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Enabling Controlling Complex 
Networks with Local Topological 
Information
Guoqi Li1,4, Lei Deng1,5, Gaoxi Xiao2, Pei Tang1,4, Changyun Wen2, Wuhua Hu   2, Jing Pei1,4, 
Luping Shi1,4 & H. Eugene Stanley3

Complex networks characterize the nature of internal/external interactions in real-world systems 
including social, economic, biological, ecological, and technological networks. Two issues keep as 
obstacles to fulfilling control of large-scale networks: structural controllability which describes the 
ability to guide a dynamical system from any initial state to any desired final state in finite time, with a 
suitable choice of inputs; and optimal control, which is a typical control approach to minimize the cost 
for driving the network to a predefined state with a given number of control inputs. For large complex 
networks without global information of network topology, both problems remain essentially open. 
Here we combine graph theory and control theory for tackling the two problems in one go, using only 
local network topology information. For the structural controllability problem, a distributed local-game 
matching method is proposed, where every node plays a simple Bayesian game with local information 
and local interactions with adjacent nodes, ensuring a suboptimal solution at a linear complexity. 
Starring from any structural controllability solution, a minimizing longest control path method can 
efficiently reach a good solution for the optimal control in large networks. Our results provide solutions 
for distributed complex network control and demonstrate a way to link the structural controllability and 
optimal control together.

Over the past decade the complex natural and technological systems that permeate many aspects of everyday 
life—including human brain intelligence, medical science, social science, biology, and economics—have been 
widely studied1–3. Many of these complex systems can be modeled as static or dynamic networks, which stimu-
lates the emergence and booming developments of research on complex networks. There are two fundamental 
issues associated with the control of complex networks, with different focuses on figuring out (i) whether the net-
works are controllable; and (ii) how to control them with least cost when they are controllable, respectively. The 
first issue is typically investigated by studying the structural controllability problem, which describes the ability to 
guide a dynamical system from any initial state to any desired final state in finite time. The second issue is known 
as the optimal cost control problem, with the main objective of minimizing the cost for driving the network to a 
predefined state with a given number of control inputs. Figure 1 illustrates the structural controllability problem 
and the optimal cost control problem. Note that for large complex networks without global information of net-
work topology, both problems remain essentially open. In this work, we shall combine graph theory and control 
theory for tackling the two problems in one go, using only local network topology information.

Researchers are using a multidisciplinary approach to study the structural controllability of complex networks, 
focusing on linear time invariant (LTI)4 systems t A t B tx x u( ) ( ) ( )


= + , where x(t) = [x1(t), …, xN(t)]T is the state 

vector of N nodes at time t with an initial state x(0), u(t) = [u1(t), …, uM(t)]T is the time-dependent external con-
trol input vector, and M (M ≤ N) is the number of inputs in which the same input ui(t) can drive multiple nodes. 
The matrix A = [aij]N×N is the weighted adjacency matrix of the network, i.e., aij ≠ 0 if there is a link connecting 
node i to node j and aij = 0 otherwise, and B = [bim]N×M is the input matrix where bim is nonzero when controller 
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m is connected to node i and zero otherwise. The nodes have different physical meanings in different scenarios. 
In the Traveling Salesman Problem (TSP) it is a city or location, in a social network it is a person or group, and in 
an organism it could be an interacting protein. Even when networks have similar properties, a node can have a 
variety of interpretations in different applications. For example, in a recent work studying the structural control-
lability of brain networks5, researchers show that the neural activity process can be approximated using linearized 
generalizations of nonlinear models of cortical circuit activities. In their proposed LTI system, aij is the number of 
streamlines connecting brain region i to region j. Using an intricately detailed model of a very small region reveals 
whether aij describes a connection between neuron i and neuron j. Note that in this report, “controllability” 
always refers to “structural controllability”. Hence hereafter we shall use these two terms interchangeably for con-
venience of discussion.

Though there are recent literatures studying on nonlinear dynamics of complex networks6,7, this paper follows 
the mainstream work focusing on LTI systems, mainly for two reasons: (i) a lot of real-world systems can be 
approximated by LTI systems; the optimal control of LTI dynamics on complex networks thus forms a basis for 
the control and optimal control of complex systems; (ii) even for LTI dynamics on complex networks, no existing 
literature has considered their control and optimal cost control with only local topology information. We focus 
on the fundamental issues of control and optimal control of complex systems, for the first time to the best of our 
knowledge, demonstrating a way to link “structural controllability” and “optimal cost control” of LTI systems 
together. The results shall find wide applications and great potentials for further extensions in control and optimal 
control of complex systems. Meanwhile, there would be a long way to go in our future research to develop general 
methodology for control of nonlinear dynamics on complex networks.

Our work is mainly composed of two parts. In the first part, we study on the controllability problem. We 
show that with properly designed local operations strictly based on only local network topology information, a 
controllability solution can be found which is nearly as good as the optimal solution calculated using global net-
work topology information. In the second part, we firstly propose a relatively sophisticated optimal cost control 
algorithm which works effectively for small or medium-sized networks. Such an algorithm has its applications in 
those complex systems that are not so big, and provides a benchmark for heuristic algorithm design as well. Then 
we propose a simple algorithm that works efficiently for large and extra-large networks. To the best of our knowl-
edge, this is the first time that an efficient algorithm is proposed for the optimal control of large-scale complex 
networks. Some brief discussions on each of the three proposed algorithms are presented below, while further 
technical details and mathematical work can be found in the Supplementary Information (hereafter termed as SI).

Maximum matching (MM) is a concept in graph theory that has been used to address the structural control-
lability problem, a classic concept in control theory8–10. Generally speaking, MM is to find the largest set of the 
edges that do not share start or end nodes. A node is said to be matched if a link in the maximum matching points 
at it; otherwise it is unmatched. By assuming that the topological information of a network is fully known and by 
employing MM, the matched and unmatched nodes and edges form elementary stems and elementary circles8. 
Here an elementary stem is a directed network component consisting of N nodes 1, ...., n connected by a sequence 
of n − 1 directed edges {1 → 2, 2 → 3, …, n − 1 → n}, and an elementary stem becomes an elementary circle 
when an additional edge n → 1 is added. Note that only the starting node of an elementary stem is an unmatched 
node. The network controllability can be achieved when unmatched nodes are the driver nodes and each of which 
is connected to an independent external input. A driver node can control one of its immediate neighbors, and the 
propagation of control influence is through the stem. Thus all nodes on the stem can be fully controlled. On the 
other hand, all the matched nodes in the elementary circles do not need to be connected to extra external inputs. 
These nodes can be fully controlled by connecting one of the nodes in the circle to an existing external input8. This 
approach indicates which node sets are connected to a minimum number of external inputs, and subsequently 
reveals the input matrix B. Existing schemes have focused on these problems11–13, and they have wide significance 
in many real-world network applications11,14.

We propose a local-game matching (LM) algorithm to explore the structural controllability of large scale 
real-world networks when the global topological information of matrix A is absent and only local topological 
information is available [Fig. 1(b)]. The main idea is to form up elementary stems and elementary circles based 

Figure 1.  Two basic problems in controlling complex networks. (a) An essential issue interconnecting graph 
theory and control theory: how to provide a link from “structural controllability” to “optimal cost control”. (b) 
Illustration of the local topological information available to a node in a network. For a node x0 with neighbor 
nodes x1, x2, x3 and x4, it is assumed that the node x0 can only observe the numbers of incoming and outgoing 
links connected to each of the nodes x1, x2, x3 and x4. (c) Optimal cost control aims to determine a solution of 
driving a system state to any predefined state with minimum cost.
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on matching requests between adjacent nodes, using only local network topology information. We show that LM 
is equivalent to a static game with incomplete information as in the static Bayesian game theory15, a configura-
tion common in economic or social networks, and the LM algorithm achieves a Nash equilibrium in the game 
(Theorems 3–4 in SI). We show that LM consistently approximates the global optimal solution found using MM, 
with a complexity linear in time O(N) (SI, Theorem 5). Its satisfactory performance is demonstrated in various 
synthetic and real-world networks (SI, Section 2.4).

For the optimal control problem, we propose an orthonormal-constraint-based projected gradient method 
(OPGM) (SI, Section 3.2) and an implicit linear quadratic regulator (ILQR) to design an optimal controller for 
linear systems when the input matrix B is a matrix variable to be determined [Fig. 2(b)]. We find that, in the solu-
tions, nodes connected to external inputs tend to divide the network into control paths of the same length because 
the control cost is strongly dependent on the length of the longest path. This finding inspires us to construct a 
fast and efficient minimizing longest control path (MLCP) algorithm without using global topology information.

As later we would see, MLCP algorithm can efficiently work out a good solution for the optimal control prob-
lem based on the results of the LM algorithm for the structural controllability. Combining LM and MLCP thus 
demonstrates a link (red solid line) between “structural controllability” and “optimal cost control” [Fig. 1(a)]. This 
allows us to control large-scale complex networks using only local topological information [Fig. 2(a)].

Minimizing the number of driver nodes through local-game matching
Prior research has focused on structural controllability, and has not addressed method efficiency. For example, 
when using MM the value of ND is exact but it is expensive to calculate in large networks with complexity 
O N L( ). It is also extremely difficult if not impossible to apply to large real-world complex networks where global 
network topological information is seldom available. Even when this information is available, it is generally very 
difficult to control all the nodes by simply implementing MM16, as the communications between the central con-
troller and so many nodes can be prohibitively expensive.

We address this issue by proposing an iterative local-game matching (LM) method. Figure 1(b) shows how we 
assume that each node requests only its local topology information, i.e., the input-output degrees of its immediate 
neighbors. We also assume that each node can initiate an action without global coordination. In a directed net-
work, when there is a directional link from node xi to node xj, we designate xi the “parent” and xj the “child.” In 
implementing LM, xi → xj → xk is a matching sequence with two parent-child matches, one between nodes xi and 
xj and the other between nodes xj and xk. When a sequence of parent-child matches forms a path, we designate it 
a directed control path (DCP) when it begins at an inaccessible node, and a circled control path (CCP) when it is 
configured end-to-end. Thus DCP and CCP correspond to elementary stems and circles in the maximum match-
ing. To guarantee network controllability, the inaccessible nodes are connected to external inputs. To avoid con-
fusion, all inaccessible nodes found using MM and LM are called driver nodes, and their numbers are denoted as 

Figure 2.  The contribution of this work in demonstrating a “link” (red solid arrows) from “structural 
controllability” to “optimal cost control”. In (a), the question mark means that currently there is no existing 
work considering such a problem. Our work is based on two facts: (i) To ensure “structural controllability”, 
we propose LM which is proven to steadily approximate the global optimal solution found by MM with linear 
time complexity (SI, Section 2.2); (ii) To achieve “optimal cost control”, we introduce ILQR in (b) to design 
an optimal controller for uncertain LTI systems when the input matrix B becomes selectable, by employing 
“OPGM” (SI, Section 3.2). We uncover that nodes which should be connected to external inputs tend to divide 
elementary topologies (stem, circle and dilation) averagely for achieving a lower cost since the control cost is 
mainly dependent on the length of the longest control path, which inspires (red dashed arrows) the design of 
the MCLP algorithm without using global topology. By combining LM and MLCP together (red solid arrows), 
we are able to obtain an optimal control of large scale complex networks by only using local topological 
information.
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ND and ND
LM, respectively. By directly controlling these driver nodes we can steer all the nodes along the control 

paths. We determine the minimum driver node set in a network by locating the parent-child matches for all the 
nodes that form directed control paths (DCPs) and circled control paths (CCPs) and minimizing the number of 
DCPs.

In the LM method, using local information each node requests one neighbor to become its parent and another 
to become its child. When there is a match of requests (e.g., when node xi requests node xj to become its parent 
node and node xj requests node xi to become its child node), a parent-child match is achieved and is fixed. The 
parent node then removes all of its other outgoing links, and in the iterations that follow no other node can send it 
a parent request. At the same time the child node removes all of its other incoming links, and in the iterations that 
follow no other node can send it a child request. Note that a node may send a child or parent request to itself when 
it has a self-loop connection. The iterative request-matching operations continue until no more child or parent 
requests can be sent. After implementing LM, those sequences of parent-child matches not forming a closed loop 
form a DCP that begins at an inaccessible node without a matched parent and ends at a node without a matched 
child. A closed loop (a “circle”) of parent-child matches becomes a CCP. A DCP requires an independent outside 
controller, but a CCP does not and can be controlled by connecting a node on the circle to any existing external 
control input of a directed control path. Thus the number of the independent external control inputs equals the 
number of DCPs found using LM.

When a node is seeking a match, we define the current number of its unmatched child (parent) nodes, i.e., 
the nodes that have not yet achieved a match with a parent (child), as its u-output (u-input) degree. To increase 
the probability that a match of requests will take place, we have each node send a child (parent) request to the 
unmatched neighbor child (parent) node with the lowest u-input (u-output) degree. Figure 3(a1) and (a2) show 
a simple example. Because we assume that nodes with lower u-input (u-output) degrees will on average receive 
fewer child (parent) requests, we expect that this technique will increase the probability of achieving a match and 
thus lower the probability that a node will become a driver node with no match. A simple example in Figure 3(a3 
and a4 shows that by using this simple strategy the LM gives the same result as the MM.

When there is a tie, i.e., when a node has multiple unmatched child (parent) nodes with the same minimum 
u-input (u-output) degree, the node can either do nothing with a waiting probability ω, or it can break the tie 
randomly at this iteration step. Our experiments show that introducing waiting probability ω into the LM method 
improves its performance in certain cases (SI, Section 2.6). A detailed description of the LM algorithm (the codes 
are available at https://github.com/PinkTwoP/Local-Game-Matching) and a few examples showing step-by-step 
execution of it can be found in Section 2.1 of SI.

Figure 3.  Controlling networks with local topological information by LM and MLCP. (a) Illustrations of the LM 
algorithm. In Child locating (a1), node x0 has two child nodes x1 and x2. As node x1 has only one parent node, 
while node x2 has two parent nodes, node x0 sends a child request to x1. In Parent locating (a2), Node x0 has two 
parent nodes x1 and x2. As node x1 has two child nodes while node x2 has three child nodes, node x0 sends a parent 
request to x1. And a simple example of LM is shown in (a3), where node 2 and node 3 receive parent request and 
child request from each other. These two nodes match with each other. Thus, LM gives the same result as MM in 
this example. (b) Controlling a network with LM and MLCP. Firstly, obtain the control paths (DCPs and CCPs) 
by LM. To control the network in (b1), node 2 and node 7 (red color in (b2)) form up the driver node set which 
should be connected to the external control inputs. Note that the driver node set for a network may not be unique. 
If we add one more external input to the network, as seen in (b3), the new input node will be added on node 6 by 
applying minimizing longest control path (MLCP). More detailed examples can be seen in SI, Section 4.

https://github.com/PinkTwoP/Local-Game-Matching
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In LM, each node tends to maximize its own chance to be matched, collecting and using only local topological 
information to quickly accomplish matches as far as such is possible, thus allowing LM to be used in large-scale 
complex networks. It is shown that the LM algorithm is equivalent to the static Bayesian game with incomplete 
information (SI, Theorem 4). Because this configuration is common in real-world complex economic and social 
networks, LM helps us understand them.

We test the LM method on synthetic and real-life networks. The synthetic networks include the ER model17, 
the BA network18,19, and networks generated using Chi-squared, Weibull and Gamma distributions, respectively. 
Topology information about all the real-life networks we have tested is available from open sources (see the reference 
citations in Table S3). Figure 4(a) shows the percentage of driver nodes identified by the LM and MM methods in 
the synthetic networks with different average nodal degrees. The results for real-life networks are summarized in 
Table S3 of SI. It is observed that the number of driver nodes identified by the LM method are consistently to be close 
to or equal to the optimal solutions identified by the MM method in both synthetic and real-life networks.

Although the numbers of driving nodes found by MM and LM in different networks are about the same, an 
immediate question that arises is whether the driver nodes identified by the two different methods have similar 
statistical properties. Figure 4(a–c) show that the two methods produce approximately the same number of driver 
nodes and that they also identify the nodes with approximately the same input and output degree distributions. 
In addition, it is easy to see that the driver nodes generally avoid the hubs, which is consistent with the results 
in8. Thus, we conclude that the two methods either find approximately the same set of nodes, or find two sets of 
nodes with approximately the same statistical properties. The sub-optimality of the LM method in these synthetic 
networks is verified.

Figure 4.  LM and MM in synthetic networks: (a) Number of driver nodes with respect to the mean degree μ 
for ER, B-A and other networks for LM and MM (N = 10000). (b) Input nodal degree distributions of the driver 
nodes found by LM and MM, respectively (N = 10000 and μ = 6). (c) Output degree nodal degree distributions 
of the driver nodes found by LM and MM, respectively.
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The SI further supplies formal proofs suggesting that (i) network’s structural controllability is guaranteed by LM 
(SI, Theorem 1); (ii) LM minimizes the probability that augmented paths will be formed based on local topological 
information and thus reduces the number of required external control inputs (SI, Theorems 2–3); and (iii) the Nash 
equilibrium of the Bayesian game can be achieved by LM (SI, Theorem 4). This theoretically explains why the solu-
tion of the LM method approximates the global optimal solution of the MM method in a number of synthetic and 
real-world networks (SI, Tables S2 and S3). We also prove that the time complexity of the LM algorithm is linear 
O(N) (SI, Theorem 5), which is much lower than that of MM O( N L)20,21 and comparable to the state-of-the-art 
approximation algorithms in graph theory22,23. The difference between the LM and prior algorithms is that it uses 
much less local topological information when approximating maximum matching (SI, Section 1.3).

Minimization of the cost control
Implicit linear quadratic regulator (ILQR).  Although the controllability of complex networks is an 
important concern, minimizing the cost of control is even more important. Simply knowing the number of driver 
nodes does not tell us how to design an optimal controller for a given particular control objective. Figure 1(a) 
shows how control theory and graph theory can be used to determine the optimal cost control, a critical problem 
in complex network control. The objective is to find an optimal or suboptimal input matrix B* with a fixed dimen-
sion M without access to global topological information about adjacency matrix A. Although there have been 
some recent studies on the relationship between network controllability and control cost24–26, this is an issue that 
traditional control theory has not considered.

Traditional control theory allows us to design an input signal u(t) with the lowest cost when the systems are LTI 
and the cost function is quadratic. If both the topological connection matrix A and input matrix B are known27, this 
linear quadratic (LQ) problem provides a solution given by a linear-quadratic regulator (LQR) that involves solving 
a set of complicated Riccati differential equations28,29. However, LQR cannot be used in large-scale real-world net-
works because (i) solving a high-dimension Riccati differential equation is difficult and time consuming; and (ii) the 
Riccati equation requires global information of network topology A and input matrix B, which is seldom available for 
large-scale real-world networks. To address this issue we use a constrained optimization model for the optimal cost 
control problem in which the controller determines the B variable. Once the input matrix B is obtained, the optimal 
controller can be constructed. This optimal controller is called an implicit linear quadratic regulator (ILQR) because it is 
implicitly dependent on B. Figure 2(b) shows how ILQR differs from LQR. The only decision variable to be determined 
in LQR is u(t). The value of the input signal at each operating time u(t) and the nodes to which the inputs are connected 
and the connection weights B are both decision variables to be determined using ILQR.

We formulate ILQR as a matrix optimization problem under an orthonormal boundary condition, where the 
objective is to drive the states from any initial state x0 = x(0) = [x1(0), ...., xN(0)]T ∈ RN×1 to converge to the origin 
during the time interval [0, tf] using a minimum cost defined by ∫ t t dtu u{ ( ) ( ) }t T

0
f 30.

When u(t) is given by t B e W eu x( ) T A t t
B

At( ) 1
0

T
f f= − − − 31,32 the system state is driven to the origin. As when the 

input matrix B is selectable, both x(t) and u(t) become functions of B, which are denoted as x(t) = x(t, B) and u(t) 
= u(t, B), respectively. We thus present a constrained non-convex matrix optimization problem with the input 
matrix B ∈ RN × M as its variable,


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1  with M being the number of control inputs,  B[ ] 
is the expectation of the control cost of driving the system from an arbitrary initial state to the origin (xf = x(tf) = 0) 
during the time interval [0, tf]. Here  ⋅[ ] is the argument over all realizations of the random initial state, tr(.) is a 
matrix trace function, and IM is an identity matrix with a dimension M. Note that a necessary condition for (A, B) to 
be controllable is that M ≥ ND. In fact, the constraint on the controllability of (A, B) implies that the Gramme matrix 

∫= 
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columns of B are orthogonal to each other. The derivation of the model and discussion on the orthonormal con-
straint are presented in Section 3 of SI. By assuming that each element of the initial state x0 is an identical inde-
pendently distributed (i.i.d) variable with zero mean and variance 1, we have  Ix x[ ]T

N0 0 =  in Equation (1).
Because the above nonlinear constrained optimization problem has complicated matrices as its variables, it is 

difficult to obtain a solution. The challenge is to obtain the gradient of the cost function, which involves a series 
of nonlinear matrices-by-matrices derivatives that are not widely considered. We address this problem by pro-
posing an iterative algorithm, the orthonormal-constraint-based projected gradient method (OPGM), on Stiefel 
manifolds for designing ILQR (SI, Section 3)

ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ( )

( )

B B I B B B

B
tr B B

tr B B B B
B

( ) ( )

,

(2)

k k N k k
T

k

k

k
T

k

k
T

k k
T

k

k

1

1

1 1

1 1 1 1

1

η= − ⋅ − ⋅ ∇

= ⋅

+

+

+ +

+ + + +

+



www.nature.com/scientificreports/

7SCIENTIFIC REporTS | (2018) 8:4593 | DOI:10.1038/s41598-018-22655-5

where η is the learning step, ∇ B( )k  is the gradient B( )∇  at B = Bk, and we have

B B
B

e W e e W e dt Bx x( ) ( ) 2 ( ) (3)
t A t

B
T At T A t

B
T At

0
0 0

f T
f

T
f∫∇ = −

∂
∂

= − ⋅− −  

Therefore, throughout the process in ILQR, both u(t) and B are decision variables to be determined, where 
u(t) specifies the values of controller inputs at each operating time and B determines the nodes to which the con-
troller inputs are connected and the weights of the connections. We prove that the iteration is convergent (SI, 
Theorem 7), with  B( )k  converging to B( )⁎  where B* is an orthonormal matrix, i.e., B*TB* = IM if η is sufficiently 
small.

Our objective is to control the system at the lowest cost using the lowest possible number of independent control 
inputs determined without knowing the global topology of the network, i.e., to find the optimal input matrix B* when 
global topological information about both A and B is unavailable. Our immediate task is to locate the control nodes, i.e., 
the nodes directly connected to external inputs for minimizing control cost. Math work for developing the relatively 
complicated OPGM is presented in detail in Section 3.2 of SI. Figure 5(a,1–a9) shows that by employing OPGM in 
three elementary topologies, control nodes divide the three topologies averagely for a lower energy cost, and the control 
energy is strongly dependent on the length of the longest control path [see Fig. 5(b)]. This finding enables us to design 
a minimizing longest control path (MLCP) method, an efficient scheme for controlling large-scale complex networks 
when there are sufficient control nodes to avoid the numerical controllability transition area33.

Minimizing the Longest Control Path (MLCP).  Finding the minimum number of driver nodes using max-
imum matching ND is insufficient for controlling real-world complex networks. When we attempt to gain control by 
imposing input signals on the minimum set of driver nodes indicated by structural controllability theory25, we may 
not be able to reach the target state because too much energy is required. This is known as the numerical controlla-
bility transition where large networks often cannot be controlled by a small number of drivers33 even when exist-
ing controllability criteria are satisfied unambiguously. The reason is that a small number of driver nodes is barely 
enough to ensure controllability due to the fact that the controllability Gramian may be ill-conditioned. Thus we need 
to set the number of control nodes connected to external control inputs to be sufficiently large. Basically the numer-
ical success rate increases abruptly from zero to approximately one as the number of control inputs is increased33.

After implementing LM, a number of DCPs and CCPs form in the network. Based on the fact that control 
nodes tend to divide elementary topologies on an average, we design the minimizing longest control path (MLCP) 
algorithm, an efficient scheme for controlling large-scale complex networks for M control inputs such that 
M N mD

LM
0= + , where ND

LM is approximately the same as ND and m0 ≥ 0 is large enough for the number of con-
trollers to go beyond the numerical controllability transition area.

The main idea of MLCP is to make each DCP to be of nearly the same length as much as possible with mini-
mum changes to the results got by LM. We assume that we have ND

LM  DCPs and Li is the length of path i for 
≤ ≤i N1 D

LM. We add m0 additional control inputs to these paths to minimize the longest path length of the newly 
formed paths. If ni is the number of additional control inputs added on the path Li subject to ∑ == n mi

N
i1 0D

LM , then 
MLCP is formulated as a min-max optimization problem,
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 is the sequence of { }L
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 for all i. Thus the longest control path is 

+{ }max L
n1

i

i
� � where ⋅� � is a 

ceiling function. Figure 3(b) shows an example. After applying LM the lengths of two directed control paths are 
L1 = 7 and L2 = 3, respectively. Then the longest control path length is max{7, 3} = 7. Figure 3(b2 and b3 shows 
that when m0 = 1 the new control input is added to L1 by MLCP, giving n1 = 1, n2 = 0, and n1 + n2 = 1. Thus the 
longest control path length of the newly formed paths is { }max , 3 47

1 1
� � =

+
When both DCPs and CCPs exist after applying LM, and CCP does not require an additional external control 

input, we assign each CCP to a particular DCP and have a new sequence of Li for ≤ ≤i N1 D
LM. Thus assigning m0 

additional inputs can be done by MLCP. A more detailed illustration is given in SI, Section 4.
MLCP is applied to synthetic networks including ER networks17, BA networks18,19, and a number of real-world 

networks, and comparisons to OPGM and a random connection method between controllers and network nodes 
are drawn. Note that in order to generate this random connection method that ensures network controllability we 
first apply the MM method to find one set of driver nodes, which can be any one among the multiple maximum 
matching solutions for the network. Using the simple random allocation method (RAM) we then randomly select 
M − ND additional network nodes to construct the control node set to be connected to external inputs. Figure 5(c) 
presents simulation results on synthetic networks, while extensive results on real-world networks are summarized 
in Tables S5 and S6 in SI. We conclude that MLCP performs comparably to OPGM although network nodes are 
restricted to binary connections to external inputs (this shows the validity of MLCP), and it performs better than 
RAM. As an increasing number edges are added both MLCP and RAM are only slightly inferior to OPGM, and 
they become nearly indistinguishable as the network density increases. This is because when adding edges onto a 
low-degree network, the required number of driver nodes gradually reduces and the average/maximum length of 
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control paths becomes longer, which causes a higher control cost. However, with the network becoming further 
denser, the number of paths from an arbitrary node xi to another arbitrary node xj increases, implying many pos-
sibilities and opportunities for xi to affect xj. This makes the required driver nodes reduce insignificantly but the 
average/maximum length of control paths become shorter, which drastically decreases the control cost. Thus the 
performance of MLCP finally converges to that of RAM. This is a significant finding for complex network control. 
In large-scale dense networks we can simply randomly select the control nodes to obtain an optimal cost control, 
but for lower degree networks MLCP is the best choice.

Discussions and Conclusion
We begin by proposing local-game matching (LM) to ensure the structural controllability of complex networks 
when we have incomplete information about the network topology, and we test the performance using real-world 
networks with millions of nodes. We then design a suboptimal controller, the “implicit linear quadratic regula-
tor” (ILQR) for LTI systems with incomplete information about the input matrix. It is found that the control cost 
can be significantly reduced if we minimize the longest control path length. This conclusion is consistent with 
the findings in30,34. Thus, by combining the LM and MLCP, we are able to demonstrate a “link” from “structural 
controllability” to “optimal cost control” in complex networks without using the global topology. We can apply 

Figure 5.  Interesting observations of ILQR. (a) Illustration that control nodes tend to divide elementary topologies 
averagely for consuming less energy cost as the cost is mainly dependent on the length of the longest control path. The 
located control nodes are marked in an elementary stem and circle in (a1–a3) and (a7–a9) (M = 1, 2, 3) and in an 
elementary dilation with (a4–a6) (M = 2, 3). When M = 2, the control node set converges to either {node 1, 5} in case 
a4 or {node 1, 2} in case a5 with different probabilities, around 34.19% and 65.81% respectively in 10000 rounds of 
experiments. When M = 3, the control node set approaches {node 1, 4, 5} and {node 1, 3, 5} with percentages 24.64% 
and 75.36%, respectively, in 10000 rounds of experiments. (b) Illustration that the control cost is proportional to the 
longest control path. Here M external control inputs are randomly allocated on a 100-node elementary circle, and the 
control cost vs the longest control path that is just the maximum values of all the number of edges between any two 
adjacent control nodes, are recorded. The experiments are simulated on Matlab with higher precision (130 significant 
digits) by using the Advanpix multi-precision computing toolbox. (c) Illustration that MLCP performs significantly 
better than Random Allocation Method (RAM), in low-degree networks while they become almost indistinguishable 
as the mean degree (mean in-/out-degree) of the networks becomes dense. The experiment is done on an ER network 
by adding edges randomly and persistently (SI, Section 4.4), with M being given by = +M N mD

LM
0 (m0 = 100). The 

mean degree increases as more edges are continuously added, and the three fitting curves plotted for RAM, OPGM 
and MLCP respectively coincide with each other when mean degree is around 6.
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MLCP to select control nodes in networks of relative lower degrees, while in dense networks the random selection 
of control nodes is effective. As commonly most real-world networks can be modeled using LTI systems with var-
ious assigned physical meanings of nodes and edges, we believe the methodology we propose here can be applied 
to many real-world networks studied in the human brain, medical science, social science, biology, and economics. 
Furthermore, many physical constraints may exist in real-life systems, affecting the selection of matrix B. While 
some studies have been carried out to handle such constraints35 and MLCP may be viewed as to a certain extent 
helping fulfill the simple control of large-scale complex systems, extensive further studies are in demand to handle 
various constraints in real-life applications.

In this work, we uncover that the local network topology information of directed networks provides sufficient 
rich information not only for modelling real world, but also for brain inspired computing. It is well known that 
the human brain can be described as an extremely large-scale complex networks having 1011 nodes (neurons) and 
1015 edges (synapses), with scale-free organization. And many studies indicate that the brain neural networks are 
organized by dense local clustering to efficiently support the distributed multi-modal information processing, 
including vision, hearing, olfaction, etc. These characteristics make it possible for human brain works efficiently 
as parallel-distributed processing computers with various circuits that process local information parallelly and 
distributedly. We envision that our breakthrough on the control and optimal control of complex network with 
limited topological information would exploit advances in future brain-inspired computing theory aiming for 
deliver cost-effective information processing.

References
	 1.	 Watts, D. J. & Strogatz, S. H. Collective dynamics of small-world networks. nature 393, 440–442 (1998).
	 2.	 Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).
	 3.	 Barabási, A. L. & Bonabeau, E. Scale-free networks. Scientific American 288, 50–59 (2003).
	 4.	 Kalman, R. E. Mathematical description of linear dynamical systems. Journal of the Society for Industrial and Applied Mathematics, 

Series A: Control 1, 152–192 (1963).
	 5.	 Gu, S. et al. Controllability of structural brain networks. Nature communications 6 (2015).
	 6.	 Cornelius, S. P., Kath, W. L., & Motter, A. E. Realistic control of network dynamics. Nature communications 4 (2013).
	 7.	 Wang, L. Z. et al Control and controllability of nonlinear dynamical networks: a geometrical approach. arXiv preprint 

arXiv:1509.07038. (2015).
	 8.	 Liu, Y. Y., Slotine, J. J. & Barabási, A. L. Controllability of complex networks. Nature 473, 167–173 (2011).
	 9.	 Lin, C. T. Structural controllability. IEEE Transactions on Automatic Control 19, 201–208 (1974).
	10.	 Murota, K. Matrices and matroids for systems analysis, vol. 20 (Springer Science & Business Media, 2009).
	11.	 Yuan, Z., Zhao, C., Di, Z., Wang, W. X. & Lai, Y. C. Exact controllability of complex networks. Nature communications 4 (2013).
	12.	 Gao, J., Liu, Y. Y., D’souza, R. M. & Barabási, A. L. Target control of complex networks. Nature communications 5 (2014).
	13.	 Klickstein, I., Shirin, A. & Sorrentino, F. Energy scaling of targeted optimal control of complex networks. Nature Communications 8 

(2017).
	14.	 Ruths, J. & Ruths, D. Control profiles of complex networks. Science 343, 1373–1376 (2014).
	15.	 Hansanyi, J. Games with incomplete information played by bayesian players. Management Sci 14, 159–183 (1967).
	16.	 Weiss, G. Multiagent systems: a modern approach to distributed artificial intelligence (MIT press, 1999).
	17.	 Erdos, P. & Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5, 17–60 (1960).
	18.	 Albert, R. & Barabási, A. L. Statistical mechanics of complex networks. Reviews of modern physics 74, 47 (2002).
	19.	 Newman, M. E. Power laws, pareto distributions and zipf ’s law. Contemporary physics 46, 323–351 (2005).
	20.	 Hopcroft, J. E. & Karp, R. M. A n5/2 algorithm for maximum matchings in bipartite. In Switching and Automata Theory, 1971., 12th 

Annual Symposium on, 122–125 (IEEE, 1971).
	21.	 Micali, S. & Vazirani, V. V. An |V|1/2|E| algoithm for finding maximum matching in general graphs. In Foundations of Computer 

Science, 1980., 21st Annual Symposium on, 17–27 (IEEE, 1980).
	22.	 Lotker, Z., Patt Shamir, B. & Rosén, A. Distributed approximate matching. SIAM Journal on Computing 39, 445–460 (2009).
	23.	 Mansour, Y. & Vardi, S. A local computation approximation scheme to maximum matching. In Approximation, Randomization, and 

Combinatorial Optimization. Algorithms and Techniques, 260–273 (Springer, 2013).
	24.	 Yan, G. et al. Spectrum of controlling and observing complex networks. Nature Physics 11, 779–786 (2015).
	25.	 Chen, Y. Z., Wang, L., Wang, W. & Lai, Y. C. The paradox of controlling complex networks: control inputs versus energy requirement. 

arXiv preprint arXiv:1509.03196 (2015).
	26.	 Yan, G., Ren, J., Lai, Y. C., Lai, C. H. & Li, B. Controlling complex networks: How much energy is needed? Physical review letters 108, 

218703 (2012).
	27.	 Doyle, J. C., Glover, K., Khargonekar, P. P. & Francis, B. A. State-space solutions to standard h/sub 2/and h/sub infinity/control 

problems. IEEE Transactions on Automatic control 34, 831–847 (1989).
	28.	 Nguyen, T. & Gajic, Z. Solving the matrix differential riccati equation: a lyapunov equation approach. IEEE Transactions on 

Automatic Control 55, 191–194 (2010).
	29.	 Jiménez Lizárraga, M., Basin, M., Rodrguez, V. & Rodrguez, P. Open-loop nash equilibrium in polynomial differential games via 

state-dependent riccati equation. Automatica 53, 155–163 (2015).
	30.	 Li, G. et al. Minimum-cost control of complex networks. New Journal of Physics 18, 013012 (2015).
	31.	 Rugh, W. J. Linear system theory, vol. 2 (prentice hall Upper Saddle River, NJ, 1996).
	32.	 Klipp, E., Liebermeister, W., Wierling, C., Kowald, A. & Herwig, R. Systems biology: a textbook (John Wiley & Sons, 2016).
	33.	 Sun, J. & Motter, A. E. Controllability transition and nonlocality in network control. Physical review letters 110, 208701 (2013).
	34.	 Chen, Y. Z., Wang, L. Z., Wang, W. X. & Lai, Y. C. Energy scaling and reduction in controlling complex networks. Royal Society open 

science 3, 160064 (2016).
	35.	 Iudice, F. L., Garofalo, F. & Sorrentino, F. Structural permeability of complex networks to control signals. Nature communications 6 

(2015).

Acknowledgements
The work was partially supported by National Science Foundation of China (61603209), and Beijing Natural 
Science Foundation (4164086), and the Study of Brain-Inspired Computing System of Tsinghua University 
program (20151080467), and Ministry of Education, Singapore, under contracts RG28/14, MOE2014-T2-1-028 
and MOE2016-T2-1-119. Part of this work is an outcome of the Future Resilient Systems project at the Singapore-
ETH Centre (SEC), which is funded by the National Research Foundation of Singapore (NRF) under its Campus 
for Research Excellence and Technological Enterprise (CREATE) programme.



www.nature.com/scientificreports/

1 0SCIENTIFIC REporTS | (2018) 8:4593 | DOI:10.1038/s41598-018-22655-5

Author Contributions
All the authors contributed to framing the main idea. G. Li, L. Deng, P. Tang, G. Xiao, W. Hu designed the 
LM, OPGM and MLCP algorithms in detail. L. Deng and P. Tang collected the real-life date points, did the 
experiments and provided all the figures. G. Li, C. Wen and J. Pei formulated the optimization problem of ILQR. 
P. Tang, G. Li and G. Xiao proved the Theorems and Lemmas. H. Stanley and L. Shi framed this article. G. Li, L. 
Deng, P. Tang and G. Xiao contributed equally to this work.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-22655-5.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-22655-5
http://creativecommons.org/licenses/by/4.0/

	Enabling Controlling Complex Networks with Local Topological Information

	Minimizing the number of driver nodes through local-game matching

	Minimization of the cost control

	Implicit linear quadratic regulator (ILQR). 
	Minimizing the Longest Control Path (MLCP). 

	Discussions and Conclusion

	Acknowledgements

	Figure 1 Two basic problems in controlling complex networks.
	Figure 2 The contribution of this work in demonstrating a “link” (red solid arrows) from “structural controllability” to “optimal cost control”.
	Figure 3 Controlling networks with local topological information by LM and MLCP.
	Figure 4 LM and MM in synthetic networks: (a) Number of driver nodes with respect to the mean degree μ for ER, B-A and other networks for LM and MM (N = 10000).
	Figure 5 Interesting observations of ILQR.


