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Abstract. We study Erdös-Rényi random graphs with random weights associated with each link. In
our approach, nodes connected by links having weights below the percolation threshold form clus-
ters, and each cluster merges into a single node, thus generating a new “clusters network”. We show
that this network is scale-free with λ = 2.5. Furthermore, we show that optimization causes the per-
colation threshold to emerge spontaneously, thus creating naturally a scale-free “clusters network”.
This phenomenon may be related to the evolution of several real world scale-free networks.

Our results imply that: (i) the minimum spanning tree (MST) in random graphs is composed
of percolation clusters, which are interconnected by a set of links that create a scale-free tree with
λ = 2.5 (ii) the optimal path may be partitioned into segments that follow the percolation clusters,
and the lengths of these segments grow exponentially with the number of clusters that are crossed
(iii) the optimal path in scale-free networks with λ < 3 scales as `opt ∼ logN, and the weights along
the optimal path decay exponentially with their rank.

Keywords: minimum spanning tree, percolation, scale-free, optimization
PACS: 89.75.Hc,89.20.Ff

INTRODUCTION

Scale-free topology is very common in natural and man-made networks. Examples vary
from biological networks (proteins), social contacts between humans, and technological
networks such as the World Wide Web or the Internet [1, 2, 3]. Scale free (SF) networks
are characterized by a power law distribution of connectivities P(k)∼ k−λ , where k is the
degree of a node (i.e. the number of nearest neighbors connected to it) and λ controls the
broadness of the distribution. Many of these networks are observed to have typical values
of λ around 2.5. For values of λ < 3 the second moment of the distribution 〈k2〉 diverges,
leading to several anomalous properties of these networks. For example [4, 5]: they are
robust to random breakdown of links or nodes, and their radius scales as lmin ∼ loglogN.

In many real world networks there is a “cost” or a “weight” associated with each
link, and the larger the weight on a link, the harder it is to traverse this link. In this
case, the network is called “weighted” [6]. Examples can be found in communication
and computer networks, where the weights represent the bandwidth or delay time, in
protein networks where the weights can be defined by the strength of interaction between
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proteins [7, 8] or their structural similarity [9], and in sociology where the weights can
be chosen to represent the strength of a relationship [10, 11].

In this paper we suggest a simple process that generates random scale-free networks
with λ = 2.5 from weighted Erdös-Rényi graphs [12]. This is performed by merging
all nodes connected by links with weights below the percolation threshold into a single
node, and thus generating a new scale-free “clusters network”. We further show that the
minimum spanning tree (MST) on an Erdös-Rényi graph is composed of percolation
clusters interconnected by a scale-free tree, and use percolation theory to study the
expected weights along a random path on this tree. Using these results we study the
structure of the optimal path in ER and scale-free graphs – in particular we explain
the observed fact that the optimal path in scale-free networks with λ < 3 scales as
`opt ∼ logN (i.e. the ultra-small world property is lost), and show that the weights along
the optimal path decay exponentially with their rank.

THE CLUSTERS NETWORK:

Consider an Erdös-Rényi (ER) graph with N nodes and an average degree 〈k〉, with a
total of 1

2N〈k〉 links. We distribute weights on the links, chosen randomly and uniformly
from the range [0,1]. It is known that in ER graphs the critical percolation probability
is pc = 1

〈k〉 [12]. If we distinguish between links with weight above and below pc,
the weights below pc will create percolation clusters at criticality. From percolation
theory [13] it follows that these clusters are distributed according to a power law:
ns ∼ s−τ , where ns is the number of clusters of size s, and τ = 2.5 for infinite dimension 1.
Next, we merge all nodes inside each cluster into a single node 2. We define a new
“clusters network” of N CL nodes which consists of these clusters. We consider again all
links of the original network, and each link with a weight larger than pc is considered
as a link between these new nodes, see Fig. (1a).

The degree distribution of the clusters network is: P(k)∼ k−λ , with λ ' 2.5, as can be
seen from simulations in Fig. (2). The behavior of P(k) can be understood if we assume
that the degree k of each node in the clusters network is proportional to the cluster size
s, which is also distributed according to the same power-law ns ∼ s−2.5. We further
studied the “tomography” [14, 15] of the clusters network, i.e. the number of nodes N `

at each chemical distance ` from the most connected node, and found that it does not
change when we randomize the links [16] in the network. This indicates that the clusters
network is random.

The number of nodes NCL in the clusters network is actually the number of clusters
in an Erdös-Rényi graph at the percolation threshold pc. This quantity, which is non-
universal, was found for various two and three dimensional percolating systems [17, 18].
For ER graphs we have (see [19] and Appendix A) NCL = N

2 .

1 ER networks can be regarded as having an infinite dimension since space does not play any role.
2 This is done by the following algorithm: we follow all links of the network. If there exists a link i
between any two nodes with weight smaller than pc = 1/〈k〉, we identify the nodes as belonging to the
same cluster.
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FIGURE 1. Sketch of the “clusters network”. (a) The original ER network, partitioned into percolation
clusters whose sizes s are power-law distributed: ns ∼ s−τ (τ = 2.5 for ER graphs). The “black” links
are the links with weights below pc, the “white” links are the links that are removed by the bombing
algorithm, and the “gray” links are the links whose removal will disconnect the network (and therefore
are not removed even though their weight is above pc). (b) The minimum spanning tree (MST), composed
of black and gray links only. (c) The “clusters network”. The nodes are the clusters in the original network
and the links are the links connecting nodes in different clusters (i.e. “white” and “gray” links). The
clusters network is scale-free with λ = 2.5. Notice the existence of double connections and self-loops. (d)
The “gray tree”, which is reached by bombing the clusters network (by removing the “white” links). The
MST is composed of the gray tree, which is scale-free, interconnecting the percolation clusters.

MINIMUM SPANNING TREES:

We next show that the minimum spanning tree (MST) on an ER graph is related to
the clusters network and thus exhibits scale-free properties. The MST on a weighted
graph is a tree that reaches all nodes of the graph, and whose total weight is minimal.
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FIGURE 2. The degree distribution of the clusters network, where the new nodes are the percolation
clusters and the new links are the links with weights larger than pc (x). The distribution exhibits a scale-
free tail with λ ' 2.5. If we assume in our process a threshold less than pc we obtain the same power law
degree distribution with an exponential cutoff. The different symbols represent different threshold values:
p = pc −0.03 (2) and p = pc−0.05 (4). The original ER network has N = 50000 and 〈k〉 = 5. Note that
around 〈k〉 the degree distribution has a maximum.

Each path between two sites on the tree is the optimal path in the “strong disorder”
limit, meaning that it is the path along which the maximum barrier is minimal [19,
20, 21]. Standard algorithms for finding the MST [22] are Prim’s algorithm, which
resembles invasion percolation, and Kruskal’s algorithm, which resembles percolation.
An equivalent algorithm to find the MST is the bombing optimization algorithm [20, 21]:
First we mark all the links of the graph as “black”. We then remove the links in order of
descending weights. If the removal of a link disconnects the graph, we restore the link
and mark it as “gray” [23], otherwise - we mark it “white”. The algorithm ends when no
more links can be removed without disconnecting the graph.

In this algorithm, only links that close a loop can be removed. Thus, the bombing
does not modify the percolation clusters – where the links have weights below pc –
because below criticality the presence of loops is negligible [12, 13]. In fact, the bombing
modifies only links outside the clusters, so actually it is the links of the clusters network
which are bombed. Hence the MST is composed of percolation clusters (i.e. nodes
connected by links with weights below pc) connected by gray links, as seen in Fig. (1b).

We now generate a new tree from the MST, whose nodes are the clusters and whose
links are the gray links connecting them. We call this tree the “gray tree” (see Fig. 1d).
Note that bombing the original ER network to obtain the MST is equivalent to bombing
the clusters network (which is scale-free) to obtain the gray tree, because the links inside
the clusters effectively do not participate in the bombing. The gray tree is found to
have a scale-free degree distribution with λ ' 2.5 – same as the clusters network –
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FIGURE 3. (a) The degree distribution of the "gray-tree",where the new nodes are the percolation
clusters and the new links are the gray links. This is actually an MST on the clusters network. Different
symbols represent different threshold values: pc (x), pc + 0.01 (D) and pc + 0.02 (A). The distribution
exhibits a scale-free tail with A ~ 2.5, and is relatively not sensitive to changes in pc. (b) The average path
length on a the gray-tree as a function of original network size. It is seen that £gray ~ logN.

as shown in Fig (3a) 3. The average path length lgmy is found to scale with NCL as

(-gray ~ logA/cz, ~ logAf, 4 as shown in Fig. (3b). Note that even though the gray tree is
scale-free, it is not ultra-small [5].

To summarize, the Minimum Spanning Tree is composed of clusters of'black links" -
with weights below the critical probability pC9 which are connected by a scale-free tree of
"gray links"- whose weights are above p c. The properties of the percolation clusters at
the critical threshold are well known, for example: they are fractal, their average degree
is (k) = 1, and their average length is / ~ N1/3 [21]. On the other hand, the gray tree
is well above criticality (because the gray links were bombed and then restored), and
tgmy ~ logN. In the following section we will focus on other properties of the gray
links.

STRUCTURE OF OPTIMAL PATH

The optimal path between any two points on a weighted random graph is the path with
minimal barrier between them5. Many physical systems follow the optimal path in phase
space, which represents the trajectory with minimal energy barrier. It can be shown that
this path lies on the MST [20], and thus it can be decomposed into segments along the
percolation clusters (black links), and "crossings" with weights above p c (gray links)

MST's on scale-free networks were observed to retain the original network's degree distribution [24,25].
4 Although Braunstein et. al [21] found that the length of the optimal path £opt ~ log'1"1 N for SF networks
with A < 3 in the strong disorder limit, this is valid only when there do not exist multiple links between
nodes. For SF networks that do not have this restriction, such as in our case, we fi nd a shorter optimal
path: lopt ~ logN for A < 3.
5 This path is also referred to as the "min-max" path.
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connecting these segments – see Fig (1b).
Accordingly, we study the properties of paths between all pairs of nodes on the MST.

On each path we order the weights by rank, and average the weight of rank 1, rank 2, etc.
over all paths – see Fig. (4). In the figure we can clearly distinguish between the black
and gray links. The black links consist the linear regime, because they had no loops in the
original network, and therefore they were not affected by the bombing. Consequently,
they are uniformly distributed and their number scales as N1/3. As opposed to this,
the gray links were bombed and then restored. Therefore they have a non-uniform
distribution, and their number scales logarithmically with N.

Close examination of the gray links in Fig (4) reveals that for small systems the linear
regime begins actually above pc. This may be explained by the fact that the percolation
threshold for small systems is pc +∆pc because of finite size effects 6 – see Appendix B.
For random graphs we have ∆pc = pc

`opt
, where `opt ∼ Nνopt is the average length of the

percolation cluster, and for ER graphs νopt = 1
3 [21]. Moreover, we observe that the gray

links from optimal paths of small systems are found in large systems also, and that new
gray links are added only in the fluctuation region [pc, pc +∆pc]. For example: the largest
weights wmax ≈ 0.34 and w2 ≈ 0.25 appear in system of all sizes, and as the system size
grows, new gray links are added with smaller weights only. Thus, long optimal paths
(i.e., optimal paths in large systems) include all gray links of short optimal paths. In this
sense, large MST’s “grow” from small MST’s: the small system can be found inside the
large system, and thus it is reasonable to say that there is a self-similarity between large
and small systems. 7

These observations suggest the following explanation (see Fig. (5)): For a random
graph of size N the optimal path follows percolation clusters and crosses between them
along gray links. Nevertheless, it always includes the infinite percolation cluster, which
is the largest cluster of the system. A path which spans the percolation cluster must
account for weights up to pc + pc

`opt
(where `opt ∼ N1/3 in ER graphs) in order to cross

out of it (see Appendix B). This is actually the weight of the gray link associated with
the largest percolation cluster, which is by definition the minimal weight link required
by the optimal path in order to cross from this cluster to its neighboring clusters. Thus,
the optimal path, which is the path with minimum barriers, follows the gray links which
are determined by the fluctuations in pc along different clusters.

Because of the self-similarity, the optimal path in large systems includes all clusters
and gray links of the optimal path in small systems. It is also known that the optimal
path is dominated by the length of the infinite percolation cluster 8. As noted before, we
have observed that the number of crossings grows logarithmically with system size. This
is because for a new cluster to be added to the optimal path - its length must grow by an

6 The quantity ∆pc is sometimes referred to as “the fluctuations in critical probability”.
7 The links of highest weight can be associated with gray links outgoing from very small clusters. These
cannot be optimized (due to limited number of exits) and therefore do not change with the network size.
In an ER graph of average degree 〈k〉, the smallest cluster consists of a single node with 〈k〉 links all above
pc. The minimal of these 〈k〉 links is the largest gray link, and thus we have: 〈wmax〉 = pc + 1−pc

〈k〉+1 .
8 Both the optimal path length `opt and the length of the infinite percolation cluster scale as Nνopt , meaning
that there is a constant proportion between them for sufficiently large N [21].
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FIGURE 4. (left) Weights along the optimal path on an ER graph with (k) = 5, sorted according to their
rank. Weights below pc = 0.2 are the "black" links which are uniformly distributed, while the weights
above pc - the "gray" links are not. Different symbols correspond to different graph sizes: N = 100 (x),
N = 200 (D), N = 500 (A), N = 1000 (*), N = 2000 (o), and N = 4000 (o). Note that for fi nite N the
linear regime starts above pc because of the fluctuations in the critical probability A/? c ~ f^-. Note also
that each path includes the gray links of shorter paths.
(Right) The gray links for graphs of different sizes. Triangles (A) represent -j^- where £opt is the measured
optimal path length at which we encounter this weight (see Fig. 5). lopt grows exponentially with lgray
leading to an exponential decay of the weights with their rank (inset).

order of magnitude: / — > > / + o(t) = / + «/ = /}/ (where /3 > 1). Thus the growth rate of
the crossings with system size / is inversely proportional to the system size:

AL 1
A/ = 7 ̂  ** ~ 1°S/ ~ l°8N (!)

whQYQl = lopt^N1/3.
From Fig. (4) we can see that the weights along the optimal path decay exponentially

as a function of their rank. This is because each time a new cluster is added to the
optimal path, its size is of the order of the system size £opt, and it consists of links
below pc = pc + j^- (see Fig. (5)). Thus the new gray link which connects the optimal
path to the new cluster is of weight pc = pc + f-. The weights of the crossings are:
Pc + , Pc + , Pc + , Pc + - , . . . , Pc + -r - which gives an exponential decay.

DISCUSSION, SUMMARY AND CONCLUSIONS

We have introduced a method for treating scale-free (SF) networks with A = 2.5 by
considering the "clusters network" of weighted Erdos-Renyi (ER) graphs. This method
can be generalized if we take the original network to be a weighted scale-free graph
with 3 < A < 4 rather than ER. In this case the cluster size distribution is [26] ns ~ s~T

where 1 = ^f^ G [2.5, 3], and thus the clusters network is scale-free with a distribution
of P(k) ~ k~^ with 2.5 < A < 3. Notice also that there is a correspondence between the
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FIGURE 5. (Left) An illustration of the optimal path. The optimal path follows the percolation clusters
up to the largest cluster, crossing between clusters through the "gray" links which are the minimal barriers
between the clusters. Because of the self-similarity, large paths include all the clusters and gray links of
small paths, and the optimal path length is multiplied by a constant factor /3 each time a new cluster is
added to it (i.e. £2 = £\P, h = ^2/3 = ^i/32, etc.). The weight of a gray link connecting a cluster to the
optimal path is determined by the flictuations in the critical threshold: p c + ^f where i is the system size,
(right) The optimal path length for systems of different size N, vs. the number of gray links encountered
along the way. Different symbols represent different graph sizes: N = 4000 (x), N = 8000 (D), N = 32000
(A), N = 128000 (*). This fi gure shows that the segments of the optimal path inside percolation clusters
grow exponentially with the number of gray links, and that there is a self-similarity between large and
small systems (see left fi gure). Dashed line represents the curve ^pt = A • fi^ray where /3 « 1.66 and
A = 2.

TABLE 1. A comparison between the original graph and the
corresponding clusters network for ER and SF networks. Notice
that the flictuations of p c in the original network correspond to the
critical probability in the clusters network.

original network
Erdos-Renyi

_ i

Scale-Free
3 < A < 4

clusters network
Scale-Free

A =2.5
/ 3 ^0

Scale-Free

* = TFTe J2-5'3!

fluctuations in pc of the original network and the critical threshold pc of the clusters
network. Table 1 gives a comparison between the original network and the clusters
network for ER graphs and SF graphs.
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To summarize, we have shown that any weighted random network hides an inher-
ent scale-free network – the “clusters network” 9. We have shown that the minimum
spanning tree is built by “bombing” the clusters network, and thus it is composed of
percolation clusters connected by a scale-free tree of “gray” links. We have also stud-
ied the optimal path, which is the average path along the MST. We have shown that the
optimal path may be partitioned into segments that follow the percolation clusters, and
the lengths of these segments grow exponentially with the number of clusters that are
crossed. We have used the above results to show that the optimal path in scale-free net-
works with λ = 2.5 scales as `opt ∼ logN, and that the weights along the optimal path
decay exponentially with their rank.
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APPENDIX A: DERIVATION OF THE NUMBER OF CLUSTERS
AT CRITICALITY IN RANDOM GRAPHS

In [19] the number of clusters at criticality for random graphs was generally found to be:

NCL = N

(

1−
〈k〉pc

2

)

. (2)

This is because the MST consists of black links and gray links. The number of
gray links is found by reducing the number of black links remaining at the percolation
threshold, 1

2 N〈k〉 · pc, from the total number of links on the MST, which is equal to
N − 1. Using the fact that the number of clusters at criticality equals the number of the
gray links plus one, we get equation (2). For Erdös-Rényi graphs we have: pc = 1

〈k〉 ,

hence: NCL = N
2 .

For graphs of finite size N we find a correction of the form: n(N) = n(∞)+ 1
N , where

n(N) = NCL
N is the number of clusters per site at criticality in a graph of size N, and

n(∞) = 1
2 – see Fig. (6). This correction conforms with results found for percolation on

lattices in finite dimension [18].

9 Similar results can also be obtained for graphs embedded in two or three dimensions, with different
power law exponents.
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2 + 1
N . For N → ∞ we have

nCL = 1
2 .

APPENDIX B: THE FLUCTUATIONS IN THE CRITICAL
PROBABILITY

It is known from percolation theory that the critical threshold for systems of finite size
is not definite, rather it consists of a region [pc−∆pc, pc +∆pc] in which the behavior is
similar to criticality. In this region, with a high probability, there exist a cluster spanning
the system and there is a negligible number of loops. The general form is: ∆pc = pc

(L)1/ν

where L is the system length and ν is the correlation length exponent [27]. For random
graphs [28]: ∆pc = pc

`opt
where `opt ∼Nνopt is the average length of the percolation cluster,

and νopt = 1
3 for ER graphs [21].

As a simple demonstration, consider the number of loops per node, which was found
to be near criticality [29]:

` =
Nloops

N
∼ (p− pc)

ν̄ (3)

where ν̄ = 3 for ER graphs. Substituting p = pc + C
N1/3 (where C = o(1)) we get:

Nloops
N ∼ C3

N , or Nloops = o(1). Thus, the number of loops is negligible below p̃c =

pc +∆pc, where ∆pc ∼
1

N1/3 .
In weighted ER graphs of size N we can say that a path spanning the percolation

cluster (which is the largest loop-less sub-structure) is required to allow for weights
smaller or equal to p̃c = pc + pc

`opt
where `opt ∼ N1/3. This may be seen as a “resolution”

problem, in which small systems do not have enough links to account for the exact pc of
the system.
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