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Flexibility of thought is theorized to play a critical role in the ability
of high creative individuals to generate novel and innovative ideas.
However, this has been examined only through indirect behavioral
measures. Here we use network percolation analysis (removal of
links in a network whose strength is below an increasing threshold)
to computationally examine the robustness of the semantic memory
networks of low and high creative individuals. Robustness of a
network indicates its flexibility and thus can be used to quantify
flexibility of thought as related to creativity. This is based on the
assumption that the higher the robustness of the semantic network,
the higher its flexibility. Our analysis reveals that the semantic
network of high creative individuals is more robust to network
percolation compared with the network of low creative individuals
and that this higher robustness is related to differences in the
structure of the networks. Specifically, we find that this higher
robustness is related to stronger links connecting between different
components of similar semantic words in the network, which may
also help to facilitate spread of activation over their network. Thus,
we directly and quantitatively examine the relation between
flexibility of thought and creative ability. Our findings support the
associative theory of creativity, which posits that high creative
ability is related to a flexible structure of semantic memory. Finally,
this approach may have further implications, by enabling a quan-
titative examination of flexibility of thought, in both healthy and
clinical populations.
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Adefining feature of creativity is flexibility of thought, the
ability to create and use new mental categories and concepts

to reorganize our experiences (1, 2). Flexibility in creativity has
been related to originality of ideas and the ability to break apart
from mental fixations (3). However, the investigation of flexibility
of thought in creativity has been done so far only through indirect
behavioral measures, such as task switching (4, 5). An approach to
quantify flexibility of thought in creativity is still missing. We
propose a computational approach to quantify and study flexibility
of thought, based on network analysis and percolation theory.
Percolation theory examines the robustness of complex net-

works under targeted attacks or random failures (6, 7). This is
achieved by examining the effect of removing nodes or links from
a network and how that removal affects the giant component
(the largest connected group of nodes) in the network (6, 8). As a
result of such removal process, groups of nodes disconnect from
the network. The groups that separate from the network are the
network percolation components, and the remaining group of
nodes is the giant component in the network. The robustness of a
network is its ability to withstand such failures and targeted at-
tacks, evident in relative little effect on the giant component of
the network. Here we examine and compare the robustness of
the semantic networks of low and high creative individuals, as a
quantitative measure of their flexibility of thought. This is based
on the associative theory of creativity, which relates individu-
al differences in creative ability to the flexibility of semantic

memory structure (2). Semantic networks represent the structure
of semantic memory, which allows us to quantitatively examine
differences related to semantic memory between low and high
creative individuals. We assume that the higher the robustness of
a semantic network, the higher its flexibility. Thus, according to
the associative theory of creativity, we hypothesize that the se-
mantic network of high creative individuals is more robust.
Recent cognitive studies adopt methods from network science

to directly examine theories that view semantic memory structure
as a network (9, 10). Network science is based on mathematical
graph theory, providing quantitative methods to investigate
complex systems as networks (11). A network is composed of
nodes, which represent the basic units of the system (e.g., se-
mantic memory), and links, which signify the relations between
them (e.g., semantic similarity). At the cognitive level, network
research demonstrates how these computational tools can di-
rectly examine cognitive phenomena such as language develop-
ment, individual differences in creativity, and memory retrieval
(12–16). Although percolation theory is a powerful tool that can
be used to study semantic memory, currently, only two such
studies have been conducted. These studies examined how se-
mantic memory is affected by failures (as exhibited in patients
with Alzheimer’s disease; ref. 17) or how it facilitates dynamical
processes operating upon it (such as memory retrieval; ref. 18).
For example, Arenas et al. (18) used percolation theory to ex-
amine both structural and dynamical robustness at the semantic
network level. This was done by examining how removal of links
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with an increasing threshold (all links with a weight lower than a
specific threshold value) breaks apart the giant component and
how this affects dynamical search processes operating on a se-
mantic network. These studies demonstrate the potential of
applying percolation theory in the study of semantic memory.
Such an application can be used to quantitatively examine cog-
nitive phenomena related to decline in memory structure, such
as in dementia (17) or typical age-related memory decline that
can lead to retrieval failures (19). In such conditions, it is as-
sumed that degradation of links between concepts in semantic
memory leads to a transmission deficit, which inhibits the spread
of information in the network and may lead to insufficient acti-
vation, leading to retrieval failures (14). However, so far no study
has applied such tools to quantify flexibility of thought or to
examine individual differences in creativity.
We demonstrate the feasibility of using percolation analysis to

study high-level cognition. We show how percolation theory can
be harnessed to examine cognitive theory on the relation of
creativity and flexibility of thought and to examine the mecha-
nism that differentiates flexibility of thought in low and high
creative individuals. Specifically, we test the hypothesis that the
semantic network of high creative individuals is more flexible than
that of low creative individuals, thus more robust. To test this hy-
pothesis, we conduct a percolation analysis on the semantic net-
works of low semantic creative (LSC) and high semantic creative
(HSC) individuals, data previously collected by Kenett et al. (15).
Further, our current study allows us a detailed analysis of the
structure and substructures of these networks, by examining how
they break apart into components of similar words.
The LSC and HSC semantic networks are composed of 96 cue

words, divided into groups of four concrete words from 24 cate-
gories (fruits, musical instruments, vehicles, etc.; Table S1),
which represent a priori components of these networks. Kenett
et al. (15) found differences in general network characteristics
between the two groups, namely, the HSC network exhibiting
lower average shortest path length (shortest path between any
pair of nodes in the network) and a lower modularity (the extent
to which the network breaks into smaller components) than the
LSC network. These findings directly supported the associative
theory of creativity that posits that low and high creative indi-
viduals differ in the structure of their semantic memory (15). The
authors interpreted their results as indicating that the semantic
network of HSC individuals is more flexible than that of LSC
individuals. However, this was only indirectly inferred from the
general network measures that were computed.
In the present study we directly examine the flexibility of the

LSC and HSC semantic networks, using percolation analysis.
Such an approach allows us to quantitatively examine an im-
portant feature of creative ability and directly examine the re-
lation between creativity and flexibility of thought. To this end,
we modify the approach used by ref. 15 to better represent the
semantic networks of the LSC and HSC groups. Our modified
approach also controls for the higher amount of associative re-
sponses generated by the HSC group to the cue words (Materials
and Methods). We then conduct a percolation analysis, by re-
moving links of strength below a given increasing threshold, and
compare the giant component of the two networks. This analysis
reveals that the HSC network is significantly more robust to
network percolation, as indicated by its giant components
breaking in higher thresholds and by a higher integral (which
measures the robustness of the network). We then test and verify
the significance of our results by examining how the percolation
analysis is affected by adding noise to the link weights in the two
networks and its validity by shuffling the links in the networks.
Finally, we examine the mechanism that differentiates the ro-
bustness between the two groups, by comparing links that con-
nect between or within components in the two networks. This
analysis reveals that what contributes to the higher robustness of

the HSC network is stronger links between components in their
network and better separation into the a priori components.
Both of these factors contribute to the robustness of the HSC
network and may facilitate spread of cognitive activation in the
network, an important aspect of the creative process (1, 2).

Results
Using free association data collected from LSC and HSC individuals
(33 in each group), we developed an improved approach to construct
the weighted semantic networks of each group and conduct perco-
lation analysis on these networks (Materials and Methods). Further-
more, we control for the higher amount of associative responses
generated by the HSC group for the different cue words by nor-
malizing the weights of the links in the HSC network by a factor of
1.3 (the ratio between the average amount of responses of both
groups; SI Network Construction). In the percolation analysis, we
examine the percolation of both networks by removing links with
weight strength below an increasing threshold (percolation step;
Fig. 1). In each percolation step, we measure the size of the giant
component and whether any and which component of nodes break
from it (Fig. 2A). To examine the significance of our percolation
process, we examine how it is affected by the addition of noise to
the links in each network (Fig. 2B) and by shuffling the links in
each network (Fig. 2C). Finally, we examine the specific mecha-
nism that differentiates the network robustness between the two
networks, by comparing the links between matched components in
both networks (Fig. 3). Such analyses allow us to examine the
specific property of flexibility of thought as related to creativity
and also shed further light on the difference in semantic memory
structure between low and high creative individuals.

Percolation Analysis. Assuming that the semantic network of HSC
individuals is more flexible than the LSC network, we hypothesize
that their network will be more robust to percolation analysis and
thus break apart slower than the LSC network. We therefore con-
duct the percolation analysis on the networks of the two groups. The
result of this process is percolated components—a cluster of nodes in
the network that break apart together at a certain threshold.
In Fig. 1 we demonstrate the percolation analysis on the LSC

and HSC networks, for threshold value of 0.1 (all links with
weights smaller than 0.1 are removed). The nodes are colored
according to their percolation order, after completion of the
percolation process where there is no more a giant component
(Materials and Methods). This visualization illustrates that both
networks break apart into mostly similar components (albeit at
different thresholds). Further, it demonstrates how, for the same
threshold value (0.1), the LSC network breaks apart into three
components, whereas the HSC network does not break apart at
all. For example, one percolated component that first breaks
apart from the LSC network is the component of musical in-
struments (flute, clarinet, piano, and guitar), which also corre-
sponds to the relevant a priori component (Table S1). In the
LSC network, this percolated component breaks apart from
the giant component already at a threshold value of 0.085. In the
HSC network, however, this similar component breaks apart only
at a threshold value of 0.104. This analysis also identifies how
strong the different percolated components are connected to the
network, according to the order in which they break apart from the
giant component. For example, the musical instruments percolated
component is the first to break because it has the weakest con-
necting links to the giant component in both networks.
This analysis reveals that the giant component of the LSC net-

work breaks apart faster (at lower thresholds) compared with the
HSC network (Fig. 2A). For the same threshold values the LSC
giant component is mostly smaller than the HSC giant component,
indicating that the HSC network is more robust and its components
are better connected than in the LSC network. To quantify the
difference in percolation between the two groups, we calculate the
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percolation integral of the percolation analysis for both groups
(over curves like Fig. 2). This analysis finds that the percolation
integral of the LSC group is smaller than that of the HSC group
(14.76 vs. 15.64), providing further evidence that the LSC network
breaks apart quicker than the HSC network. Finally, we find that
the empirical critical percolation thresholds are different from a
theoretical random network with the same average degree (SI
Network Construction). To test the significance of our finding, we
next examine how the percolation analysis is affected by adding
noise to the weights of the links and examine its validity by shuffling
between the links in the networks.

Effect of Noise Analysis. We examine the significance of our
finding by adding noise to the link weights and analyzing how this
affects our conclusions. If our results are significant, adding noise
to the link weights will not change the conclusions (the HSC
network being more robust than the LSC network). To conduct
this analysis, we analyzed 500 realizations of the percolation
analysis, where in each realization a Gaussian noise was added to
the network links with a mean value of zero and a varied stan-
dard variation, of 10−4 to 10−2. This range is chosen to examine
the effect of noise with one and even two orders of magnitude
above the noise level expected if the weights of the links were
randomly distributed (10−4; Methods and Materials). We conduct
an independent samples t test analysis to examine the effect of
different distributions of noise on the percolation analysis. Ex-
amining the effects of different noise variance on the percolation
integral of both groups and in particular the small SDs found for
the robustness of the giant component supports our finding. The
percolation integral of the HSC network is higher than that of
the LSC network for the three different Gaussian noise distri-
butions (Table 1). Furthermore, the integral values for link noise
variance between 10−4 to 10−2 do not change drastically from the
empirical percolation integral value of the two groups (Fig. 2B).
Thus, both the LSC and HSC groups have a stable percolation
process with significant different integrals (see also Table S3).

Link Shuffling Analysis. Our finding on the difference in network
robustness between the two groups may stem from the difference
in link weights (and not the network structure) between the two
networks. To test this alternative explanation, we conducted in

each network a link shuffling analysis. This analysis is equivalent
to randomly removing links in the network. To perform this
analysis, we randomly shuffle links between pairs of nodes in
each network. To maximize the fraction of links in the network
that will be shuffled, we randomly shuffled 40,000 links in the
network (there are about 4,500 links in each network). The
shuffling analysis was conducted for each network independently
and reiterated 500 times. In each iteration, we calculated the
percolation integral for both networks (Fig. 2C presents one such
iteration). We then conducted an independent samples t test
analysis on the distribution of percolation integrals of the LSC
group compared with the HSC group. This analysis reveals that
the percolation shuffled integral of the LSC group (21.45; SD =
0.75) is even slightly larger than that of the HSC group (20.55;
SD = 0.72), t(998) = 19.25, P < 0.001. Thus, it seems that the
robustness of the HSC network is more affected by the shuffling
of its structure, compared with the LSC network, leading to a
larger shuffled percolation integral for the LSC network. This
finding strongly suggests that the difference between the em-
pirical percolation integral of the two groups is driven by the
structure of the networks and not by the link weights.

Link Type Analysis. Finally, we examine the mechanism contributing
to the difference in network robustness between the two groups, by
examining differences in the weights of the links connecting be-
tween components in the two groups. The components are those
that become disconnected from the giant component during the
percolation process. For each network we independently classify
each of the links as either connecting different components in the
network (interlinks) or as connecting nodes within components
(intralinks). This is achieved after completing the network
percolation analysis and then reverse-engineering each of the
links in the networks (Materials and Methods).
To compare intralinks and interlinks between the two groups re-

quires matching the links between the two groups, independently for
the two types of links. This is due to the difference in the structure of
the two networks. To achieve this, we remove links that appear in
only one of the two groups. This resulted in 3,676 mutual interlinks
and 348 mutual intralinks. Due to the skewness of the distributions,
we conduct a Mann–Whitney U independent samples test. This
analysis reveals only a significant difference between the strength of

Fig. 1. (Left) LSC and (Right) HSC networks with links above TH = 0.1. The nodes are numbered according to their labels (Table S1) and colored from blue to
red according to their percolation order. The colder (blue) the node is, the earlier it was disconnected from the giant component, and therefore, it is weaker
connected to the entire network. Because the number of components is different in both networks, the scales are different.
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the interlinks between the two groups, U = 5,226,777, P < 0.001: the
HSC group (0.04, SD = 0.02) has stronger interlinks than the LSC
group (0.03, SD = 0.02). No significant difference is found for the
difference in intralink strength between the HSC (0.15, SD = 0.09)
and LSC (0.15, SD = 0.10) network (P < 0.7). Based on the sig-
nificant difference between groups found only for the interlinks, and
on the theory that creativity is related to the spread of information
throughout the semantic network (15), we focus our attention on the
differences between similar interlinks in the two groups. This is
achieved by computing a component connectivity (interlink) mea-
sure between each pair of components for both networks, which
indicates how strongly two components are connected to each other.
This connectivity measure is the average interlink strength, i.e., the
ratio of the sum of the interlinks and the number of interlinks be-
tween two components (Methods and Materials). We then compare
the interlinks strength between similar pairs of components in both
HSC and LSC networks.
This connectivity measure allows us to examine the general

structure of the network. As seen in Fig. 3 A and B, the LSC and
HSC networks have different structures. The HSC network has

more components with smaller size, whereas the LSC network
has fewer yet larger components (component number 4, 18 nodes;
components number 6 and 7, 25 nodes). The components in the
LSC and HSC networks are colored according to their nodes. For
example, component 7 in the LSC network is composed from the
same nodes as in components 10 and 11 in the HSC network.
Similarly, most of the components in LSC match a single or few
components in the HSC network. The overlap between the com-
ponents is about 87% (Table S6). Furthermore, this indicates that
in the LSC network, the groups of nodes are not as well separated
into the a priori components as in the HSC network. To compare
the connectivity measurement between the two groups, we match
the components by compiling together small components in the
HSC network that together match a larger component in the LSC
network (Table S7). This results in eight matched components for
both groups, with 28 matched interlinks. Plotting these matched
interlinks for the two groups demonstrates that most of these
matched links are stronger in the HSC network compared with the
LSC network (Fig. 3C). It is seen that out of these 28 matched
links, 21 links (75%) are stronger in the HSC network. Thus, the
HSC group has mostly stronger interlinks between components,
which increases their robustness and facilitates spread of infor-
mation in the network.

Discussion
Flexibility of Thought from a Percolation Theory Perspective. In this
study, we provide a quantitative measure of flexibility of thought,
based on the robustness of a semantic network to attack. Such an
approach provides a unique way to examine flexibility of thought
as related to high-level cognition (e.g., creativity), which is currently
examined only via indirect behavioral methods (4, 5). According to
the associative theory of creativity, high creative individuals have
a more flexible semantic memory structure, which facilitates their

Fig. 2. (A) Percolation analysis of the empirical networks of the LSC and
HSC networks. (B) Effect of noise on the percolation analysis of the LSC and
HSC networks, with addition of noise with SD of 0.01 (LSC/HSC-noise) or
without addition of noise (LSC/HSC-or). (C) An example of typical iteration of
the percolation analysis on the shuffled links analysis in both networks.

Fig. 3. Interlinks analysis for the LSC and HSC groups. (A) LSC and (B) HSC
percolated components network layout. The components are sized according to
the number of nodes in the component and numbered according to their dis-
connection order from the giant component. (C) Scatterplot of the matched
interlinks of the two groups, where each circle represents an interlink between
two matched components in both networks. Circles above/below the diagonal
indicate that this interlink is stronger in the HSC/LSC network compared with
the LSC/HSC network.
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ability to search through their memory and connect weakly related
concepts together (2). We use percolation analysis to examine this
higher flexibility, by examining the robustness of the semantic net-
works of low and high creative individuals to attack. Formulating
flexibility of thought in creativity as the robustness of a semantic
network to network percolation allows us to quantitatively and di-
rectly examine this theory. We conduct network percolation analysis
on the semantic networks of LSC and HSC individuals, data pre-
viously collected by Kenett et al. (15). This is performed by using
percolation theory to remove links with increasing weight strengths
and examining how this affects the robustness of the semantic net-
works of low and high creative individuals. Such degradation of links
is grounded in cognitive theory on memory phenomena such as
dementia and retrieval failures (14, 17, 19). Thus, this analysis serves
as a quantitative measure of flexibility of thought, assuming that the
higher the robustness of the semantic network, the higher its flexibility.
Our analysis sheds further light on the difference in network

structure between the LSC and HSC groups, by examining how
they break apart. Although prior work examined the modularity
of the LSC and HSC networks (15), only percolation analysis
applied here allows studying the robustness of the networks and
highlights the higher robustness exhibited by HSC individuals.
This is achieved by measuring the effect of link removal on the
size of the giant component in both networks. Furthermore,
percolation analysis allows us to examine the importance of inter-
links and intralinks and examine the hierarchy in which components
break apart from the giant component in the network order (Fig. 1).
Such information cannot be derived frommodularity analysis, which
only provides a global measure of the network.
We demonstrate that the semantic network of HSC individuals is

more robust to network percolation, as exhibited by a higher per-
colation integral. This analysis is validated by adding noise to the
link weights and statistically examining the significance of the dif-
ference in network percolation between the two groups. This
analysis reveals that the empirical percolation integral is hardly
affected by adding noise and that the difference between the net-
works robustness is highly significant. Next, we conduct a link
shuffling analysis, to examine what contributes to the difference in
network robustness between the two groups. This analysis reveals
that the topological structure of the networks and not the link
weights is the determining factor in the higher robustness of the
HSC group to network percolation: the results of this shuffle disrupt
the robustness of the HSC network. Finally, we conduct a more
fine-grained analysis to examine the specific mechanism that is
differentiating the robustness between the two groups. Specifically,
we examine whether this difference is related to removal of links
that connect components (interlinks) or links that connect nodes
within components (intralinks) in the network. We show that this
structural difference between the two networks lies in the HSC
network having stronger interlinks than the LSC network. This
difference in interlinks between the two groups may facilitate
spread of activation in the HSC network, an important aspect of the
creative process (1, 2): it facilitates spread of activation between

components in the network, thus making it possible to break free
from a component in the network and lead to novel combinations.

Methodological Considerations. We examine the robustness of the
semantic networks of LSC and HSC to network percolation.
However, creativity is a continuous construct and not a cate-
gorical one (low versus high). Future research should examine
network percolation of semantic networks in individuals (20, 21)
to provide a better understanding of flexibility of thought as
related to creativity. Furthermore, some researchers have argued
against semantic networks estimated from free association data
(22). Future research should replicate our findings based on fur-
ther data and alternative methods to represent semantic networks.
Finally, we only provided initial analytical insight to our findings.
Future research is needed to conduct a more rigorous analytical
analysis to strengthen and replicate our findings.

Implications for High-Level Cognitive Research. From a more general
perspective, the approach used in this study offers a powerful tool
to quantitatively study flexibility of thought in both typical and
clinical populations. Although percolation theory is an attractive
tool in examining flexibility of thought, currently, only a handful of
studies have used this approach in studying the robustness of
cognitive systems (17, 18). For example, Borge-Holthoefer et al.
(17) have used network degradation analysis to simulate the pro-
gression of Alzheimer’s disease. The present study demonstrates
how percolation theory can be used to quantify and examine the
more general capacity of thought flexibility. Such an approach can
strongly contribute to operationalize and measure the construct of
flexibility, which is integral in both creativity and intelligence re-
search. To this end, a future comparison of our method to be-
havioral measures of flexibility in low and high creative individuals
could replicate and demonstrate the strength of our quantitative
approach. Finally, such an approach can be used to examine atyp-
ical thought processes in clinical populations suffering from cogni-
tive network degradation, such as schizophrenia (23).

Materials and Methods
Creativity Assessment. Participants (n = 140) were recruited as part of a
larger research study on individual differences in creative ability (15). This
study was approved by the Bar-Ilan University Institutional Review Board.
First, all participants signed a consent form. They then completed the fol-
lowing creativity tasks: the remote association test, which measures asso-
ciative thought related to creative ability (24); Tel Aviv University creativity
test (25); a battery of divergent thinking tests; and the comprehension of
metaphors task (26), which compares processing of word pairs that have
different semantic relations. Participants were classified as low semantic
creative (LSC) or high semantic creative (HSC) individuals (n = 33 participants
in both groups) based on a statistical decision tree approach, using these
scores (see ref. 15 for more details).

Network Construction. The representation of the semantic networks of the
LSC and HSC groups was based on a modified version of the method de-
veloped by ref. 15. Our revised method takes into account not only the
correlation of associations, based on the overlap of associative features to a
pair of cue words, but also the number of participants generating these
overlapping associative features (SI Network Construction). Specifically, we
also take into account the number of participants generating the associative
features which determine the strength of semantic similarity between the
cue words. The more similar associative response generated and the larger
number of participants generating these association responses to a pair of
cue words, the stronger the link between this pair of cue words is. The links
in each network were normalized according to the mean number of asso-
ciations per cue word. The normalization purpose was to remove the effect
of the HSC individuals generating a higher number of associations per cue
words, compared with the LSC individuals (SI Network Construction). The
links between all pairs of cue words define a symmetric correlation matrix
whose (i, j) element denotes the semantic similarity between cue words i and j.
This matrix can be studied in terms of an adjacency matrix of a weighted,
undirected network, where each cue word is a node, and a link between two
nodes (cue words) represents the semantic weight between them.

Table 1. The effect of varied amount of noise on link weights
on the percolation analysis for the two groups

Noise SD LSC HSC t test

0.0001 14.76 (0.002) 15.64 (0.006) −2,790.59***
0.001 14.76 (0.031) 15.65 (0.024) −507.56***
0.01 15.10 (0.200) 15.81 (0.176) −59.35***

The calculation of the integral is repeated 500 times for each of the
different noise variances added to the link weights in the two networks (SD
in parentheses). An independent samples t test statistically examined the
difference between the two distributions with the different noise Gaussians.
Noise SD, SD of noise Gaussian added to link weights; LSC, low semantic
creative individuals; HSC, high semantic creative individuals; ***P < 0.001.
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Network Percolation Analysis. The network percolation analysis is achieved by
removing the links in the network according to an increasing threshold (all links
withweight smaller than a threshold TH value; percolation step) whilemeasuring
the size (number of nodes) of the giant component in the network and iden-
tifying the detached components. The threshold was varied from the smallest
weight in the network (initial TH) to a weight strength in which the giant
component is smaller than three nodes (final TH). The threshold resolution was
chosen according to the smallest difference between the sorted weights. In that
way the percolation process is more accurate and allows us to understand better
the order of components disconnection. The percolation analysis has different
step sizes (number of nodes of a component that disconnects from the giant
component in a specific percolation step); few of them are of size one, which
means that only one node is disconnected at that specific degradation step, but
most of them are groups of several nodes. Because we are examining the be-
havior of connected components, we smoothed the steps sized one to the nearest
step. These smoothed components are referred to as percolated components.

The percolation integral is a good measure of the percolation stability
because it measures how fast the giant component is breaking. For example,
a network that breaks at low threshold values and has a steep percolation
curve will have a lower integral than a network (with the same size of giant
component) that breaks with high threshold values and a flat percolation
curve. The integral calculation of the percolation analysis for each network
is computed by summing the multiplication of the mean value of the
giant component size (in its threshold value) and the threshold resolution

PI=
R end_TH
start_TH GCðxÞdx =Pend_TH

TH-start_THGCðTHÞ *TH_res, where PI is the percola-

tion integral, GC is the giant component, start/end_TH are the initial and
final TH values, and TH_RES is the TH resolution.

Effect of Noise Analysis. To test the significance of our results, the percolation
integral is calculated after adding noise to the links in the two networks. This
noise may change the links’ weights, i.e., making weaker weights stronger
and vice versa. If this process changes the percolation integral dramatically,
it means that our percolation process is not significant. The percolation in-
tegral is calculated over 500 realizations of the percolation analysis. In each
realization, a Gaussian noise was added to the network with a mean value

of zero and a variable SD ranging between 10−4 and 10−2. This range is
chosen to examine the effect of noise with one and even two orders of
magnitude above the noise level expected if the weights of the links were
randomly distributed. Both LSC and HSC networks have ∼4,000 links, with a
strength varying from zero to one. Thus, the mean strength between a pair of

links in the network will be about 1=4,000= 2.5 * 10−4. This gives an estimation
of a noise in a random network of the same size. Adding this noise to a random
network will have a meaningful effect on the links. In the LSC and HSC net-
works this and higher noise may be used as a test for the network ability to
withstand noise. The small effect of noise in our study supports the significant
difference between the robustness of LSC and HSC networks.

Link Shuffling Analysis. Link shuffling analysis is done to examine the structure
of the network and its effect on the percolation process. In the shuffling
process, two links in the network are randomly chosen (from two pairs of
nodes) and exchanged. For example, nodes a and bwith link strength 0.5 and
nodes c and d with link strength 0.7 are exchanged in a way that the new
network topology would be that a and c are connected with 0.5 and b and
d with 0.7. This process is reiterated 10 times the number of links in the
network to ensure that most of the links in the network are replaced
(40,000 shuffles). This is reiterated to have 500 realizations, where in each
realization the percolation integral of the shuffled network is calculated for
both groups. In this shuffling analysis, we only change the structure of the
network and not the number or weights of the links in the network.

Link Type Analysis. Link type analysis is done to better understand the net-
work structure and to investigate the mechanism that differentiates the
network robustness of the two groups. This is done by classifying each of the
links in the network as either links that connect between components (in-
terlinks) or links that connect within components (intralink) in the network.
This is achieved after completing the network percolation process. We then
reverse engineer the links, going backward in the network percolation
process and classifying the links based on whether they connect nodes
within or between percolated components.

Based on the interlinks we compute for each pair of percolated com-

ponentsxa connectivity measure Cði, jÞ=PNi,j

k=1interlinksði, jÞ=Number_Of_
LinksðCompi , CompjÞ, where Ni,j is the number of interlinks between the
percolated components i and j, Number_Of_Links(i,j) is the number of links
between pair of components i and j. This measure allows us to examine the
structure of the two networks (Fig. 3 A and B). In these networks, nodes
represent the percolated components, and their size is in accordance with
the size of the component they represent. Links in these networks represent
the interlink connectivity measurement. To compare between the connec-
tivity measure across the two networks, we matched the connectivity links
by merging small components in the HSC network that together match a
larger component in the LSC network (SI LSC and HSC Percolated Compo-
nents Overlap Analysis). We then plotted the matched connectivity links of
the two groups as a scatterplot (Fig. 3C). Finally, we conduct a Mann–
Whitney U independent samples test to examine the difference in the
matched connectivity links strength between the two networks.
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