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We numerically simulate the traveling time of a tracer in convective flow between two points ~injection and
extraction! separated by a distance r in a model of porous media, d52 percolation. We calculate and analyze
the traveling time probability density function for two values of the fraction of connecting bonds p: the
homogeneous case p51 and the inhomogeneous critical threshold case p5pc . We analyze both constant
current and constant pressure conditions at p5pc . The homogeneous p51 case serves as a comparison base
for the more complicated p5pc situation. We find several regions in the probability density of the traveling
times for the homogeneous case (p51) and also for the critical case (p5pc) for both constant pressure and
constant current conditions. For constant pressure, the first region IP corresponds to the short times before the
flow breakthrough occurs, when the probability distribution is strictly zero. The second region IIP corresponds
to numerous fast flow lines reaching the extraction point, with the probability distribution reaching its maxi-
mum. The third region IIIP corresponds to intermediate times and is characterized by a power-law decay. The
fourth region IVP corresponds to very long traveling times, and is characterized by a different power-law
decaying tail. The power-law characterizing region IVP is related to the multifractal properties of flow in
percolation, and an expression for its dependence on the system size L is presented. The constant current
behavior is different from the constant pressure behavior, and can be related analytically to the constant
pressure case. We present theoretical arguments for the values of the exponents characterizing each region and
crossover times. Our results are summarized in two scaling assumptions for the traveling time probability
density; one for constant pressure and one for constant current. We also present the production curve associated
with the probability of traveling times, which is of interest to oil recovery.
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I. INTRODUCTION

The problem of oil extraction from a reservoir and how
this extraction evolves in time, is of significance to oil com-
panies. In order to maximize profits, they must be able to
predict how much oil is recoverable from a reservoir over a
given period of time. This problem can be approached scien-
tifically by devising a model that accurately predicts the be-
havior of oil during the extraction process.

Most oil reservoirs are complicated geological structures
@1# composed of several kinds of rock that have been depos-
ited over a long period of time. The configuration of the
structure has usually been altered by tectonic activity and
mineral deposition by aquifer flow. For our purposes, the
types of rock comprising any oil reservoir can be separated
into two categories: high permeability ~conducting! and low-
permeability ~insulating!. The location of both the conduct-
ing and insulating rocks is random but also nontrivial, i.e.,
during extraction it is only through the conducting rock that
the flow of oil occurs.

Based on the random spatial location of the conducting
rock, a simplifying procedure that has emerged in attempting
to predict oil extraction is to model the reservoir by a bond
percolation cluster with occupation probability p @2–20#. The
value of p corresponds to the fraction of conducting rock to

total rock of the reservoir. This captures the essential features
of the reservoir, while avoiding some of the noncrucial com-
plications. An additional advantage to this approach is that it
makes available to the analysis of oil recovery the wealth of
information pertaining to percolation theory. However, we
must caution the reader that these approximations cannot be
taken as the definitive description for oil reservoirs. It is well
known @21–25# that true field-size porous media possess cor-
relations. Our description merely represents a first-order ap-
proximation, which can serve as a base for more comprehen-
sive studies.

To fully explain the flow of oil in a percolation cluster,
several physical and geometric parameters of percolation
have been explored. Among them, there is work on the short-
est path in a percolation cluster @9,11,13,26–33#, the average
flow time of a fluid inside a cluster @34#, and the full prob-
ability distribution of flow time inside a cluster for relatively
short times @12#. The multifractal nature of flow inside a
cluster has also been the subject of a number of papers
@35,36#.

In this work, we focus on one particular technique of oil
extraction used by companies: secondary oil extraction. It
consists in injecting a fluid ~water, carbon dioxide or meth-
ane! into the reservoir in order to displace the oil trapped
inside. The fluid is injected through an injection well, located
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at point A of the reservoir, and the mixture of fluid and oil is
collected at point B of the reservoir, where an extraction well
is placed. The distance between the wells is known as the
interwell space r. Inside the reservoir medium, a mixture of
two fluids is formed, driven by a pressure difference between
wells A and B. Here, we consider the case when the two
fluids have equal viscosities and are both incompressible,
and thus can be considered as identical miscible fluids. For
fluids of different viscosities, see Refs. @37–41#. To predict
the amount of oil obtained at a given time, one must under-
stand the evolution of this flow. In particular, it is important
to know how long the injected fluid starting at A requires to
reach B. Since the flow on the reservoir occurs in the set of
paths that connect A and B, knowledge of the traveling time
t ~also known in the literature as first-passage time! on all the
paths in the reservoir determines how much of the displacing
fluid has reached B at a given time and, therefore, what per-
centage of the extracted mixture still corresponds to oil.

Some progress has been made in the study of this prob-
lem. The case of homogeneous flow ~with p51), when the
reservoir is only composed of conducting rock, has been
treated in Ref. @15#. Also, the convective and diffusive re-
gimes of a more realistic nonhomogeneous reservoir ~specifi-
cally at criticality p5pc) have been considered @12,13,15#.
The time it takes for any amount of the injected fluid to reach
B, called the breakthrough time tbr , was analyzed in Refs.
@12,13#. The case of different viscosities for the injected and
displaced fluids has been studied before, both for a finite
value of the viscosity ratio @39–41#, and in the limit of very
high ratio @37,38#. In the latter case, a behavior analogous to
diffusion-limited aggregation in percolation is found.

In this paper, we analyze analytically and numerically the
flow inside a two-dimensional ~2D! bond percolation cluster
for two different occupation probabilities (p51 and p
5pc) and under two different pumping conditions at A: con-
stant current and constant pressure. The quantity measured is
the probability distribution of the traveling time t of tracer
particles after breakthrough in a percolation ensemble, for a
given interwell space r, and a reservoir of linear dimension
L. These measurements ultimately allow us to write the prob-
ability distributions in concise expressions, valid for all the
conditions studied here.

In Sec. II, we introduce the basic mathematical quantities,
the probability density of traveling times and the production
curve, and relate them to the physical picture. Section III
deals with the homogeneous case p51, which serves as a
template to understand the more complicated 0,p,1 case.
Section IV introduces the inhomogeneous model at criticality
to be used, while Sec. V recounts the numerical results of the
model. In Sec. VI, we present analytical arguments explain-
ing the behaviors observed in Sec. V and these arguments are
then used to present the final forms for the probability dis-
tributions under both constant current and constant pressure
conditions.

II. PRELIMINARY CONCEPTS

In secondary oil extraction, a fluid ~typically water! is
injected into the reservoir through an injection or pumping

well A, pushing oil trapped inside toward the extraction well
B. We call any infinitesimal fluid element of water a tracer.
The time it takes a tracer to travel from A to B is called the
traveling time t. For each possible configuration of the res-
ervoir, there are generally many possible paths to travel from
A to B and each of these paths is called a streamline. Because
of the multiplicity of streamlines, each particular tracer that
starts at A, in general, requires a different time t to reach B.
The breakthrough time tbr corresponds to the time when the
first water stream reaches B for a given realization. We define
P(t ,r ,L)dt as the probability that a tracer crosses from A to
B in a time between t and t1dt , with the condition that A
and B are separated by a distance r, in a reservoir of linear
size L. The function P(t ,r ,L) is averaged over all possible
reservoir configurations connecting the wells. Physically, it
represents the fraction of water that becomes part of the ex-
tracted mixture at time t. Note that when t,tbr , P(t ,r ,L)
50 and the mixture corresponds to oil only. For t>tbr , cer-
tain tracers begin to reach B, and P(t ,r ,L).0, giving a mix-
ture of oil and water at B. As t→` , P(t ,r ,L)→0, because
no new streamlines reach B and this well produces only wa-
ter. Cost constraints dictate the point at which the use of the
well is terminated.

From our knowledge of P(t ,r ,L), assuming that the
streamlines do not change over time, we can determine the
average production curve C(t ,r ,L), which is the ratio of oil
contained in the mixture coming out of the extraction well at
time t,

C~ t ,r ,L ![12E
0

t

P~ t̃ ,r ,L !d t̃ . ~1!

Equation ~1! exhibits the expected features of the mixture:
initially P(t ,r ,L)50 and only oil comes out, giving
C(t ,r ,L)51. As t increases, C(t ,r ,L) begins to decay as a
function of the number of streamlines that reach the extrac-
tion well. As t→` , all water streamlines reach the extraction
well and C(t ,r ,L)50.

For a reservoir being exploited with a pressure differential
between A and B, such that the total current between these
two points is Q, the total amount of oil, S, contained inside
the reservoir can be determined by the expression

S5QE
0

`

C~ t !dt . ~2!

Assuming oil is incompressible and using units for which its
density is equal to 1, S also represents the accessible volume
of the reservoir. Inserting Eq. ~1! into Eq. ~2! and integrating
by parts, we obtain

S

Q
5E

0

`

dtS 12E
0

t

P~ t̃ ,r ,L !d t̃ D 5E
0

`

tP~ t ,r ,L !dt5^t& .

~3!

This result corresponds to the equal-time theorem, which
states that the average traveling time of tracers inside the
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reservoir is equal to the available reservoir volume divided
by the total external current @15,42#. Equation ~A3! of the
Appendix represents the same result, applied to a reservoir in
which all the sand is conducting.

III. HOMOGENEOUS CASE

The homogeneous case (p51), which can be analytically
solved, serves as a guide for the more realistic, nonanalytic
critical percolation threshold case (p5pc). The p51 case
was studied in Ref. @43# using differential equations. Here,
we obtain the solutions by conformal mapping, reproducing
the results of Ref. @43#, and add the particular form of the
production curve for the times t right after the breakthrough.
This section contains the main results of the time behavior,
but the derivations are located in the Appendix. One of the
results obtained there is that t carries units of r2 and, there-
fore, in the following, t is replaced by a scaled variable

t8[
t

r2 . ~4!

We assume that the reservoir is a circle of diameter L
centered at the origin and the two points A and B are located
at (2r/2,0) and (r/2,0). We study the production curve
C(t ,r ,L). The ratio L/r is represented by l . Using t8 and l ,
the production curve C(t ,r ,L) for a given r and L is

C~ t8,l ![C~ t/r2,1,l !5C~ t ,r ,L !, ~5!

where we have made use of Eq. ~A12!, which expresses the
scaling rule of C(t ,r ,L) under rescaling of t to t/r2. For the
sake of brevity, we refer to C(t8,l) as C(t8).

Originally, the reservoir is filled with one kind of fluid
~oil!. At time t850, we start to inject at point A, with con-
stant rate, a different fluid ~water!. We measure the produc-
tion curve C(t8) at well B ~Fig. 1!. We assume that both
fluids are incompressible and have zero viscosity. The flow is
then described by Darcy’s Law v

W 52k¹W P and ¹2P50. A
set of regions, and two transition times t1/28 and t

,
8 separating

these regions, appears for the production curve C(t8). We
now present them.

(1) Region IH. Before t85tbr8 (l), the concentration of in-
jected fluid at point B is zero and only oil exits through point
B. We denote this time region, when t8<tbr8 , as region IH .

(2) Region IIH. When the injected fluid reaches the pro-
duction well, the concentration of the displaced fluid rapidly
drops immediately after breakthrough as

C~ t8!;12K~l !At82tbr8 . ~6!

This behavior occurs until t85t1/28 (l), when a new time de-
pendence sets in. The time region tbr8 ,t8<t1/28 is defined as
region IIH .

(3) Region IIIH. If l@1, for times t8.t1/28 there exists a
region of power-law decay @43#,

C~ t8!;t821/3. ~7!

We call this region IIIH . It is present at times t1/28 ,t8<t
,
8,

where t
,
8(l) is defined below.

(4) Region IVH. At the transition time t
,
8(l), the reservoir

is almost exhausted of oil and C(t8) decays exponentially as

C~ t8!;exp„2~ t82to8!/t
,
8…, ~8!

where to8(l) is given by Eq. ~A19!. This is region IVH and it
is present in C(t8) for all l.1, for times t8.t

,
8. For l

51, C(t8,1)52C(2t8,`)21 and the reservoir is completely
exhausted at (1/2)t1/28 (`).

(5) Transition times t1/28 and t
,
8. Regions IIH and IIIH are

separated by a transition or crossover time t1/28 (l), given by
Eq. ~A16!. Regions IIIH and IVH are separated by the cross-
over time t

,
8(l), given by Eq. ~A18!. For l;1, the two

crossover times become of the same order, and region IIIH is
no longer present. However, as l→` ,

t1/28 ~l !→1/2 ~9!

and @43#

t
,
8~l !;ld l ~d l53 !. ~10!

FIG. 1. Production curves for the homogeneous p51 case in
logarithmic scale for l52, 3, and 10. The solid curves superim-
posed to the production curves indicate the asymptotic behaviors of
regions IIH , IIIH , and IVH . All the solid lines have been calculated
using the results in the Appendix. For region IIH , Eq. ~A10! is used
with K given by Eq. ~A15!; for region IIIH , Eq. ~A11! is used, and
for region IVH , we applied Eq. ~A20!. The full circle indicates the
transition time t1/28 and the empty circle indicates t

,
8.
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That is, as l increases, region IIIH appears and the transition
time between IIIH and IVH scales as a cubic function of the
geometric factor l .

IV. MODEL FOR THE INHOMOGENEOUS CASE

We represent the reservoir as a two-dimensional bond per-
colation cluster and choose points (2r/2,0) and (r/2,0), de-
noted by A and B, respectively, to be the injection and ex-
traction well positions. Points A and B are separated by a
geometric distance r and the system box has corners at
(6L/2,6L/2). We construct a percolation cluster by remov-
ing bonds of a square L3L lattice with probability (12p).
Equivalently, each bond of the lattice is conducting with
probability p and insulating with probability 12p . We simu-
late the flow if the points A and B belong to the same con-
ducting cluster. Otherwise, we discard the configuration. We
restrict our simulations to the critical bond percolation prob-
ability p5pc50.5 @2#. We consider both spanning clusters
and finite clusters, and perform averages over 104 realiza-
tions of the medium.

To model the flow of water, we use the analogy with
electrical circuits, where for each bond, the pressure drop
corresponds to the voltage difference and the flow corre-
sponds to the electrical current on the bond. A pressure dif-
ference between points A and B drives the tracer. We choose
the value of the pressure difference according to the condi-
tions desired: for constant pressure, we set a pressure differ-
ence of 1 between A and B for all realizations of the medium;
for constant current, we first measure the resistance R of the
realization, and the pressure drop is chosen to be equal to R,
so that the current for the realization is 1. For each realiza-
tion, 104 tracers are introduced at point A and then collected
at point B. The set of all bonds with nonzero current con-
tained in the percolation cluster for each particular realiza-
tion defines the backbone of the cluster and the backbone
mass M B is the number of bonds that constitute this back-
bone.

Mathematically, the ‘‘pressure’’ difference across bonds is
equivalent to a ‘‘voltage’’ difference, so by solving Kir-
choff’s laws on the backbone, we obtain the potential ~pres-
sure! drops DP over all bonds for a given realization. For a
node having s outgoing bonds, the tracer selects each bond
with a probability

w i j5
DP i j

(
j

DP i j

@ j51, . . . ,s and i51, . . . ,M B# .

~11!

Here index i is over the M B nodes and j is over the s outgo-
ing bonds, i.e., the bonds for which the pressure at the node
i is larger than the pressure at the other node of the bond. For
incoming bonds, w i j50. The time necessary to cross each
bond is t i j51/DP i j and the velocity is v i j5DP i j since each
bond has unit length. The total traveling time of a tracer is
the sum of the times corresponding to all the bonds of the
path connecting A and B, chosen by this tracer. Since the

particles do not interact with each other, it is equivalent to
launching one particle at a time into the cluster. This proce-
dure is known as particle launching algorithm @15,44#.

We determine the probability distribution of the traveling
times P(t ,r ,L) by counting the number of particles that
travel from point A to point B, separated by a distance r in a
box of linear size L, in a time between t and t1dt , over all
the particles and all realizations of the medium simulated.

V. RESULTS FOR THE INHOMOGENEOUS CASE

Following earlier work @13#, and in a similar way to Sec.
III, we define scaled times tP and tC to study the flow at both
constant pressure and constant current conditions. For con-
stant pressure, the scaled time is tP[t/rdB1m̃ and for con-
stant current it is tC[t/rdB, where dB is the backbone fractal
dimension and m̃ is the characteristic exponent of the resis-
tivity dependence on distance. The current values for these

FIG. 2. ~a! Probability distribution of traveling times for con-
stant pressure conditions for l532. Three simulations are pre-
sented, for L5258,514,1026. ~b! Probability distribution of trav-
eling times for constant current conditions for l532. Three
simulations are presented, for sizes L5258,514,1026.
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exponents are dB51.643260.0008 and m̃50.982660.0008
@34,45#. Under these new variables, we can define, in anal-
ogy with the homogeneous case @Eqs. ~5! and ~A12!#, two
new probability distributions:

P~ tC ,l ![P~ tC5t/rdB,1,l ! ~12!

for constant current conditions and

P~ tP ,l ![P~ tP5t/rdB1m̃,1,l ! ~13!

for constant pressure. Functions P(tC ,l) and P(tP ,l) are
independent of r and L, as reflected by the notation, but
depend only on the ratio l . Below, we refer to P(tP ,l) as
P(tP) and to P(tC ,l) as P(tC), with the understanding that
these functions are still dependent on l . The two log-log
plots, Figs. 2~a! and 2~b!, contain three simulations each,
corresponding to the probability distributions P(tP) and
P(tC), respectively; both plots were prepared using l532
and system sizes L5258,514,1026. The curves overlap in
both the constant pressure and constant current cases, which
imply the scaling properties

P~ tC ,l !5rdBP~ t ,r ,L ! ~14!

and

P~ tP ,l !5rdB1m̃P~ t ,r ,L !. ~15!

A set of regions with different behaviors appears in the two
distributions. For the constant pressure distribution P(tP),
we encounter the following. ~1! Region IP, which corre-
sponds to times smaller than the breakthrough time, before
water reaches the extraction well; ~2! region IIP, appearing
when the first water streams reach B and ending at the onset
of a constant slope region, including the maximum of P(tP);

~3! region IIIP, characterized by a constant value of the
slope, defined as 2gP

(1) , of value 21.4160.01; and ~4! re-
gion IVP, which corresponds to another constant slope, de-
fined as 2gP

(2) and measured to be 22.4360.06. The scaled
crossover time from region IIIP to region IVP is called tP .

The results for the constant current distribution P(tC) are
similar to those of constant pressure. However, there is a
difference in that there is yet another constant slope region
present. Consequently, we have ~1! region IC, for times be-
fore breakthrough; ~2! region IIC, corresponding to times
right after breakthrough and until the first constant slope re-
gion appears, including the maximum of P(tC); ~3! region
IIIC, corresponding to a first slope, denoted by 2gC

(1) , of
value 21.5660.01; ~4! region IVC, for a second slope
2gC

(2) , with a value of 21.7560.01 for l532, but with a
heavy dependence with respect to l; and ~5! region VC, with
a slope represented by 2gC

(3) , measured to be 22.45
60.04. The scaled crossover time between IIIC and IVC is
defined as tC

(1) and between IVC and VC , as tC
(2) . All these

values are presented in Table I.
Next, we present simulations for the probability distribu-

tions of traveling times for both constant current and con-
stant pressure and for different l values ~Fig. 3!. As before,
the distributions have two constant slope decay regions for
constant pressure and three for constant current. However, as
l changes, the positions of these regions change as well. The
detailed shapes of P(tP) and P(tC) can be determined by
studying their successive slopes, shown for constant pressure
conditions in Fig. 4~a!, and for constant current in Fig. 4~b!.
It is worth noting that regions IIIC and IVC become shorter
as l decreases, with region IIIC disappearing for l<4, and
region IVC for l<2.

Another set of quantities studied are the times for which
the slopes cross over between regions. These crossover times

TABLE I. Theoretical exponents and exponents obtained by simulation for all the regions and crossovers
for functions P(tC) and P(tP). Exponents g (1), g (2), dR , and d3 are defined in Sec. VI and their numerical
values along with their proposed theoretical values can be found in Table II. The value of exponent g (2) was
obtained as the average ~avg.! over three simulations, having L5258,514,1026.

Constant current
Region Theory Simulation

IIIC
gC

(1)
5min$~dR1gR22!/~dR21!,g(1)%

5min$1.7060.13,1.7460.15%
1.5660.01

IVC(l'32)
gC

(2)
5min$~g(1)

21!dR2gR12,g (1)%

5min$1.8060.40,1.7460.15%
1.7560.01

IVC (l→`) gC
(2)

→gC
(1)'1.5660.01 N/A

VC gC
(3)

5g (2)
521a/log10L 2.4560.04 ~avg.!

Crossover tC
(1) dC

(1)
5d3(dR21)/dR51.7360.07 1.7460.05

Crossover tC
(2) dC

(2)
5d352.8460.10 2.9060.09

Constant pressure
IIIP gP

(1)
5(dR1gR21)/dR51.4360.08 1.4160.01

IVP gP
(2)

5g (2)
521a/log10L 2.4360.06 ~avg.!

Crossover tP dP5d352.8460.10 2.7860.15
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are indicated by ellipses and boxes in Figs. 4~a! and 4~b!. For
the case of constant pressure, Fig. 5 shows the scaling of the
crossover time tP with respect to l , found to be tP;ldP

with dP52.7860.15. For constant current, Figs. 6~a! and
6~b! show two crossover times tC

(1) and tC
(2) , which scale as

tC
(1);ldC

(1)
and tC

(2);ldC
(2)

with dC
(1)

51.7460.05 and dC
(2)

52.9060.09, respectively. The positions of the crossover
times have been determined by finding the positions of the
inflection points of the successive slope plots.

Of practical interest is the production curve for constant
current conditions ~Fig. 7!, because it supplies a tool for
estimating the oil production efficiency. This curve is ob-
tained by using Eq. ~1!, from the probability distribution of
P(tC) @shown in Fig. 3~b!#.

VI. DISCUSSION

The distributions of traveling time under constant current
and constant pressure conditions are connected to one an-

other. By definition, tP5(R̃/r m̃)tC , with R̃ being the resis-
tance of a percolation cluster @2,5#, which is defined opera-
tionally as the voltage obtained between points A and B
when a current of value 1 is present. The probability that a
percolation cluster at the critical concentration pc has resis-
tance R̃ is given by F̃(R̃)dR̃ , and can be seen in Fig. 8.
Approximately, F̃(R̃) is given by

F̃~ R̃ !;H 0, R̃<R̃min

R̃2gR, R̃min,R̃<R̃max @gR52.1060.20#

0, R̃.R̃max ,
~16!

FIG. 3. ~a! Probability distribution of traveling times for con-
stant pressure conditions for system size L5514. Four simulations
are presented, for l54,8,16,32. ~b! Probability distribution of
traveling times for constant current conditions for system size L
5514. Four simulations are presented, for l54,8,16,32.

FIG. 4. ~a! Successive slopes for the probability distribution of
traveling times for constant pressure conditions for system size L
5514 ~shown in Fig. 3!. Four simulations are presented, for
l54,8,16,32. ~b! Successive slopes for the probability distribu-
tion of traveling times for constant current conditions for system
size L5514. Four simulations are presented, for l54,8,16,32.
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with R̃min;r m̃ and R̃max;L m̃. The labels for R̃min as mini-
mum resistance, and for R̃max as maximum resistance, reflect
the scaling rules of R̃ with respect to the linear size x of a
cluster, i.e., R̃;x m̃ @2#. Therefore, since the interwell dis-
tance is r, r m̃ represents the typical minimum value of resis-
tance R̃min . The maximum resistance is determined by the
system size and it scales as L m̃. Function F̃(R̃) is not strictly
zero for R̃<R̃min or R̃.R̃max , but this is an acceptable ap-
proximation in our theory. All the results we present for
F(R̃) are in agreement with previous work @13,46#.

As with the rescaled times, we find it convenient to define
a scaled resistance R5R̃/r m̃ @13# and an associated probabil-
ity F(R)[r m̃F̃(R̃5Rr m̃). Function F(R) obeys the same
scaling as F̃(R̃) @it satisfies Eq. ~16! dropping the tilde sign#.
Quantity Rmin[R̃min /r m̃ now becomes geometry indepen-
dent and Rmax[R̃max /r m̃ scales as Rmax;l m̃.

The redefined resistance R reduces the relation between tP
and tC to tP5RtC . Thus, P(tPuR) and P(tCuR) are related
by P(tCuR)dtC5P(tPuR)dtP and give

P~ tCuR !5RP~ tPuR !. ~17!

Hence, the knowledge of one distribution enables us to cal-
culate the other.

We focus on P(tP) initially. We consider parameter R, the
scaled resistance of the cluster, as the relevant physical quan-
tity dominating the properties of P(tP). Therefore, we nu-
merically find P(tPuR)dtP , which corresponds to the prob-
ability that a tracer particle travels between points A and B in
a cluster with resistance R ~more formally, with resistance
within the range R to R1dR). Function P(tP) can be con-
structed by the convolution

P~ tP!5E P~ tPuR !F~R !dR . ~18!

Function P(tPuR), seen in Fig. 9, is obtained from the simu-
lation of a system with L51026 and r532, or equivalently,
with l532. Each curve represents a different value of the
resistance R. The detailed behavior of the P(tPuR) has sev-
eral features. The function reaches a maximum at time

tP*;RdR @dR52.5760.02# , ~19!

as seen in Fig. 10. The scaled crossover time between the
two power-law regions in Fig. 9, defined by the notation tP

3 ,
occurs at equal time for all the curves, which indicates that it
is independent of resistance R. However, we have performed
other simulations with different values of l , and have found
that

FIG. 5. Crossover times from region IIIP to region IVP for
constant pressure conditions, with a system size of L
5258,514,1026 and l54,8,16,32.

FIG. 6. ~a! Crossover times from region IIIC to region IVC for
constant current conditions, with system sizes L
5258,514,1026. ~b! Crossover times from region IVC to region
VC for constant current conditions, with system sizes L
5258,514,1026.
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tP
3;ld

3 @d352.8460.10# . ~20!

Region tP*<tP,tP
3 is characterized by a power-law decay of

changing slope 2g (1) in the log-log plot ~Fig. 9!. For times
tP close to tP* , the slope presents a value close to 22, and as
tP→tP

3 , the value gradually changes to 21.6 ~see Fig. 11!.
Additionally, as becomes apparent in Sec. VI E, g (1) is also
l dependent, a fact that affects the value of exponent gC

(2) .
We do not have a satisfactory explanation for this time de-
pendence of g (1), but as a first order approximation, in what
follows, we assume it to be a constant, of value g (1)

51.74
60.15, with the value given by its average over range tP*
<tP,tP

3 . The second region in Fig. 9, for times tP>tP
3 , is

characterized by a slope of value g (2)
52.4160.04. In ana-

lytical form, P(tPuR) can be approximated as

P~ tPuR !;H 0, tP,tP*

tP
2g(1)

, tP*,tP,tP
3 @g (1)

51.7460.15#

tP
2g(2)

, tP.tP
3 @g (2)

52.4160.04# .

~21!

Taking P(tPuR) to be identical to zero for tP,tP* , although
an approximation, simplifies our calculations considerably
and does not affect the validity of our results. In fact, this is
a very good approximation since there are very few tracers
reaching well B in this time range, which means that their
statistical contribution is negligible. This simplifying as-

FIG. 8. Probability density F̃(R̃) vs R̃ for a simulation with
system size L51026 and l532.

FIG. 10. Scaling of the maximum tP*(R) of the probability
P(tPuR) vs the resistance R, for a system size L51026, and inter-
well distance r532 ~l532!. The quantity tP*(R) scales with R as
RdR, with dR52.5760.02.

FIG. 7. Production curve for system size L51026, under con-
stant current conditions. Four interwell distances have been used,
for l54,8,16,32.

FIG. 9. Probability distribution P(tPuR) vs tP5t/rdB1m̃ for sys-
tem size L51026 and interwell spacing r532 (l532), under con-
stant pressure conditions. The most probable traveling time tP* and
the crossover time tP

3 are indicated for the curve corresponding to
R564.
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sumption is repeated below for P(tCuR). The actual behavior
of P(tPuR) for tP,tP* has been studied in detail before @13#,
where it was found to be that of a stretched exponential,
carrying negligible statistical weight in our present calcula-
tions. In Sec. VI E, we incorporate this result into the full
scaling ansatz for P(tP) and P(tC). The numerical values of
the exponents of P(tPuR) and F(R) are summarized in
Table II.

The similarity in the values of dR and the combination
11dB /m̃ is worth some consideration. It has been proposed
elsewhere @12# that under constant current conditions, the
unscaled most probable traveling time scales with respect to
r as rdB. Now, for a fixed value of resistance R, at constant
pressure conditions (tP5RtC), we expect the unscaled most
probable traveling time to scale as rdB1m̃, where scaling rule
R̃5Rr m̃ has been used. These considerations justify our

choice of rescaled times. Since R̃;r m̃, we can assume that
the most probable traveling time at constant R̃ scales as
R̃11dB /m̃ and thus, dR5dB /m̃11. By similar arguments re-
garding the longest possible tracer trajectories inside the sys-
tem, the unscaled crossover time can be related to LdB1m̃,
indicating that tP

3;ld
3 would have d3 be equivalent to dB

1m̃ . However, our numerical simulations do not have suffi-
cient accuracy to answer this question definitively.

The properties just described for P(tPuR) and use of Eq.
~18! determine the form of P(tP) as we now prove for each
separate region identified in Figs. 2~a! and 2~b! ~see also Sec.
V!. The analytical expressions for all the predicted exponents
pertaining to the distribution P(tP) and their numerical val-
ues are given in Table I.

A. Region IIIP

To use P(tPuR) for the calculation of P(tP ,l), according
to Eq. ~18!, we need to take into account its normalization
factor, which is R dependent. To obtain this factor, we inte-
grate the distribution and equate it to unity, using the follow-
ing assumptions: P(tPuR) is strictly equal to zero for times
tP,tP*;RdR and, as a consequence of the previous condi-
tion, the lower limit of integration is tP*;RdR. The final form
of P(tPuR) is

P~ tPuR !;5
0, tP,tP*

1

RdR
S tP

RdR
D 2g(1)

, tP*,tP,tP
3 @g (1)

51.7460.15#

RdR~g~1 !
2g~2 !!

RdR
S tP

RdR
D 2g(2)

, tP.tP
3 @g (2)

52.4160.04# .

~22!

Regarding F(R), its normalization has no impact on the
variables in which we are interested and is therefore not pre-
sented.

To perform the integration of Eq. ~18!, we must first

define the limits of integration in R that apply to region IIIP .
The R dependence of function P(tPuR) is contained in its
normalization factor, and also in the fact that this distribution
is nonzero when tP.tP*;RdR. Therefore, for a given time

FIG. 11. Successive slopes for P(tPuR), with a system size L
51026 and l532. The region corresponding to slope g (1) of
P(tPuR) varies in value, as indicated by the horizontal lines, be-
tween 21.60 and 22.00. The second slope g (2) reflects a more
constant behavior, with value 2.4160.04.

TABLE II. Exponents of functions P(tPuR) and F(R) deter-
mined through simulations, and also their proposed theoretical val-
ues. The symbol N/A represents not available. The value of the
exponent g (2) was obtained as the average ~avg.! over three simu-
lations, having L5258,514,1026.

Exponent Theory Simulation

g (1) N/A 1.7460.15
g (2) 21a/log10L 2.4160.04 ~avg.!
dR dB /m̃1152.67260.002 2.5760.02

d3 dB1m̃52.625860.0011 2.8460.10

gR See Ref. @13# 2.1060.20
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tP , the integrand of Eq. ~18! is nonzero for all R,tP
1/dR . The

lower limit of the integral is Rmin , but it is irrelevant as
regards the tP scaling form. For function P(tPuR), only the

first scaling tP
2g(1)

is used, since region IIIP is limited to tP

<tP
3 . Then, using Eqs. ~16!, ~22!, and the convolution Eq.

~18!, we obtain

P~ tP!;tP
2g(1)E t

P

1/dR

R2dR(2g(1)
11)R2gRdR ~23!

for tP<tP
3 . After integration, the exponent of tP is positive,

which implies that the leading term for the integral is the
upper limit of integration. Substituting this limit yields the
scaling form tP

(12dR2gR)/dR . Therefore, since in region IIIP

the scaling is P(tP);t
P

2gP
(1)

, we obtain

gP
(1)

5

gR1dR21

dR
. ~24!

B. Region IVP and crossover time tP

For times tP.tP
3 , distribution P(tPuR), regardless of the

value of R, decays with a power-law of tP
2g(2)

. The upper
limit of integration is determined by the largest resistance
possible within the conditions of the geometry, which we
denote by Rmax , and it is independent of tP . Therefore, by
convolution Eq. ~18!, we obtain

P~ tP!;t
P

2gP
(2)

5tP
2g(2)

, ~25!

giving

gP
(2)

5g (2). ~26!

The actual numerical value of gP
(2) is discussed in Sec. VI D.

The crossover time tP
3 separates regions IIIP and IVP .

Therefore, tP5tP
3 , which implies that

tP;ld
3 ~27!

and

dP5d3 . ~28!

C. Mapping between P„tP… and P„tC…

Based on Eq. ~17!, the differences observed in the curves
for P(tP) and P(tC) are caused by a shift of curve P(tPuR)
on a log-log plot by 2log R. Function P(tCuR), defined
from P(tPuR) by Eq. ~17!, is characterized by two power-
law decays with exponents 2g (1) and 2g (2), a maximum at
time tC*[tP*/R;RdR21, and a scaled crossover time between
the two power-law regions at tC

3[tP
3/R;R21tP

3 . In analyti-
cal form, P(tCuR) can be approximated by an equation simi-
lar to Eq. ~22!,

P~ tCuR !;5
0, tC,tC*

1

RdR21 S tC

RdR21D 2g(1)

, tC*,tC,tC
3 @g (1)

51.7460.15#

RdR~g~1 !
2g~2 !!

RdR21 S tC

RdR21D 2g(2)

, tC.tC
3 @g (2)

52.4160.04# ,

~29!

where the normalization factor has been obtained by assump-
tions analogous to those used for P(tPuR). To explain the
different power-law regions in the behavior of P(tC), we use
the convolution

P~ tC!5E P~ tCuR !F~R !dR5E P~ tPuR !RF~R !dR ,

~30!

where Eq. ~17! has been taken into account.
In Eq. ~29!, times tC* and tC

3 are dependent on R and,

therefore, the size of the scaling region P(tCuR);tC
2g(1)

is R
dependent as well. This is an important difference between
the constant current and constant pressure cases, because it is
the cause of the existence of regions IIIC and IVC with ex-
ponents that differ from each other and from the exponent of
region IIIP . The R dependence of the size of the region is as

follows: as R increases, tC* increases, but tC
3 decreases. For

large enough R, denoted here by R3 , these two times coin-

cide, and only the scaling tC
2g(2)

is present. The resistance R3

scales as a function of the crossover time tP
3 as R3

;(tP
3)1/dR and, ultimately, in terms of l as R3;ld

3
/dR.

Also, there is a specific time, denoted here by M, associated
with this point of coincidence, where only the power-law

decay with tC
2g(2)

survives. Inserting R3 into tC*;RdR21 ~or
alternatively into tC

3;R21tP
3), we obtain

M;l (dR21)d
3

/dR. ~31!

It is now possible to explain the existence of regions IIIC
and IVC . For times tC,M , the convolution integral in Eq.
~30! has an upper limit obtained by the relation tC;RdR21

and, consequently, the expression becomes
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P~ tC!;tC
2g(1)E t

C

1/(dR21)

R2(dR21)1g(1)(dR21)2gRdR .

~32!

If the exponent of tC after integration is positive, only the
upper limit is relevant and the integral yields P(tC)
;tC

(22dR2gR)/(dR21) . Otherwise, the integral is finite and

P(tC);tC
2g(1)

. For region IIIC , the scaling behavior is

P(tC);t
C

2gC
(1)

, implying that

gC
(1)

5minH dR1gR22

dR21
,g (1)J . ~33!

The predicted value for gC
(1) is different than the measured

quantity, although it is within the error bars. This discrep-
ancy is associated with the simplifications made in our
theory, which do not reflect the fact that, for tC,M , the
highest contribution to P(tC) comes from lower values of R,
and F(R) in this range decays with an exponent gR smaller
than 2.1 @note the rounded shape of F(R) near its peak in
Fig. 8#. Therefore, with a smaller effective value of gR , the
exponent gC

(1) acquires a smaller value as well.
As it follows from the behavior of P(tPuR), for times

tC.M , P(tCuR) scales as tC
2g(1)

for small values of R and as

tC
2g(2)

for larger R. The transition between the two situations
occurs when tC5tC

3 , and since this last quantity scales as
R21, tC;R21 and the upper limit of the integral for the

regime tC
2g(1)

is R;tC
21 . Therefore, the convolution Eq. ~30!

is written as

P~ tC!;tC
2g(1)E tC

21

R2(dR21)1g(1)(dR21)2gRdR

1tC
2g(2)E

tC
21

Rmax
R2(dR21)1g(1)dR2g~2 !

2gRdR .

~34!

Once again, by considering the value of the exponents after

integration, given that P(tC);t
C

2gC
(2)

, we obtain for region
IVC

gC
(2)

5min$~g (1)
21 !dR2gR12,g (1)%. ~35!

This result is valid for a given value of l due to the depen-
dence of g (1) on this parameter. At the limit of very large l ,
application of the equal-time theorem indicates that gC

(2) ap-
proaches gC

(1) , or

gC
(2)

→gC
(1) @l→`# , ~36!

which corresponds to Eq. ~59!. See Sec. VI E for details.
Because tC

3;R21, as R decreases, tC
3 increases. Conse-

quently, the transition of P(tCuR) to the scaling P(tCuR)

;tC
2g(2)

occurs at later times for smaller R. Since the mini-
mum R possible is Rmin , the crossover tC

3 has an upper

bound, denoted here by N. The form of N is determined
through P(tCuR5Rmin) and it is equal to tC

3 for this particu-
lar distribution, or

N;tC
3;Rmin

21 tP
3;ld

3. ~37!

For tC.N , we have P(tCuR);tC
2g(2)

. Using this form of
P(tCuR) in the convolution Eq. ~30! we obtain P(tC)

;tC
2g(2)

. The upper limit of integration is again Rmax . Thus,
for region VC , we have

gC
(3)

5g (2). ~38!

This exponent is equal to that obtained for region IVP .
Now we derive the expression for the first crossover time

M, which separates regions IIIC and IVC . According to Eq.
~31!

tC
(1)

5M;ld
3

(dR21)/dR. ~39!

Comparing this with the definition for tC
(1) given in Sec. V,

we obtain

dC
(1)

5d3~dR21 !/dR . ~40!

The second crossover, according to Eq. ~37!, occurs at
tC

(2)
5N and obeys the scaling

tC
(2);ld

3, ~41!

which, in turn, implies that

dC
(2)

5d3 . ~42!

D. Long-time regime for constant pressure
and constant current

As a first approximation, we can assume that functions
P(tP) and P(tC), for a given ratio l , have no dependence on
the system size L. However, our numerical simulations sug-
gest a weak dependence of exponents gP

(2) and gC
(3) on the

system size L. These exponents express only the long-time
behavior ~large tP and tC or alternatively, regions IVP and
VC) of the distributions. The values of these exponents were
found to be the same, since both gP

(2) and gC
(3) are equal to

g (2). Consequently, this means that g (2) is a function of L.
Based on the multifractal nature of flow in porous media @35#
and, particularly, on the results obtained in Refs. @36,47#, we
propose an argument on how g (2) depends on L. Since the
scaling forms for P(tC) and P(tP) are the same at long times
~regions IVP and VC), for the rest of this section we intro-
duce notation t̃ to represent both tP and tC , because the
following argument applies to both distributions.

Barthélémy et al. @36# studied the nature of the distribu-
tion of tracer velocities $v i% in a cluster connecting two
points in percolation, and found that it has multifractal prop-
erties. Particularly, P̃(v i);v i

211a/log10L , where v i is the ve-
locity of the tracer through bond i, and a is a constant. What
is the consequence of this distribution in terms of our prob-
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lem? From the rules of the simulation, we have t̃ i51/v i and,
therefore, the distributions of both time and velocity are re-
lated by P̃(v i)dv i5 P̃( t̃ i)d t̃ i . If a tracer travels through a
bond with a velocity v i that is among the lowest velocities on
the realization, then it is true that t̃ ' t̃ i i.e., the total time of
the tracer is approximately equal to the time it takes to pass
the slowest bond. Then P̃( t̃ )' P̃( t̃ i) and

P̃~ t̃ !' P̃~ t̃ i!5 P̃~v i!
dv i

d t̃ i

. ~43!

Given that the tracers choose to travel through a particular
bond with a probability proportional to the value of the ve-
locity in that bond, we then have to modify the distribution
P̃(v i) for v iP̃(v i) to take this into account. Therefore, we
obtain a new distribution P(v i)[v iP̃(v i), which equals
P(v i)5v i

a/log10L . The corresponding time distribution to

P(v i) is called P( t̃ i) and satisfies

P~ t̃ i!5v iP̃~v i!
dv i

d t̃ i

5v i
a/log10L 1

t̃ i
2

5 t̃ 222a/log10L. ~44!

Since we are treating the case for t̃ ' t̃ i , P( t̃ )5P( t̃ i). Prob-
ability distribution P( t̃ ) is the distribution satisfied for very
large t̃ in our problem, which means that P( t̃ ); t̃ 2g(2)

, or

g (2)
521a/log10L . ~45!

In Fig. 12, we find the value of g (2) as a function of
1/log10L , measured from simulations, for several values of
the ratio l . Data regression for these results yields the ex-
pression

g (2)
52.0810.81

1

log10L
. ~46!

The agreement between the predicted and the empirical re-
sults suggests that we have reached a regime where the trav-
eling time values are dominated by the times on these bonds.
This regime starts for times tP at constant pressure and tC

(2)

at constant current. These times, in turn, scale with l with
exponents dP52.7860.15 and dC

(2)
52.9060.09, which are

close to each other and to the quantities d3 and dB1m̃ . This
scaling is consistent with the hypothesis that the long-time
regime appears when most of the fluid inside the cluster has
been displaced and only the slowest parts of the cluster still
preserve some original fluid. Since there are only two stag-
nation points for the homogeneous case of Sec. III, P(t8) is
characterized by an exponential decay. This is in contrast to
the p5pc case where a multifractal spectrum of stagnation
points is present, generating a power-law for P( t̃). However,
the long-time regime of the homogeneous case emerges in a
time that scales as ld l, with d l53, and since at p51, dB

52, and m̃51, this becomes consistent with our picture.
It is important to point out that the power-law behavior

we observe implies that the k moments ^ t̃ C
k & of the distribu-

tion P(tC) @and the equivalent for P(tP)] diverge for all
sufficiently large k. This appears to be in contrast with earlier
work @15#, where the high current limit Q→` has finite
moments for all k in a finite system. However, this apparent
discrepancy is in fact due to the different conditions that are
being considered. In Ref. @15#, both convective and diffusive
effects are present, and all tracers on a system are able to
travel and eventually leave, even from very slow bonds,
making the effect of the stagnation points negligible, and
generating an exponential decay for the traveling time prob-
ability distribution. On the other hand, if no diffusion is
present, as it is the case here, the presence of the multifractal
distribution of the velocities in the bonds generates a power-
law tail that makes the moments divergent; the tracers cannot
diffuse away from the stagnation points.

E. The full scaling forms of P„tP… and P„tC…

The results obtained in Secs. V and VI allow us to write a
full set of scaling ansatz for the traveling time probability
distributions under both constant current and constant pres-
sure conditions. The ansatz takes into account the regions
present in each of the distributions, as well as the short-time
cutoff ~before t85tbr8 ). For the cutoff, we follow closely the
arguments presented in Ref. @13#, where this behavior is ac-
counted for by the use of a stretched exponential function.

For constant pressure, we write

P~ tP!;t
P

2gP
(1)

FP~ tP!GS tP

ldP
D , ~47!

where functions FP(x) and G(x) have the behaviors

FP~x !;exp~2bx2f!, ~48!

FIG. 12. Value of the tail exponent 2g (2) as a function of
1/log10L , where L corresponds to the system size of the simulation.
Each symbol represents the succession of values of g (2) for a given
ratio l , with the longest curve corresponding to ratio 4 and the
shortest to ratio 32. The thick straight line represents the least
squares fit of the l54 case, which yields a line of value g (2)

52.0810.81/log10L , as stated in the text.
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and

G~x !;H const, x!1

x2gP
(2)

1gP
(1)

, x@1,
~49!

and constants b and f are fitted by the data. For f , the data
extracted from Fig. 2~a! yield f521.4260.03. Exponents
gP

(1) , gP
(2) , and dP are given by Eqs. ~24!, ~26!, and ~28!,

respectively. In the unscaled coordinates, P(t ,r ,L) under
constant pressure is

P~ t ,r ,L !;S t

rdB1m̃D 2gP
(1)

FPS t

rdB1m̃D GS t

LdPr2dP1dB1m̃D .

~50!

For the case of constant current, we have

P~ tC!;t
C

2gC
(1)

FC~ tC!H1S tC

ldC
(1)D H2S tC

ldC
(2)D . ~51!

Function FC(x) corresponds to a stretched exponential

FC~x !;exp~2cx2u!, ~52!

where again constants c and u are fitted by the data. By
completing the necessary transformations on Fig. 2~b!, we
obtain u521.4960.01. Functions H1 and H2 are given by

H1~x !;H const, x!1

x2gC
(2)

1gC
(1)

, x@1
~53!

and

H2~x !;H const, x!1

x2gC
(3)

1gC
(3)

, x@1.
~54!

Once again, exponents gC
(1) , gC

(2) , gC
(3) , dC

(1) , and dC
(2) are

given by the Eqs. ~33!, ~35!, ~38!, ~40!, and ~42!, respec-
tively. For the unscaled coordinates, we find

P~ t ,r ,L !;S t

rdB
D 2gC

(1)

FCS t

rdB
D H1S t

LdC
(1)

r2dC
(1)

1dB
D

3H2S t

LdC
(2)

r2dC
(2)

1dB
D . ~55!

An additional constraint that Eq. ~51! has to satisfy is that
of the equal-time theorem ~we treat the scaled coordinates
example!. The flow of tracers occurs only on the backbone of
the percolation clusters, which has volume proportional to
M B , and the total tracer current Q is unity. Since we use all
backbones that connect points A and B, without requiring
that they percolate throughout the entire system L3L , we
expect that the average time ^tC& scales with l exactly in the
same way as ^M B& scales for a given l .

The problem of the distribution of backbone masses M B
of a percolation cluster defined between two points A and B,

separated by a distance r, for a given system of size L3L , is
treated in Ref. @48#, and it is predicted that

^M B&;
LdB

lc
, c50.3760.02. ~56!

Therefore, applying the equal-time theorem,

^tC&5
^t&

rdB
;

^M B&

rdB
;ldB2c. ~57!

Calculating ^tC& from Eq. ~51!, we find that it scales as a
power of lj, where j depends on the exponents involved in
Eq. ~51!. Noting that gC

(2) has a decreasing value that is l

dependent and that this regime extends to tC
(2);ld

3, to sat-
isfy Eq. ~57!, j must satisfy

j5dB2c5~22gC
(2)!d3 , ~58!

which implies that gC
(2)'1.55, very close to the value of

exponent gC
(1) . Therefore, we expect that

gC
(2)

→gC
(1) @l→`# ~59!

and the power-law regions IIIC and IVC become one region,
with exponent gC

(1) extending from the maximum of P(tC) to
the crossover time tC

(2) .
Finally, regarding the validity of our results in true field-

size porous media, we hypothesize that the form of the scal-
ing ansatz presented still holds, even if the values of the
exponents change. This issue must be resolved by additional
studies.

VII. CONCLUSIONS

We establish that the distributions of traveling times obey
the general scaling relations P(t ,r ,L)5(1/rz)P(t/rz,1,l),
and the production curve satisfies C(t ,r ,L)5C(t/rz,1,l).
For constant pressure conditions, z5dB1m̃ , and for constant
current, z5dB . This relates the scaling of the traveling time
to the scaling of two basic cluster properties: backbone and
conductivity.

Using the rescaled times tP[t/rdB1m̃ and tC[t/rdB, we
have determined the dependence of P(tP)5P(tP,1,l) and
P(tC)5P(tC,1,l) on the geometric parameter l and have
observed several power-law regions. We obtain the expo-
nents for the power-law regions and crossover times of
P(tP) and P(tC) by convolution of functions P(tPuR) and
F(R), expressed as functions of exponents gR , dR , d3 ,
g (1), and g (2). The crossover times themselves scale as pow-
ers of ratio l . We propose relations between dR and d3 and
the fundamental percolation exponents dB and m̃ . Using ar-
guments based on multifractality, we also propose the rela-
tion g (2)

521a/log10L . The exponent g (1) is not yet ex-
plained ~see Table II!. The full scaling forms of P(tP) and
P(tC) are expressed in two scaling ansatz @Eqs. ~47! and
~51!# that contain all their observed regions and crossover
times.
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For the longest times, the crossover occurs for the p51
case at a time that scales as ld l, with d l53, which can be
interpreted as dB1m̃ under homogeneous conditions. For the
p5pc case, the crossover to the long-time region scales as
ld

3, regardless of the pumping conditions ~constant current
or constant pressure!. We hypothesize that d3 and dB1m̃ are
the same exponent and propose that the transition to the long
time regime occurs similarly at different values of the occu-
pation probability p.
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APPENDIX: ANALYTICAL SOLUTION
FOR THE HOMOGENEOUS CASE

The equations for the stationary ideal flow @43# are ¹2P

50 and v
W 5¹W P , where P is the pressure, v

W is the velocity,
and ¹2 is the Laplace operator. In two dimensions, the solu-
tion is given by an arbitrary analytical function f (z) of com-
plex variable z5x1iy , and P(x ,y)5Ref (z), vx
5Ref 8(z), and vy52Imf 8(z). The equation of a streamline
is given by f5Imf (z), where f is a parameter. The flow
between two wells A and B, located at points (6r/2,0) in the
circular reservoir x2

1y2<L2/4, is given by

f ~z !5lnS z1

r

2 D2lnS z2

r

2 D1lnS z1

L2

2r D2lnS z2

L2

2r D .

~A1!

The circular boundary of the reservoir satisfies the equation
f5p . The fastest streamline connecting A and B corre-
sponds to f50 and an arbitrary streamline forms angles f
and (p2f) with the x axis at points A and B. The traveling
time along a streamline can be found as a contour integral

t5E
A

B dz

f 8~z !
5E

A

Bdx

vx

5E
A

Bdy

vy

, ~A2!

where f 8(z) is the complex conjugate of f 8(z). The traveling
time t(f) can also be found by differentiation of the area
S(f) between two streamlines corresponding to different
values of f ,

t~f !5

dS~f !

df
, ~A3!

which is another manifestation of the equal-time theorem.
The concentration of oil arriving at well B at time t, i.e., the
production curve C(t ,r), is given by the inverse function
f(t)

C~ t ,r !5

p2f~ t !

p
. ~A4!

In the unbounded case L→` , the streamlines are circles and
t(f) is given by an elementary formula

t5
r2

2sin2f
S 12

f cos f

sin f D . ~A5!

Thus t has dimensionality of area and, therefore, in the fol-
lowing, we use the scaled time t85t/r2. Accordingly, C(t ,r)
has the scaling property

C~ t ,r !5C~ t85t/r2,1!. ~A6!

In the interest of briefness, we use C(t8)[C(t8,1). For
small f→0, t8 is given by the expansion

t85

1

6
1

1

15
f2

1O~f4!. ~A7!

For large f→p , t8→` and

t85

p

2~p2f !3
@11O„~p2f !2…# . ~A8!

The breakthrough time tbr8 corresponds to the fastest stream-
line f50 and thus is given by

tbr8 5 lim
f→0

t8~f !5

1

6
. ~A9!

Immediately after breakthrough, the concentration of oil
drops as

C~ t8!512KAt82tbr8 1O„~ t82tbr8 !3/2…, ~A10!

where K5A15/p . When t8→` , the concentration decays as
a power-law,

C~ t8!5S 1

2p2t8
D 1/3

1OS 1

t8
D . ~A11!

The crossover time from the initial fast decay to the slow
power-law decay is approximately equal to time t1/28 , defined
as the time when the concentration drops by a factor of 2, or
t1/28 5t8(p/2)51/2.

In the bounded case, the production curve for scaled time
depends only on the ratio l[L/r , and similar to the result of
Eq. ~A6!, we find that

C~ t ,r ,L !5C~ t85t/r2,1,l !. ~A12!

Production curve C(t8,l)[C(t85t/r2,1,l) can be ex-
pressed via elliptical functions. Integrating Eq. ~A2! along
the fastest streamline gives

tbr8 5

11l6
1~12l2!3

12~11l2!
1

l~12l2!2

8~11l2!
lnS l21

l11 D ,

~A13!

which in the limit l→` yields

tbr8 5

1

6
2

2

15
l22

1o~l22!. ~A14!
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Constant K in the initial fast decay can be obtained by ex-
panding the equations of short streamlines in powers of f ,
resulting in lengthy elementary functions of l . Expanding
the latter in powers of l21 yields

K5

A15

p
F11

10

7
l22

1o~l22!G . ~A15!

The half-time is given by integration along the f5p/2
streamline,

t1/28 5

1

4 H 11l2
2

~11l2!3

4l
arcsinF 4

~11l2!Al2
161l22G J

5

1

2
1O~l22!. ~A16!

Finally, as t8→` and f→p , the entire reservoir is swept
out except in the vicinity of the two stagnation points
(6L/2,0), where the velocity is equal to zero. Integrating
Eq. ~A2! along the reservoir boundary and the segments con-
necting the wells and stagnation points, with the exception of
a small vicinity of the stagnation point of order Ap2f ,
gives

t85to82t
,
8 ln~p2f !1o~1 !, ~A17!

where to8 and t
,
8 are functions of l ,

t
,
85

1

8

l~l2
21 !2

~l2
11 !

5

l3

8
1O~l ! ~A18!

and

to85t
,
8F2~223l23l2

110l3
13l4

23l5!

3l~l2
21 !2

1ln
16l~l2

11 !

~l2
21 !~l11 !2G . ~A19!

This yields the exponential decay of C(t8) at t8→`

C~ t8!5

1

p
expF2

~ t82to8!

t
,
8

G @11o~1 !# , ~A20!

where t
,
8 plays the role of the characteristic time. If t

,
8.t1/28

(l@1), an intermediate power-law decay is present between
t1/28 and t

,
8 , with the scaling form of Eq. ~A11!. In this case,

t
,
8 also plays the role of the crossover time from the power-

law to the exponential decay.
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@36# M. Barthélémy, S.V. Buldyrev, S. Havlin, and H.E. Stanley,
Phys. Rev. E 61, R3283 ~2000!.

@37# M. Murat and A. Aharony, Phys. Rev. Lett. 57, 1875 ~1986!.
@38# J.S. Andrade, A.D. Araujo, S.V. Buldyrev, S. Havlin, and H.E.

Stanley, Phys. Rev. E 63, 051403 ~2001!.
@39# L. Paterson, Phys. Rev. Lett. 52, 1621 ~1984!.
@40# J.D. Sherwood and J. Nittmann, J. Phys. ~Paris! 47, 15 ~1986!

@41# P.R. King, J. Phys. A 20, L529 ~1987!.
@42# S. Redner, A Guide to First-Passage Processes ~Cambridge

University Press, Cambridge, 2001!.
@43# J. Koplik, S. Redner, and E.J. Hinch, Phys. Rev. E 50, 4650

~1994!.
@44# M. Sahimi, H.T. Davis, and L.E. Scriven, Chem. Eng. Com-

mun. 23, 329 ~1983!; M. Sahimi, A.L. Heiba, B.D. Hughes,
L.E. Scriven, and H.T. Davis, Chem. Eng. Sci. 41, 2103
~1986!; 41, 2123 ~1986!; M. Sahimi and A.O. Imdakm, J.
Phys. A 21, 3833 ~1988!.

@45# P. Grassberger, Physica A 262, 251 ~1999!.
@46# G. Paul, S.V. Buldyrev, N.V. Dokholyan, S. Havlin, P.R. King,

Y. Lee, and H.E. Stanley, Phys. Rev. E 61, 3435 ~2000!.
@47# G.G. Batrouni, A. Hansen, and S. Roux, Phys. Rev. A 38, 3820

~1988!.
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