approximation (this bias will be discussed below).

Most crucial is to verify eqs. (4) and (5) by calculating r. We present results for two sets
of critical angles A and B, with ψA ≈ 0.15 and ψB ≈ 0.5, where ψ ≡ θ↑ − θ↓. Figure 5
demonstrates that the exponent is well defined in both cases except for a region at the top of
the pile. The measured exponents are rA = 0.19± 0.02 and rB = 0.51± 0.03. This result is
reassuring since r is expected to be of the order of ψ [4]. The exponent slightly depends on
the Q↓/Q↑ ratio, but is independent of the total flux provided Q is sufficiently small.

With the help of the exponent, we can obtain the volume fraction profiles based on eqs. (6)
and (7), and compare them to the measured ones (fig. 4b). We find good agreement, except
for a slight deviation in the inner region. We find stronger segregation for larger ψ (or r); for
the small angle difference ψA the segregation of the species is less pronounced.

Although the numerical results fit the continuum theory, we observe some deviations. At the
top of the pile, we see a discrepancy both at the rolling-particle profiles and when calculating
the r exponent. Here the dynamics is significantly different from what is considered in the
continuum model: moving particles tend to be in free flight after collisions with the pile surface.

Relation (2) is not satisfied rigorously, as mentioned above. The reason is that, similar
to the monodisperse case, the x-component of the velocity is not uniform. For a weighted
sum of the rolling-particle densities, however, linearity should hold to a better approximation:
v↑(x)R↑(x) + v↓(x)R↓(x) ∝ x. We show a justification of this ansatz in fig. 4a, by using the
measured v↑(x) and v↓(x) functions. The functional forms of these profiles can be approx-

imated by v0 −
a
x
, where v0 = 0.9 ± 0.01

lattice unit
update step

and a = 1.6 ± 0.2 lattice unit
2

update step
are fitting

parameters. The functional form of the velocities is consistent with the correction we found
for the monodisperse system vα(x) = v0+λ(θ− θα), (α ∈↑, ↓), assuming that the angle of the
pile behaves approximately as eq. (1).

In general, we expect deviations from the theoretical predictions as an increasing number
of particles are in free flight above the pile. If many particles tend to get detached from the
surface due to elastic collisions, such a contribution should also be incorporated into the theory.
In the numerical results presented above, both particle-particle and particle-wall collisions are
almost perfectly inelastic (the coefficient of restitution is around 0.25). Test runs for a more
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elastic medium show that the exponent describing the Rα(x) profiles is no longer constant as
a function of x, indicating the limits of the theory.
In summary, we have simulated the filling process of a two-dimensional silo, and our results

for inelastic particles compare well with the predictions of recent theories of surface flow
of granular mixtures. We find small corrections that are accounted for by a modified set
of equations. Thus, we have verified the main assumptions of the theory, pointed out the
limits of the approximations involved, suggested improvements, and found good agreement
between the simulation results and the improved theory. Future work is needed to further
test the limitations of the theory and to generalize the model to more complex situations like
polydispersity in the particle size distribution.
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